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C-FAR: A Compositional Framework for Anomaly
Resolution in Intelligent Transportation Systems
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Abstract— In this paper, we present C-FAR, a framework for
reasoning about anomalies in road-based intelligent transporta-
tion systems (ITS) based on video monitoring by the roadside
camera infrastructure. The anomalies could span broad temporal
and spatial ranges, including fine-grain (e.g., unsafe interactions
among moving vehicles in real-time), medium-grain (e.g., aggres-
sive/unsafe driving styles of individual vehicles over extended
periods/distances), and coarse-grain (e.g., ensemble properties of
the traffic over even longer time horizons). Unlike traditional
approaches that utilize deep learning to recognize individual
activities, C-FAR does so only for primitive movements and
activities and then builds a comprehensive event logic framework.
It also provides an optimal resolution of the detected/predicted
anomalies by identifying the minimal changes in the controllable
parameters of the system. We implemented a prototype system
and tested it on three distinct real-world traffic data sets.
We demonstrate that the proposed scheme can predict anomalies
with over 84% recall level at 95% confidence level approximately
4.05 seconds before the incident.

Index Terms— Intelligent transportation systems, anomaly
detection and resolution, satisfiability modulo theories, event
logic, combinatorial optimization.

I. INTRODUCTION

W ITH rapid advances in image processing and machine
learning, it is becoming possible to monitor critical

infrastructures to determine “anomalies” (or irregular behav-
ior) in real-time to maintain safety and smooth operation.
In this paper, we focus on anomaly detection in road-based
Intelligent Transportation Systems (ITS) and propose a novel
method based on the spatio-temporal composition of simpler
activities learned through deep learning. We consider scenarios
in the near future where the traffic may consist of a mix of
cars with different automation levels [1] and fuels, including
the rapidly advancing Electric Vehicle (EV) technology.

A. Current Work on Anomaly Detection and Its Limitations

Anomaly detection is a well-researched subject but primar-
ily focused on detecting specific situations. Several studies
attempt to detect anomalies automatically as “outlier” events,
e.g., walking/riding the wrong way on a one-way path [2].
The current trend in the field is to capture even more com-
plex activities with more sophisticated deep-learning (DL)
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models, as described in the related work section (§II). The
most widely used techniques utilize Recurrent Neural Net-
works (RNNs) – more precisely, Long Short-Term Memory
(LSTMs) – either alone or in conjunction with Convolutional
Neural Networks (CNN) to learn from data sequences and to
capture spatial information about road networks in addition to
capturing long-term temporal patterns. The high complexity of
these models results in three key drawbacks: (a) Models such
as LSTMs require an enormous amount of data to train, and
such data is hard to come back, especially in the context of
anomalies, (b) A separate model needs to be constructed and
trained for each class of activities, which makes the method
unscalable to complex environments, and (c) the accuracy of
most of these models is rather poor, with standard error in ten’s
of percent, which is unacceptable for real-world deployment
of such an approach.

B. Our Contributions

In this paper, we take a completely different logic-based
approach. Our proposal, C-FAR, does not try to detect anomaly
directly (e.g., an accident occurring or about to occur); instead,
it learns about simpler events relevant to the anomaly (e.g.,
two distances between two vehicles becoming less than a
threshold). We then combine these based on domain knowl-
edge (e.g., motion physics) and spatio-temporal reasoning
to determine the presence of an anomaly. The logic for-
mulation provides considerable flexibility and can efficiently
encode the physics of the situation, which in turn can be
used to predict the anomaly occurrence sufficiently in the
near future to enable corrective action. We use the same
formulation to frame an optimization problem to resolve the
anomaly with minimally acceptable perturbations in the rules.
The resulting “correctional advice” can then be provided to
the driver/driving system for the application. This frame-
work still needs deep learning to drive object recognition
and proximity. Still, this technology is well-established, and
the tasks can be done quickly and with a high degree of
accuracy.

Compared with existing RNN-based methods [3], [4], the
C-FAR framework offers: (a) Reduction of the problem to
learn a core set of primitive events/activities through deep
learning, which can be fast and accurate, (b) a highly
flexible way of combining primitive events/activities, along
with the relevant physics, to detect and resolve anomalies, and
(c) extensibility as the system or anomaly definitions evolve.
We evaluate our approach on several datasets and show that it
can detect and predict an anomaly with an accuracy of up to
91% and a recall rate of 85%. Additionally, it can anticipate
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anomalies much earlier (4.05secs vs. 2.15secs [3]) and resolve
100% of anomalous cases.

To the best of our knowledge, this is the first paper
that attempts to predict complex events from a composi-
tion of simpler events where the weights are not fixed in
advance.

C. Paper Organization

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III discusses
anomalies in ITS. Section IV discusses formal modeling of the
anomalies. Section V presents the proposed framework. Exper-
imental evaluation and results are summarized in section VI.
Section VII then concludes the paper.

II. RELATED WORK

In [5] authors have proposed a single-class neural network
technique composed of Convolutional Auto Encoder (CAE) to
extract robust spatiotemporal features for detecting abnormal
events in crowded scenes. Several deep learning methods have
recently surfaced as non-parametric alternatives for anomaly
prediction. Major literature survey papers on DL techniques
in traffic flow analysis/prediction are contained in [6] and [7].
Another survey paper [8] discusses deep learning methods for
anomaly detection in surveillance videos in detail, including
open problems and analysis of supervised and unsupervised
methods. There are several works that distinguish abnormal
actions and commands issued over a distributed network of
unmanned Autonomous Vehicles (AVs). Authors in [9] pro-
pose an autonomous intrusion detection scheme for discover-
ing advanced and sophisticated cyberattacks that exploit drone
networks using Machine Learning (ML) algorithms like deci-
sion trees, k-nearest neighbors, naive Bayes, support vector
machines, and deep learning multi-layer perceptrons. In [10]
authors present a multi-stage intrusion detection framework to
identify intrusions from ITS. The proposed framework is based
on normal state-based and bidirectional Long Short Term
Memory (LSTM) architecture to efficiently discover intrusions
from the fundamental network gateways and communication
networks of AVs. However, the activity complexity and data
limitations generally yield accuracies that are not good enough
for real-world use. Also, much of the research focuses on
a small geographic area or a brief period, raising concerns
about scalability [11]. Another major challenge in deploying
a hybrid deep learning model that incorporates both spatial
and temporal modeling is the distinction between training and
the time horizons used for prediction. While some research
has demonstrated that hybrid deep learning architectures can
enhance performance in certain conditions [12], others con-
tinue to debate the necessity and efficacy of fine-tuning such
models.

