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Abstract—Automated 3D modeling has several potential appli-
cations ranging from industrial quality control to archaeological
artifact analysis and rapid prototyping. This paper presents the
development and implementation of a LiDAR-based system for
3D modeling of various objects. We create a versatile and efficient
scanning setup using a 2D LiDAR sensor – by leveraging the
advantages of LiDAR technology, we achieve precise distance
measurements and create high-resolution 3D models. Through
experimentation, we show that our proposed solution produces
high-fidelity 3D models for a wide variety of object types, shapes
and sizes, which can be used to estimate their precise volume and
surface areas. For all the objects tested in our experiments, the
volume and area estimation error remains below 10%, whereas
for most of the objects, the error remains below 2-3%.

Index Terms—3D modeling, volume estimation, LiDAR

I. INTRODUCTION

3D modeling is a process of creating a 3D representation
of an object. The field of 3D object modeling has seen
significant advancements over the years [1], [2], primarily
driven by the the growing demand for rapid, accurate, and cost-
effective methods of replicating real-world objects into 3D
printed versions. According to a recent article [3], the market
for 3D mapping and modeling will worth $12.13 billion by
2028. Traditional methods of creating 3D models for printing
often involve time-consuming manual modeling or imprecise
scanning processes, which might cause differences between
the original object and its replica. By leveraging advanced
LiDAR (Light Detection and Ranging) technology for high-
precision point cloud acquisition, coupled with sophisticated
algorithms for point cloud processing and mesh generation,
we aim to streamline the workflow from object scanning to
3D printing. This approach promises to reduce the time and
expertise required for creating accurate 3D models.
Motivation and background: The real motivation comes
from our day-to-day observation in areas like warehouse man-
agement, courier, shipping services etc., where the dimension,
area, and volume assessment of objects play important roles
and directly proportional to revenue, as these business models
incur charges on the basis of object volumes and dimensions.
For measuring volumes of simple objects like cubes, cuboids,
spheres, it is not difficult. However, if the same is to be
done for objects like ovals and other asymmetric shapes, then
volume calculation would not be very easy. Therefore, if the
same can be done with the help of advance tools in short
time and with accurate measurements, it can greatly reduce the
processing time. Fig. 1(a) shows one such scenario, where a
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(a)

(b)

Fig. 1. (a) Multiple LiDARs being used to scan and determine the volume or
surface area of an object placed on a conveyor belt. (b) 3D models featuring
the actual objects on top.

platform equipped with multiple LiDARs is used to scan some
objects placed on a conveyor belt, with the object’s dimensions
and volumes displayed on a screen.

Apart from the surface area or volume estimation, there
are numerous scenarios where the proposed solution can be
useful. For example, the solution can be used in scanning
monuments and artifacts, which can be used for recreating
their detailed 3D models. It can be effective tool in creating
the base models of animated characters for movies and video
games. In addition to that, the solution can also be utilized
in 3D digital twins applications [4] where the scanned point
clouds can be processed and converted into precise 3D digital
twins of physical objects and environments. Also, our model
can be utilized in industrial scenarios where a machinery
spare part is broken and needs to be reproduced. Through 3D
scanning of the damaged component, an accurate digital model
can be created, enabling efficient and precise manufacturing
of the replacement part.
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(a) (b)

Fig. 2. (a) Hardware setup of our LiDAR-based 3D modeling system. (b) Axis convention used in our study.