III. ANOMALIES IN ROAD-BASED ITS

A. Case for Video-Based Anomaly Detection

We assume the deployment of Road-Side Infrastructure
(RSI) to comprehensively monitor the road segments through
smart cameras mounted on every light pole. Each camera
monitors the traffic in its view and does some simple image

processing tasks such as object detection and tracking in each
frame and data transmission to the next level, often known
as the Road-Side Edge Controllers (RECs). The tracking
algorithms can also avoid transmission of redundant frames
and further adapt to the available transmission bandwidth as
in our earlier work [13]. The RECs receive video streams
from multiple cameras along a road segment and use them
for flexible monitoring of activities and anomalies.

Such a system can augment the increasing array of safety
features in the vehicles, commonly known as ADAS (Auto-
mated Driver Assistance Systems). Each vehicular ADAS
considers safety from a local perspective; instead, the mon-
itoring RSI can provide a global perspective and warn the
vehicular system or the driver accordingly. A similar mecha-
nism can also be used in other environments such as hospi-
tals, senior care centers, factories with only a few workers,
etc.

Given the increasing processing power in smart cameras, the
detection/tracking of essential objects can be done by camera
itself. Further processing, including perspective transformation
and estimation of orientations and speeds of the objects
may be done by the camera itself or by the RECs. The
REC can then build a spatio-temporal logic model of the
situation that includes all “facts” of the anomaly situations
and the supporting “theories” (i.e., Newton’s laws, arithmetic,
etc.).

B. Type of Anomalies

In general, anomalies can occur at multiple temporal and
spatial scales. In ITS, we can identify fine-grain, medium-
grain, and coarse-grain anomalies. A fine-grain anomaly refers
to the interaction between adjacent vehicles or vehicles and
other objects (e.g., pedestrians, objects on the road, etc.)
with safety implications. This includes the relative movements
(e.g., distance and how it changes) that may damage, injure,
or loss of control. They are the most critical and the most
difficult to handle since they must be predicted quickly and
yet provide at least 1-2 seconds for corrective action to be
taken.

The medium-grain anomalies concern individual vehicle’s
behaviors that are detrimental to the safety and efficient
driving (e.g., weaving through the traffic, persistent acceler-
ation/deacceleration pattern, etc.). Note that monitoring such
anomalies requires behavior over longer periods (e.g., minutes)
and spatial spans (e.g., 100s of meters). Automated vehicles
that have been compromised due to security attacks or HW/SW
malfunctions could show an even broader range of abnormal
behavior, thereby making automatic detection crucial. Finally,
the coarse-grain anomalies, which concern congestion on the
road, feeder roads, and at fueling stations. These anomalies
could have extended relevance, such as the congestion at
multiple EV charging stations in an area could imply stress
the smart grid.

We largely focus on fine-grain and medium-grain anomalies
in this paper. The fine-grain anomalies include: rear-end or
front-end collisions, intersection collisions, lane-change col-
lisions, and collision with pedestrian/animal on the road. The
medium-grain anomaly pertains to aggressive driving behavior
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including speeding, weaving in and out of traffic, running
through pedestrian crosswalks, etc. For fine-grain monitoring,
the interest is primarily in detection conditions that may cause
a collision rather than the collision itself.

C. Challenges in Compositional Anomaly Detection

The anomaly detection problem can be formulated as a
Boolean satisfiability problem so that the popular SMT (satisfi-
ability modulo theory) based tools can be used along with suit-
able theories as stated above. However, most of the assertions
involved depend on time and space, which can be expressed
using a temporal logic such as Linear Time Logic (LTL).
However, a plain LTL expression makes a definitive statement
about the future (e.g., an assertion holds until some event
happens). Instead, we need a new notion of a fluent whose
validity can change at any time instant. There are several
temporal logics built using fluents and assertions [14], [15].
A popular framework for this is Event Calculus [16] that we
use here. Another calculus is Situation Calculus (SC) [17],
but it specifies a sequential occurrence of actions and does
not allow time evolution.

The order in which traffic-related events occur and the
relationships between successive traffic situations may have
an effect on whether an anomaly occurs. To capture this, the
model should represent event preconditions, time-dependence
of events, including absolute event times, and their impact on
the traffic flow. Event Calculus (EC) provides constructs to
reason about situations, events, and changes in time, allowing
a precise specification of time relationships between situations
and events, which is critical for describing traffic anomalies.
In addition, concurrent actions can also be specified in EC.

Since numerous factors influence the traffic events and
hence anomalies in the real world (e.g., weather, road con-
ditions, traffic controls/regulations, driver behavior, etc.), the
assertions in the EC formulation would generally be based on
these aspects, even though direct modeling of these factors is
not needed. For example, speeds can be assumed to be upper
bounded and consistent with the macroscopic fundamental
diagram [18].

IV. FORMAL ACTIVITY MODELING

A. Defining Events and Fluents

The main entities defined in the EC are as follows:
• Events: actions that occur at a certain point in time.
• Fluents: entities that modify their state as a result of

occurrence of event or an action. Each fluent can be
initiated or terminated by multiple events and has a time
duration.

• Predicates: entities that specify when events occur or the
state of the fluents at various points in time. The EC spec-
ifications include a basic set of predicates. However, extra
predicates can also be defined based on the requirements
of the user.

• Constraints: take the form of rules that define the rela-
tionship between fluents and events.

• Domain independent axioms: are the default formalism
logics that define the relationship between the predicates.

TABLE I

TABLE: MAIN PREDICATES OF RTEC

In our work, we use an efficient dialect of the Event
Calculus, termed “Event Calculus for run-time Reasoning”
(RTEC) [19]. RTEC is an open-source implementation of the
EC in Prolog and uses LTL with integer time points. RTEC
implements novel techniques for identifying complex events
from a set of primitive events that are also scalable to large
volumes of complex events. Simple implementations of EC
are time and memory-intensive, making them unsuitable for
developing real applications. This is because each time the EC
engine is queried, the computation is restarted, and the validity
intervals for all fluents are recalculated. RTEC addresses these
issues by developing a technique for caching the results of
sub-computations. Additionally, the indexing technique used
in RTEC makes it disregard data streams that are irrelevant to
the current queries.

An event description in RTEC contains rules that define the
event instances using the hA and hF predicate. The fluents
that are time-varying properties and the effects of events on
fluents are defined using the inA and tA predicates. The value
of fluents at any time point is defined using the hoA and hoF
predicates. If F is a variable ranging over fluents, the term
F=V denotes that variable F has a value V. There also exists
Boolean fluents with values true or false. The Table I shows
the predicates used in RTEC tool.

B. Detecting and Predicting Anomalies

Identifying anomalies through a spatio-temporal assertion
checking can be regarded as “detection” when a specific event
such as a collision is imminent or significant traffic congestion
has already occurred. However, if we can anticipate the event
well enough in advance, we can do it as a “prediction”. There
is an apparent tradeoff between the accuracy of prediction and
how far in advance the prediction can be made. Nevertheless,
since some level of false positives is preferable to the anomaly
actually occurring, an earlier prediction is usually preferable.
The prediction is necessarily limited to the factors that are
comprehended by the model; for example, without an accurate
model of driver actions, we cannot predict what the driver
might do in a certain anomalous situation. However, to the
extent that such knowledge is available, it can be easily
included in our framework.

In reality, detecting an anomaly cannot always be reduced
to a simple Boolean condition to be satisfied. Instead, the
anomaly is usually characterized as a confluence of several
conditions of varying importance. As a trivial example, if dx

is the distance to the next vehicle in the same lane, and dy

is the clearance between vehicles in adjacent lane, we may
want to associate higher importance to dx < x0 (i.e., dx going
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below the critical value x0) than to dy < y0 i.e., dy going
below the critical value y0). One way to achieve this is to
associate a weight, say wi , with the i th condition, and use�

i wi > W0 as an indication of anomaly, where W0 is a
predefined threshold.

In general, some conditions (the most important ones) may
be considered as hard in that they must hold individually.
In contrast, others (the less important ones) may be regarded as
soft in that they are considered together through their overall
weight. It is also likely that the weights are not static but
depend on various spatio-temporal aspects and context (e.g.,
day vs. night time, roads with different speed limits, etc.) This
can be handled except that a weight change would require that
we pause all current condition evaluations, change all weights
that need to be changed simultaneously, and then resume the
evaluation.

To handle hard/soft conditions, we can use an extension to
the Boolean Satisfiability problem known as Weighted Partial
Maxsat (WPM2). In standard WPM, we have a Boolean
formula expressed in the Conjunctive Normal Form (CNF),
where each clause is expressed in terms of some Boolean
variables. Let Y = {yi , i = 1, 2, . . .} denote the set of Boolean
variables in the formula. Then each CNF clause will include
a subset of these in normal or negated form. In WPM, each
clause is designated as either hard or soft with a given weight.
We then have an optimization problem to find an assignment
that satisfies all hard clauses and minimizes the total weight of
soft clauses. Solution methods for such problems are currently
a hot topic, with many approaches, and are a prominent part
of the annual MaxSAT competition [20]. The solvers include
both “complete” methods (e.g., deterministic search) and
“incomplete” ones (e.g., combinatorial optimization based),
and we use the latter approach as it caters to detection and
resolution.

In our problem, the Boolean variables yi ’s represented
conditions involving some underlying state variables of the
system. For example, y1 = (speed < 50) where speed is
the underlying real-valued state variable. Standard WPM has
no notion of such underlying variables and thus does not
consider them in the value assignment. In our solution, we will
perturb these Underlying State Variables (USV’s), henceforth
denoted as v j , j = 1..J to distinguish them from the Boolean
variables (BV’s) yi ’s.

C. Resolving Anomalies

When applied to the optimization problem as in IV-B,
a WPM2 solver would return an UNSAT core C � in case
of anomalies. The UNSAT core consists of the rules and the
clauses involved in the anomaly. For resolving the anomaly,
we need to perturb the underlying variables of the unsatisfiable
clauses so that they become satisfiable. For example, a clause
such as (speed < 60∨distance > 2) will be treated by WPM2
as the CNF clause (x1 ∨ x2) where x1 = speed < 60 and
x2 = distance > 2, and (x1, x2) denotes the clauses and
associated variables that are perturbed to resolve an anomaly.
To the best of our knowledge, all work on WPM2 stays strictly
at the Boolean level and has no knowledge of the underlying
conditions or variables. We address this through a combina-
torial optimization approach, for which numerous algorithms

exist and we found that Dynamically Dimensioned Search
(DDS) [21] generally works the best. It initially perturbs most
variables but fewer of them as the iterations proceed, akin to
temperature decrease in Simulated Annealing.