Our contributions: For this purpose, we choose LiDAR
as our primary sensor which can be used not only for the
object volume or area estimation, but is also highly effective
for 3D model replication due to several key advantages. It
offers exceptional accuracy, often within millimeters, making
it superior to many other methods for capturing fine details
and complex geometries. The proposed solution involves the
formulation of LiDAR and object placement platform to obtain
a 360◦ scan of the object, including side profiles and top
profile. The objective entails the development of an experi-
mental setup where the LiDAR is positioned in the vertical
plane such that it captures the vertical profile of the object
from one direction. Thereafter, the object or the LiDAR is
shifted to different positions for another set of data capture.
The solution involves subsequent post-processing steps to use
these data points for meaningful interpretations in the form
of a 3D shape. With extensive experimentation, we show that
the proposed solution reconstruct various object’s shapes with
high level of accuracy. To be specific, the volume and area
estimation error for all the objects tested remain below 10%,
whereas for most of the objects, the error remains below 2-
3%. A brief demonstration of our proposed solution can be
found in https://youtu.be/CMEbtV7EUR0.
Paper organization: The paper is organized as follows. Sec-
tion II summaries the related literature. Our system setup and
the proposed solution are discussed in section III. Section IV
discusses the experimental results. Further discussions related
to our work and conclusions are summarized in section V-VI.

II. RELATED WORK

Various 3D scanning technologies: Three-dimensional scan-
ning of real-life objects has become increasingly important
in various fields, enabling digital interaction and analysis of
physical objects [5]. Several techniques have been developed
to create detailed 3D representations of objects and envi-
ronments. Photogrammetry is one of these techniques that
involves creating 3D models from multiple 2D images [6].
By analyzing the differences between images taken from
different angles, photogrammetric techniques can reconstruct

the 3D geometry of an object or scene. Time-of-Flight (ToF)
cameras are also used for 3D scanning; these cameras operate
by emitting short pulses of light, typically in the infrared
spectrum, towards a scene [7]. These pulses reflect off objects
and return to the camera sensor. The camera measures the time
it takes for each pulse to travel to the object and back, which
is then used for distance estimation and depth map generation.
Structured light scanning is also used for 3D scanning, which
involves projecting a known pattern of light, such as a grid
or series of stripes, onto an object [5]. A depth camera then
captures images of the deformed pattern, which is then used
for constructing the object’s surface. The authors in [8] have
used three depth cameras for the 3D scanning of full human
bodies. The authors in [9] have conducted a case study to
investigate the possibilities and challenges of 3D scanning
technology for reverse engineering and product quality control.
Methodologies adopted for volume estimation: Volume
estimation is a critical application of 3D scanning, particu-
larly in industries where quantifying transported materials are
essential. The authors in [10] have proposed a solution for
estimating the volume of load in moving trucks using a pair of
multi-layer LiDAR sensors. Authors in [6] have utilized multi-
view photogrammetry and 3D reconstruction software for
automated volumetric measurements of truckloads. Similarly,
the authors in [11] have developed an automated volume
estimation solution for haul-truck loads in mining operations.
The authors in [12] have proposed a method for volumetric
estimation of contained soil using 3D sensors, which has appli-
cations in construction and earth-moving operations. Several
studies have focused on applying 3D scanning techniques
to the forestry sector. Authors in [13] have developed an
automated log counting system using LiDAR technology,
whereas in [14] the authors have utilized laser scanning for
roundwood measurement of truck loads. The authors in [15]
have used terrestrial laser/LiDAR scanning, to create a detailed
point cloud of stems, which can be helpful for monitoring the
quality of standing trees.

Similar to our intended approach for volume estimation,
the authors in [16] have presented a simulated 3D scanning
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(a) (b) (c)

Fig. 3. Illustration of three cases based on the position of the data points w.r.t. the line connecting the LiDAR and the center of the rotating platform.

Fig. 4. Illustration of the tilted LiDAR orientation w.r.t. the global axis.

system using a LiDAR device, a rotating platform, and an arc-
shaped scanning structure. They have discussed the proof of
concept for volume estimation using SimTwo simulator [17]
for creating a realistic simulation environment, including non-
idealities and dynamic constraints.

III. FRAMEWORK FOR OUR LIDAR BASED 3D MODELING

A. Proposed framework

Hardware setup: Our hardware setup consists of a RPLiDAR
sensor [18], a stepper motor controlled by an Arduino board
[19], and a rotating platform, as shown in Fig. 2(a). The
platform is positioned parallel to the ground surface (XZ
plane). A high-torque stepper motor, controlled by a DM860H
driver and powered by a 24V DC supply converted from 220V
AC, rotates a wooden platform on which objects are placed
for scanning. The stepper motor’s shaft is aligned with the
Y -axis and connected to the platform using shaft coupling.
An Arduino board, connected to a laptop, receives rotation
commands and controls the motor’s movement.