The key to finding a near-optimal solution quickly in com-
binatorial optimization algorithms is the use of situations or
ongoing events. The perturbations to the solution made at each
stage represent various correlations and dependencies. Hence
to resolve an anomaly, the situation-based DDS intelligently
perturbs the variables, i.e., based on current situations or
events, and selects the clause to perturb that has the most
significant influence on the anomaly. Note that only the
vehicular parameters (e.g., speed, acceleration, orientation,
etc.) are perturbable parameters for anomaly resolution; we
cannot change anything about other objects that the vehicles
interact with (e.g., pedestrians, animals, static objects, etc.)
cannot be perturbed.

One other unique aspect of anomaly resolution is that it
is a constrained optimization problem, with the constraint
being the satisfiability of the modified formula that ensures
the anomaly no longer exists. In this paper, we use the
epsilon-constraint satisfaction method, which appears to work
quite well in practice. This method essentially quantifies the
notion of “degree of feasibility” based on how close the
proposed solution is to the constraint boundaries [22]. This is
then used along with the current cost to decide how to perturb
the variables.

V. COMPOSITIONAL FRAMEWORK

FOR ANOMALY RESOLUTION

Fig.1 shows our overall framework, named C-FAR, which
consists of two stages. The first stage is a lightweight object
detection model using a convolutional neural network (CNN)
model called YLLO that we have developed for video analysis
in [13]. YLLO stands for You Look Less than Once and
refers to the highly efficient processing of video sequences.
The second stage for each detected object (e.g., vehicles,
pedestrians, etc.) is a spatio-temporal logic-based reasoning
system that captures the relative movements of the objects
in real-time to detect/resolve anomalies using a combinatorial
optimization-based approach.

A. CNN Based Object Detection and Tracking

YLLO is a lightweight object detection technique based on
YOLOv4 and is optimized for continuous video streams by
utilizing redundancy to identify the “only” essential frames.
YLLO is a three-stage process that begins with a scene change
detection algorithm and progresses to object detection via
YOLOv4 or any single shot detector. The Simple Online
and Real-time Tracking (SORT) algorithm assign a tracker
to each detected object or multiple objects. YLLO decou-
ples classification and regression tasks to eliminate redun-
dant objects between the frames. Additionally, before sending
frames to object detection, for the scene change detection,
it generates Color Difference Histograms (CDH) for edge
orientations, where edge orientations are determined using the
Laplacian-Gaussian edge detection framework.
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Fig. 1. Compositional framework for anomaly resolution (C-FAR).

Fig. 2. Stage 2 flowchart.

B. Input to RTEC Tool

In stage 2 of the C-FAR framework, the RTEC tool receives
input as EC predicates representing time-stamped primitive
activities detected on individual video frames as shown in
Fig. 2. For example, the object’s bounding box coordinates
can define the appearance of a static object or multiple
moving objects in each frame. Additionally, we have the
angle/orientation of the object and the direction in which they
are moving.

The primitive events are defined along with their associated
timestamps, which indicate the time-point in which the activity
occurred. The hA predicate establishes this type of input.
For instance, hA(emergencyBreaking(id6, 60) indicates that
an object(id6) engaged in emergency braking at video frame
60. These primitive activities are represented as events in the
EC and we use the inA and tA predicates for expressing the
conditions in which these events initiate and terminate an
anomaly described above.

The tracked people or object’s coordinates are specified as
‘X’ and ‘Y’ pixel positions at each time point. These coor-
dinates are expressed using the hoA predicate, for example,
hoA(coord(id2) = (14, 55), 40) indicates that the coordinates
of object with id2 are (14, 55) at time point (frame num-
ber) 40. The hA predicate represents the first and last time
points a person or object is detected, given by “detect/exits”.
For example, hA(detect(id2), 17) indicates that an object
with the id2 is detected for the first time at time-point
(frame number) 17. Similarly, if an object disappears from
a frame, hA(exits(id2), 560) indicates that the object2 leaves
the scene at time-point (frame number) 560.

C. Formation of Events and Fluents

Anomalies or complex events are represented using EC flu-
ents defined mostly with hoA predicate, which can also com-
pute the associated intervals. For example, hoA(following(id1,
id3) = true, [(0, 40),(340, 380)] indicates that object1
was following object3 during the intervals (0, 40) and
(340, 380).

A few examples of events defined include, (1) becomesSafe
(v1, v2) that denotes the separation or distance between
vehicle v1 approaching or following vehicle v2 becomes safe,
similarly, (2) becomesUnsafe (v1, v2) that is opposite of the

event becomesSafe, (3) follow (v1, v2) that denote vehicle v1
starts following vehicle v2. Some examples of fluents defined
include, (1) reducedSpeed (v): vehicle v reduces its speed,
(2) laneShift (v): vehicle v is changing a lane as a result of
steering, (3) collision (v1, v2): vehicle v1 has collided with
vehicle v2.

After defining events and fluents, we must define an ini-
tiation and termination map for each defined fluent in the
system, indicating which events initiate and terminate which
fluents. The next step is to specify the relation between fluents
and events in the form of rules. For example, the initiation
and termination map for fluent unsafeSeparation is shown in
Definition. 1.

In the ruleset, unsafeSeparation, speed and direction, are
the input events and th is an temporal predicate indicating
numerical threshold of traffic patterns and in this case it
represents the user-specified distance and speed threshold. The
rule set defined states that unsafeSeparation(v1) is a Boolean
fluent, which is invoked when a speed event is detected for
a vehicle v1 and v2 where v1 is following v2 in the same
direction and the distance between two vehicles (dclose) is
less than a predefined threshold Dθ , and v1’s speed is greater
than v2’s speed. The event unsafeSeparation(v1) is terminated
when the vehicle v1 is not following v2 and v1’s speed is
lesser than v2’s speed and the distance between two vehicles
(dclose) exceeds Dθ , or when either the vehicle v1 or vehicle v2
exists from the scene reported by exits(v1) or exits(v1) event.
Similarly, we have defined the initiation and termination map
of other fluents used in the system.