This platform serves as the base on which the object to
be scanned is placed. The fixture of this wooden platform
over the motor shaft coupling is done carefully with precise
measurement to avoid calibration errors later in the processing
stages. Objects to be scanned are placed at the center of the
rotating platform (i.e. at C in Fig. 2(b)) having its base in
contact with the platform surface (i.e. in XZ plane at Y
= 0). As the object rotates, the RPLiDAR sensor captures
point the cloud data. This synchronized operation allows for
comprehensive data capture; the system laptop initiates the
process, the Arduino controls the platform’s rotation, and
the RPLiDAR continuously scans the object. Using Power

automate tool [20], the data of individual sets at each rotation
angle is saved into the local storage. These 2D data points
are to be processed later on into 3D global coordinate system,
thus enabling the construction of a detailed 3D model.

In order to capture the side profile of the object to be
scanned, the best position for LiDAR is ideally at around 45◦

inclination from the center of the platform. From this position,
object side profiles and top profiles, both can be captured. For
objects where a single position scan is inadequate in delivering
all the data points of its surface contours, multi position scan
is required to obviate chances of gaps in data mesh. Therefore,
in our setup, we ensure that the center point of the platform,
where the object is placed, is equidistant from all the LiDAR
positions. All these positions are arranged in a circular format,
with the center of the platform as the origin. This arrangement
helps us to merge the scanned data from different positions.
Additionally, the LiDAR’s scanning plane is aligned vertically,
as it is placed parallel to the XY plane, with its axis of rotation
parallel to the Z axis. This alignment allows the LiDAR to
capture vertical profiles of the object.

Setup calibration: Fig. 3(a) illustrates the schematic of our
proposed framework, where the LiDAR is kept at one of its
positions (say at A), and the center of the platform is at
C. In order to measure the sides and angles of △ABC, (a)
proper calibration of physical arrangements of components viz.
stepper motor, (b) platform centering with respect to LiDAR’s
capturing, (c) platform’s tilt adjustment to make it parallel
to horizontal plane, (d) LiDAR mount structure alignment to
avoid slant movement of LiDAR, and (e) accurate calculation
of angle of depression of C from LiDAR i.e. ∠BAC, are
required to be done. To achieve this, we keep a small size
object at C on the platform. The LiDAR is adjusted in its
horizontal and vertical plane in such a way that the object is
visible on the frame grabber application. Now, we get dAC (i.e.
the distance between A and C) and ∠BAC from the LiDAR
scan of the platform. With the help of these two variables,
we can easily find out dAB , dBC and ∠BCA. Since C is the
center of reference in the global coordinate system, therefore,
with respect to C, we can find the coordinates of A and B as
distances dAB and dBC are calculated. The same process is
repeated for all other LiDAR positions.

One practical aspect observed during the experimentation is
the placement of the object on the rotating platform. An object
can be placed anywhere on the platform. It is not important
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(a) (b) (c)

Fig. 5. LiDAR scans of a cardboard box, where (a) the point cloud generated from the LiDAR scan are passed through the (b) surface reconstruction process.
(c) Final mesh cloud after the post-processing steps.

to align an object with center C of the platform until and
unless the object is kept too far away from the C. This is
because of the fact that, at certain positions of motor rotations,
the object may go completely outside the LiDAR’s capturing
plane, thereby causing the object to go out of sight of the
LiDAR i.e. in blind zone. This will result in missing data
points at that particular position. Therefore, while it is not
important to align the center of an object with the center of the
platform, it is important to place the object closer to the center
in order to get maximum data points during each scanning
motor rotation.