D. Derived Events

When dynamic dependencies are significant, such as when
modeling accidents in which traffic conditions interact dynam-
ically (e.g., a braking maneuver is executed in response to
danger), developing a system capable of representing dynamic
relationships is necessary. We define the derived events, i.e.,
the events that occur due to the change in state or value of
another fluent and/or the occurrence of another event. These
events indicate when specific actions occur in traffic due
to a combination of particular conditions. They assist us in
modeling the dynamic behavior of accident scenarios and the
effects of introducing new actions.

At each time slot, before invoking the WPM2 solver,
we find relevant rules corresponding to derived events based
on current ongoing events [23]. We identify the rules or
relations R’ ⊆ R that lead to derived events based on the
current events, either directly or indirectly. The dependency
is expressed via a dependency graph G, where the vertices
denote the rules/relations, and the (directed) edges denote the
dependency between them. We then take the transitive closure
of G (say G�) using the Floyd–Warshall algorithm. Thus,
in G� an edge i → j denotes that j is directly or indirectly
dependent on i . The rules R’ expressed in CNF are then passed
on to a WPM2 solver [24].

E. Anomaly Detection and Prediction

inA(unsafeSeparation(v1, v2, dclose),t ← hA(distance(v1,
v2, dclose),t) ∧ th(dclose < Dθ ) ∧ hA(speed(v1, Sv1),t) ∧
hA(speed(v2, Sv2),t).
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tA(unsafeSeparation(v1, v2, dclose),t ← hA(distance(v1,
v2, dclose),t) ∧ th(dclose ≥ Dθ ) ∧ hA(speed(v1, Sv1),t) ∧
hA(speed(v2, Sv2),t).

tA((unsafeSeparation(v1, v2, dclose),t)← hA(exits(v1),T) ∨
hA(exits(v2),T).

Definition 1: Initiation and Termination of fluent unsafeSep-
aration

(a) Relationship between events and fluents in a rear-end
accident scenario
inA(becomesUnsafe(v1, v2), t) ← hoA(speed(v1, Sv1)), t) ∧
hoA(speed(v2, Sv2)), t) ∧ hoA(unsafeSeparation(v1, v2, dclose),
t) ∧ hoA(acceleration(v2, Av2, t)).

(b) Definition of Fluent Collision
hoA(collision(v1, v2), t) ← hoA(following(v1, v2), t) ∧
hoA(becomesUnsafe(v1, v2), t).

Definition 2: RTEC Rules Set
Given the inputs and the derived events, our system should

be able to detect and predict the anomalies as mentioned
in IV-B. For example, to predict if a collision can happen in
the next few slots, we can determine the distance between
two tracked objects and compare the distance with prede-
fined thresholds. For example, hoA(safeDistance(id1, id3, 30)
=true, 80) states that object1 is “close” to object3 at time
80 and also their distance is at most 30 pixel positions. Further,
we can also compute the validity of fluents given by the
maximal intervals for which two tracked objects are “close”.
For example, hoF(safeDistance(id1, id5) = true, [(20, 30)]
states that (20, 30) is the maximal interval for which the
distance between object1 and object5 is safe. Similarly, we can
find the maximum validity interval for the unsafe distances
between two vehicles. In general, it is not just the distance
that matters but also its increase or decrease in the traveling
rate.

Let us consider an example that represents temporal con-
straint relationship between the event becomesUnsafe(v1, v2)
and the fluents distance(v1, v2), speed (v, Sv ), acceleration(v,
Av )) and few other fluents that identify a rear-end accident
scenario that can be defined as shown in Definition. 2(a).

The event becomesUnsafe(v1, v2) is a long term activ-
ity expressed as a Boolean event in terms of other primi-
tive activities defined using hA predicate and based on the
spatial information given by coordinates and orientation of
the tracked objects in the traffic scene. becomesUnsafe is
triggered when two vehicles are following each other from
behind, traveling in the same direction, and the distance
between them, dclose is less than a predefined threshold
triggered by event unsafeSeparation. The ruleset specifies a
predefined speed limit using th against which the vehicle’s
current speed is compared. The calculation of distance and
acceleration values are based on classical kinematic equations
given in [25]. Further, we can determine the fluent collision
holds in any given traffic scene, which is defined as shown in
Definition. 2(b).

F. Anomaly Resolution

Following the prediction of an anomaly in stage 2 of the
C-FAR framework, the �-DDS algorithm is supplied with

clauses used to determine the anomaly. Let v j , j = 1..J
denote the J USVs that appear in the UNSAT core C �. Let N

denote the set of clauses in the C �. Also, let η(C �i ) denote the
set of variables in the clause C �i . We assume that if variable
v j originally has the value τ j , its modified value is denoted
as τ̂ j .

Let wi denote the weight of the unsatisfiable clause C �i s.
The notations v

(min)
j and v

(max)
j indicate the minimum and

maximum values of the variable v j . We assume that H denotes
the set of hard clauses in the UNSAT core (obviously a
subset of N). The goal is then to determine the modified
τ j ’s, denoted here as τ̂ j , by solving the following optimization
problem:

Min
�
i∈N
∀ j∈η(C �i) g(τ̂ j − τ j )×wi (1)

s.t. ∀i∈H[C �i (∀ j∈η(C �i)τ̂ j ) = true]] (2)

∀ j, v
(min)
j ≤ v j ≤ v

(max)
j (3)

|H| ≤
J�

j=1

I(τ̂ j − τ j ) ≤ |H| + L (4)

The objective function here is the total weighted pertur-
bation, with the function g() indicating the suitable measure
of the magnitude of the perturbation. Since both positive and
negative differences should be counted, the simplest choice
is g(x) = |x |. A more common choice, as used in [23] is
g(x) = x2. The latter, however, discourages larger perturba-
tions and thus would tend to perturb several variable by small
amounts (instead of a few variables by larger amount). This
may be fine for an automated driving system but less desirable
for human drivers who would do better at managing only 1 or
2 variables.

The first constraint says that all the hard clauses become
true following the perturbation. It is assumed that for each
variable j that is not perturbed, τ̂ j = τ j . In the last constraint,
L is a small number (say, 1 or 2, in most cases) and represents
the number of soft clauses that can be perturbed, and |H| is
the number of distinct underlying variables in the hard clauses.
The last equation ensures that we perturb all variables required
to satisfy hard clauses, but very few others. The function I

is the index function (defined as 0 if the argument is zero,
else 1).

Situation based �-DDS: Consider an objective function f (x)
of input vector x , along with a set of constraints φi (x), i =
1, 2, . . . , K . Let σi (x) ∈ [0, .., Ci ] denote a cost measure for
constraint φi (x) that indicates to what extent the constraint is
violated for input vector x . By definition, if the constraint is
satisfied, then σi (x) = 0. Let σ(x) = �K

i=1 σi (x)/
�K

i=1 Ci

denote the overall normalized cost of violating the constraints,
which has the range [0, .., 1]. Now consider an existing
solution x1, and new proposed solution x2. The � comparison
between them defines a specific way of determining if x2 is
better than x1 by considering both the objective function and
the constraints. In particular, suppose that the objective is to
minimize the objective function. Then the “epsilon less than”
relationship between x2 and x1, denoted x2 <� x1 is defined
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TABLE II

CHARACTERISTICS OF DATASETS USED

as follows: [22]:

x2 <� x1 ⇔

⎧⎪⎨
⎪⎩

f (x2) < f (x1), if φ(x2), φ(x1) < �

f (x2) < f (x1), if φ(x2) = φ(x1)

φ(x2) < φ(x1), otherwise.

(5)

The intuition behind this comparison is that, if the solutions
x1 and x2 are feasible, mostly feasible (as determined by �),
or having the same sum of constraint violations (the number
of unsatisfied constraints in our case), then they are compared
using their objective values f (x1) and f (x2). Otherwise,
if both x1 and x2 are infeasible, they are compared based on
their sum of constraint violations.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our C-FAR framework on four
real-world datasets, including our collected TU-DAT dataset
and three public datasets. i.e., Dashcam Accident Dataset
(DAD) [3], Car Accident Detection and Prediction (CADP)
dataset [26] and NVIDIA AI City Challenge 2021 [27]. The
characteristics of the datasets are shown in Table II. Columns
2-3 in the table list the size of the dataset in terms of number
of videos and number of frames/video. The last four columns
indicate if the dataset has the following features: (a) images
captured with cameras of varying resolutions, (b) varying
distance between camera and the vehicle of interest, (c) dif-
ferent weather conditions (foggy, sunny, snowy, day/night,
etc.), and (d) whether fine-grain (FG) and medium-grain (MG)
activities are represented (see section III-B). The model is
validated through a comparison of state-of-the-art methods.
The experiments were performed on a computer with Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz, 32 GB RAM, and 1 TB
SSD and SWI-Prolog 8.2.3.

A. TU-DAT Data Collection

TU-DAT Dataset: In this paper, we collect a challenging
dataset titled Temple University - Data on Anomalous Traffic
(TU-DAT) in order to improve the accuracy of accident
detection in ITS. TU-DAT, in particular, contains a diverse set
of accident types, weather conditions, and videos collected in
challenging environments, enhancing the self-adaptability of
accident detection methods in a variety of traffic situations.

We developed a crawler written in Python to scrape the
accident videos from news reporting and documentary web-
sites. We also searched YouTube videos for each type of
anomaly using text search queries (with slight variations,
e.g., “unexpected object on the road”, “pedestrian acci-
dent,” etc.). To ensure that our method applies to roadside
edge devices, we use only footage and images from traffic
CCTV cameras.

TABLE III

STATISTICS OF TU-DAT DATASET

We have collected around 210 videos varying around
24-30 FPS of road accidents through these steps with
17255 accident keyframes and 505245 regular frames. The
details of our dataset is shown in Table III.

Additionally, as an alternative to real-world videos, various
AI-powered game simulations feature realistic graphics and
intelligent car bots that may aid traffic analysis and accident
detection. The authors in [28] proposed a 3D CNN-based
model for detecting accidents, which they validated using
YouTube and Grand Theft Auto (GTA) videos. Their model
performs 10% better when trained on GTA game videos
than when trained on YouTube videos. Given the difficulty
of obtaining real-world traffic videos to analyze aggressive
driving, we adapted the BeamNG.drive [29] game simulator to
generate road traffic video data to simulate aggressive driving
behaviors such as speeding, tailgating, weaving in and out
of traffic, and running red lights. We gathered approximately
40 videos of positive examples and 25 videos of negative
examples.

We utilize Computer Vision Annotation Tool (CVAT) [30]
to annotate the video frames. For temporal annotations, the
anomalous situation time is labeled at the time when an
anomaly happens. The TU-DAT dataset is made available
for research use and can be found in GitHub.1 Fig. 3(a)-(b)
illustrate a crash scenario at an intersection, where the car and
van in (a) have a safe separation, but the car is traveling as
fast as the van, resulting in the crash situation depicted in (b).
Similarly, Fig. 3(c)-(d) illustrate a collision in which a vehicle
collides with an electric pole on the road as a result of the
vehicle’s abrupt steering.