B. Data Capturing

During scanning, an object is placed close to the center
of the rotating platform. The LiDAR is activated by the
Frame grabber application and begins scanning in its vertical
plane. In the Frame Grabber, we configure settings such as
scanning mode, frequency, and other relevant parameters. The
application captures and stores data points for the full 360◦

LiDAR scan; each scan represents a single vertical slice of the
object at a specific platform rotation angle.

After a complete vertical scan, the stepper motor rotates
the platform by set degrees around the Y -axis. Motor rotation
with finer granularity leads to denser data point collection
of the object. For dense mesh cloud, capturing profiles at
2◦ increment is observed to be satisfactory. The rotation
of the platform and the LiDAR scanning are synchronized
through the controlling computer, ensuring each vertical scan
corresponds to a specific rotational position.

C. Data Processing

The captured LiDAR data corresponding to a specific rota-
tion angle are initially stored in the form of tuples, i.e. (Angle,
Distance) using the frame grabber application. We next apply
the following post-processing steps on these data, to generate
the 3D point cloud.
Applying rotation to compensate the LiDAR’s orientation:
In the LiDAR scanning setup, the local scanning plane of the
sensor, defined by its own x-y coordinate frame, is oriented at
an inclination angle of ϕ relative to the global x-y plane of the
rotating platform, as seen from Fig. 2. This misalignment re-
sults in a systematic geometric tilt in the captured data, where

scanned objects appear tilted with respect to the platform-
fixed coordinate system. This configuration is illustrated in
Fig. 4, which shows the LiDAR’s internal scanning plane
inclined relative to the horizontal axis. To correct this tilt
and restore the object to its true upright orientation, a 2D
rotation transformation is applied to all scanned points. The
transformation rotates each point (x′, y′), originally expressed
in the LiDAR’s tilted frame, into the global frame by an angle
ϕ, using the standard two-dimensional rotation matrix:[

x
y

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
x′

y′

]
(1)

x = x′ cosϕ− y′ sinϕ, y = x′ sinϕ+ y′ cosϕ (2)

After applying this transformation to all points in the scan,
the scanned object reorients to an upright position within
the global coordinate system. This correction step ensures
that the final point cloud reflects the true geometry of the
physical object, enabling accurate downstream analysis such
as 3D reconstruction, shape modeling, and object detection. By
treating the LiDAR’s scanning frame as a rotated reference and
correcting for its angular displacement, the method achieves
reliable spatial alignment without modifying the sensor’s phys-
ical configuration.
Calculating coordinates of the data points in 2D space:
After applying rotation for compensating the LiDAR’s orien-
tation in equation(2), we can treat the LiDAR’s orientations
at all the points in Fig. 2 virtually identical, as depicted in
Fig. 3. In Fig. 3(a), we assume that the line connecting A to
C intersects the object at L. Now, the data points recorded by
the LiDAR can fall in three zones in Fig. 3, i.e. they can lie on
yellow zone, green zone or right at the intersection L. In the
following, we discuss all three cases separately. For all these
discussions, we assume that ∠CAB, dAC , dAB and dBC are
known during the calibration stage.

Case I, i.e the data point lies at L: This case is shown in
Fig. 3(a), where ∠ψ = ∠CAB, which is measured by
the LiDAR, along with dAL. With these, for getting the
coordinates of L and W w.r.t. C, we need to calculate dCW

and dLW , which are expressed as:

dCL = dAC−dAL, dCW = dCL sinψ, dLW = dCL cosψ
(3)
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. LiDAR scans of a mug from different views (a)-(d). These scans are then (e) merged using MeshLab, followed by (f) mesh surface reconstruction,
to create (g) a cleaned and closed mesh, ready for surface area estimation.