B. Evaluation Metric

We evaluate our proposed model based on the correctness
of anticipating a future accident or anomaly. Given an input,
our method calculates the confidence of anomaly at every
time slot using metrics like object distance or orientation
which are defined in terms of fluents or events. When the
confidence is greater than or equal to a threshold δ at time-
slot t , the C-FAR framework affirms that an anomaly will
occur in the future. If the input video contains the footage
of an accident, this is a True Positive (TP) anticipatory signal.
Hence the accident is correctly anticipated at time-slot t , which
is t � − t time-slots before it occurs at t �. This could be a
False Positive (FP) anticipation if the input video is not an
accident video. If, on the other hand, the confidence levels
across multiple time-slots are less than the δ threshold, the
method asserts that no accident will occur in the future. If the
input video is of an accident, it is a False Negative (FN)
prediction; otherwise, it is a True Negative (TN) prediction.

1https://github.com/pavana27/TU-DAT
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Fig. 3. (a)-(d) Some frames of TU-DAT dataset of accident scenarios.

Given these, we can compute the estimates of 3 key per-
formance metrics: accuracy, precision, and recall which are
calculated using standard metrics.

Of these three metrics, the most important one is Recall
since it relates to the fraction of actual accidents (anomalies)
predicted by our mechanism as well. The precision is not
quite as crucial since it is okay to have some false alerts.
Nevertheless, the purpose of the proposed mechanisms is
to improve precision over what is possible from the ADAS
capabilities in individual vehicles.

C. Results and Discussion

Fig. 4 illustrates how our C-FAR framework can be used
to evaluate a variety of accident scenarios, including rear-
end collisions, intersection collisions, and a car colliding
with a pedestrian. The scenario involves six vehicles and a
pedestrian. The sequence of events is as follows. At time t0,
the vehicles v3, v4, and v5 follow each other at a safe distance,
and at t1, v5 suffers a breakdown, executes a pullover, and
begins emergency braking. After a few time slots, vehicle v4
changes the lane, v3, unaware of this sudden driving maneuver
executed by v4, collides with vehicle v5. Similarly, v1 and
v2 are at a safe distance and traveling perpendicular to each
other when they collide after a few time points. Furthermore,
v6 traveling faster than the posted speed limit hits a pedestrian
P1 crossing the street. We have represented collision as a fluent
that holds from the time it occurs, and thus we can query
this fluent at any time moment. The following Prolog syntax
illustrates an example query about a collision between vehicles
in a traffic scene that is evaluated to be true:

?- hoA(collision(v3,v5),12). yes
In addition to that, we can also determine if certain events
occur and whether certain fluents persist at specific time
points. For example, we can perform query computations to
determine the value of the fluents at any point in time, such as
the vehicle’s velocity, and calculate the distance between any
vehicles while deciding whether they are in a safe separation
from one another or not. Additionally, we can also determine
whether or not an event occurred based on the validity of the
fluent initiated by the event; for example, to determine whether
or not an anomaly such as a rear or pedestrian accident is
occurring. Some examples of queries that can be executed are
given below:

?- hoA(distance(v3,v4,D2). D2=21? yes

?- hoA(intersectCollision(v1,v2),22). yes
?- hoA(becomesUnsafe(v3,v5,78). yes
?- hoA(safeDistance(v3,v5,75). no
?- hoA(pedestrianAccident(p1,v6),42). yes

The above example of queries shows the analyses of the
effect of various parameters on the evolution of the traffic
scenario, such as estimating the distance between vehicles v3
and v4 at any point in time shown in Fig. 4. Analyses of
certain parameters are essential in determining when and how
to act to avoid accidents. We could also determine the moment
when vehicle v5 has stopped. Additionally, we demonstrated
various analyses performed on the proposed system, including
estimating safe and unsafe separation between vehicles v3
and v5, estimating an impending collision between vehicles
v1 and v2 at the intersection, and estimating a collision with
the pedestrian. Similarly, we can determine whether a car is
following another, the vehicle’s velocity at any point in time,
etc.

1) Accuracy and Precision-Recall Results: Fig. 5 shows the
Accuracy and Precision-Recall (PR) values of the proposed
system evaluated on the DAD dataset and on our own dataset
TU-DAT respectively measured using the evaluation metric
explained in section VI-B. The PR values and the percentage
accuracy are represented by bars with a scale on the y-axis.
We conduct experiments with various confidence thresholds
ranging from 0.8 to 0.95 as shown in x-axis. It can be seen,
the confidence threshold (δ) of 0.8 results in a higher accuracy
of around 90% for both datasets, with precision and recall
values of 96% and 92%, respectively. The performance of
our proposed system for the other two datasets, CADP and
AI CITY Challenge, have an accuracy of around 90%, with
precision-recall values of 95% and 91%, respectively. When
the confidence threshold is set to be greater than or less than
0.8, an increase in the number of FPs is observed. Since
false negatives are more problematic than false positives in
this application, a higher recall is more important than a
higher precision, and we observe that from the results at all
confidence levels.

2) Situation Based �-DDS: To assess our Situation-based
DDS’s performance in resolving anomalies, we keep track of
perturbable clauses in each accident scenario across all four
datasets, including our own TU-DAT. As a result, we have
551 perturbable clauses in accident videos from the DAD
dataset, 394 clauses in CADP, 225 clauses in our TU-DAT
dataset, and 161 perturbable cases in accident videos from
the NVIDIA AI City dataset. Fig. 6 shows the results of
�-DDS that are averaged over all the four cases as described
above. The x-axis indicates the number of iterations needed
by combinatorial optimization. It is limited to a maximum
of 250, whereas the y-axis shows the percentage of cases
where the algorithm could resolve the anomalies. It can be
seen that our algorithm, powered by knowledge based on
situations or ongoing events, can resolve the anomalies in
100% of the cases in about 310 iterations. In contrast, the
normal-DDS can fix only 57% out of the test cases at 250 iter-
ations without any knowledge about the situations or ongoing
events.

3) Model’s Performance in Terms of Total Execution Time:
Additionally, we conducted experiments to see how the C-FAR
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Fig. 4. (a) Initial traffic situation (b) Accident situation.

Fig. 5. Accuracy, PR values for DAD and TU-DAT datasets.

Fig. 6. Performance of situation based �-DDS.

framework’s performance varies as the number of events
increases. The model receives the events as input, and the
time it takes to predict, detect and resolve an anomaly is
recorded. These values are compared between number of
variables perturbed for g(x) = |x | and g(x) = x2 functions as
described in section V-F. It can be seen from Fig. 7 (a) that
the time grows slowly at first and then saturates to a linear
trend after about 140 events. As a result of the analysis,
we also found that, on average, our method can predict an
anomaly 4.05 seconds ahead, called resolution margin time.
Table IV lists the RTM under various accident scenarios.
It is evident that the spatio-temporal reasoning system can be
easily extended to conduct various investigations of accident
scenarios, as the relationship between events and actions can
be easily added or modified. Note that 4.05 secs is adequate
time for humans to react, and indeed so for the (automated)
vehicular safety system (VSS). In fact, the extra time afforded
by the proposed approach can be exploited by VSS in two
ways: (a) Merge this road-side infrastructure based intelligence
with the locally observed situation and make an improved
control decision, and (b) apply the desired control gradually
and thus more smoothly and with less chance of side effects.

4) Comparison With State-of-Art Methods: We compare
our proposed model to three other existing accident detection
and prediction models proposed in [3], [31], [32], and the
performance results are shown in Fig. 7(b)-(c). In [31], the
authors proposed a three-stage framework for auto accident
detection in video. The first stage employs a car detection
algorithm based on the YOLOv3 deep convolutional neural
network; the second stage is a tracking algorithm based on

TABLE IV

TABLE: NUMBER OF EVENTS, FLUENTS DEFINED AND

RTM FOR VARIOUS ACCIDENT SCENARIOS

the discriminative correlation filter method, and the final stage
employs the Violent Flows (ViF) descriptor to highlight the
magnitude changes in the motion vectors that are computed
using an optical flow algorithm to detect car crashes. [32]
is a framework for detecting anomalies, a 3D neural net-
work architecture based on the EfficientNet 2D classifier for
detecting aggressive driving, specifically car drifting. The
model proposed in [3] is a Dynamic-Spatial-Attention (DSA)
based model that uses RNN along with Long Short-Term
Memory (LSTM) cells to model the long-term dependencies
of all cues to anticipate accidents in dash-cam videos.

We compute the Average Precision (AP) from the sequence
of precision and recall pairs, which is used to show the
overall accuracy of our C-FAR framework in comparison with
other models. From Fig.7 (b) where the x-axis represent-
ing the datasets and y-axis representing RTM in seconds,
we can observe that our C-FAR framework on the DAD
dataset achieves the best AP and best value of Resolution
Time Margin (RTM) on the AI city Challenge dataset as
shown in Fig.7 (c) where x-axis representing the datasets and
y-axis representing AP, which means the model anticipates on
average 3.42 seconds earlier before an accident happens while
keeping the competitive performance of AP value at 89.27%
compared with other three methods. The major disadvantage
of the method that combines YOLOv3 and SVM is that the
SVM requires several parameters to be set correctly to classify
a car crash. Additionally, because the ViF descriptor cannot
capture potentially significant orientation changes, the model
seems unable to detect multiple objects in a single frame due
to interference. For using the DSA+LSTM model, we use the
candidate objects and the corresponding CNN features for all
the videos in other datasets for a fair comparison. This model
requires a significant amount of time and resources to train and
prepare for real-world applications. Thus, the DSA+LSTM
model becomes highly inefficient from a hardware perspec-
tive. To compare our C-FAR framework to the DriftNet
architecture, we extracted features and captured the pattern
of sliding vehicles using the pretrained EfficientNet3D-B0
model. Pre-training on one or more larger-scale datasets is
required when using the DriftNet architecture as a classifier
to classify anomalies. Also, the work in [33] has shown that 3D
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Fig. 7. (a) Total execution time required by C-FAR framework on TU_DAT, (b) and (c): Performance results showing RTM and AP Values for all Datasets.

convolutional networks do not learn efficient representations
of videos. The authors have only captured the car drifting
behavior in this work. In contrast, C-FAR captures some more
aggressive driving behaviors such as speeding, weaving in and
out of traffic, and so on while maintaining the highest AP
compared to the DriftNet model. Additionally, we compare
our C-FAR framework to the DriftNet dataset and observe that
C-FAR achieves an accuracy of 95% compared to the DriftNet
model’s accuracy of 92.5%.

VII. CONCLUSION

We propose C-FAR framework for predicting and resolv-
ing anomalies in intelligent transportation systems using a
spatio-temporal event calculus in conjunction with a deep
learning model. To test the proposed mechanisms, we har-
vested many videos of accidents from YouTube. We also
generated other videos using a game simulator. A detailed
evaluation shows that C-FAR consistently outperforms exist-
ing methods in all cases. In particular, C-FAR can predict
anomalies with over 90% accuracy at 80% confidence level
approximately 4 seconds before the potential accident. Yet the
recall rate of the mechanism remains relatively high through-
out (about 85% at 90% confidence). In contrast, the current
methods only provide an accuracy of around 80%. These
mechanisms can be adapted to many other cyber-physical
environments such as hospitals, senior care centers, factory
environments, etc., which we plan to explore in the future.
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