Case II, i.e. the data points lie in yellow zone: This case is
shown in Fig. 3(b), where we assume that ∠ξ = ∠TAB <
∠CAB and dAQ are measured by the LiDAR. With these, the
coordinates of Q and E can be measured from dQE and dCE ,
which are expressed as:

dAT = dAB arccos ξ, dQT = dAT − dAQ (4)
∴ dQE = dQT cos ξ (5)

dET = dQT sin ξ, dBT = dAB tan ξ (6)
∴ dCE = dBC − dBT + dET (7)

Case III, i.e. the data points lie in green zone: This case is
shown in Fig. 3(c), where we assume that ∠ζ = ∠OAB >
∠CAB and dAM are measured by the LiDAR, therefore, the
coordinates of M and N can be measured from dCN and
dMN , which are expressed as:

dAO = dAB arccos ζ, dMO = dAO − dAM (8)
∴ dMN = dMO cos ζ (9)

dNO = dMO sin ζ, dBO = dAB tan ζ (10)
∴ dCN = dBC − dBO + dNO (11)

Calculation of coordinates of data points in 3D space:
In this stage, we transform the raw 2D LiDAR scans into a
comprehensive 3D point cloud representation of the scanned
object. Since, we know the scanning angle resolution of the
platform (say δ), therefore, after the k-th rotation instance, the
angle of rotation will be kδ. With this, the x and z coordinates
of all the points in Fig. 3 are updated as:

x = x cos kδ, z = x sin kδ (12)

D. 3D Modeling for Closed Objects

After obtaining the processed point cloud data, we next
create a 3D model using MeshLab software [21]. For doing
that we perform point cloud simplification using cluster-based
decimation [22], where the cell size is set to approximately 1%
of the object’s bounding box diagonal, effectively reducing
the number of points while preserving the overall shape of
the object. Following this simplification, normal vectors are
computed for the point set – the overall outcome is shown
in Fig. 5(a), where a cardboard box is used as an object.
Next, the 3D surface is constructed using the Poisson Surface
Reconstruction [23], which creates a watertight 3D mesh as
shown in Fig. 5(b).

After creating the initial mesh, several post-processing steps
are necessary to refine the model. To begin with, irrelevant data
points are manually removed to eliminate points that represent
the platform base, surrounding objects, or environment, as well
as the outliers that distort the overall shape of the object. Next,
automated outlier detection and removal are performed using
the Statistical Outlier Removal filter [21]. In addition to these,
smoothing and hole filling are performed using the Laplacian
Smooth filter [24] and Close Holes filter [25] respectively,
to ensure a watertight mesh. Fig. 5(c) illustrates the final
mesh cloud after all these post-processing steps are applied.
This refined mesh provides an accurate representation of the
scanned object, ensuring a higher quality input for the volume
estimation process.

E. 3D Modeling for Hollow Objects

To generate a hollow object, it is necessary to scan the
object from multiple viewpoints. In this discussion, we focus
on generating a 3D model of a mug using scans taken from
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Fig. 7. Outcomes of our 3D modeling experiment on various objects with closed surfaces (top), along with the generated mesh cloud (middle), and the
refined, smoothed version (bottom).

TABLE I
SPECIFICATIONS OF THE CLOSED OBJECTS USED

Object Dimensions (in mm)
Brown cardboard box L×B ×H : 123× 80× 92
White cardboard box L×B ×H : 123× 85× 100
Black cardboard box L×B ×H : 90× 80× 178
Thin cardboard box L×B ×H : 137× 20× 55
Sponge block L×B ×H : 139× 20× 45
Stainless steel (SS) bowl Dia 1 : 78, Dia 2 : 120, Slant height: 46
Plastic bottle Dia 1 : 69, Dia 2 : 60, Slant height: 194
Plastic bottle cap Dia: 61, Height: 46
Stainless steel (SS) tumbler Dia: 64, Height: 94
Combined bowl + tumbler Same as for SS Bowl and Tumbler

four different viewpoints, as illustrated in Fig. 6(a)-(d). These
four scans are then merged, and then passed through multiple
cleaning processes. This involves point cloud simplification
using cluster-based decimation [22], where the cell size is set
to approximately 1% of the object’s bounding box diagonal.
After this simplification, normal vectors are computed for the
point set, and the resulting object is shown in Fig. 6(e).

For the surface reconstruction of hollow objects, the Ball
Pivoting Algorithm (BPA) [26] is used. The algorithm begins
by positioning a ball in contact with three sample points to
create an initial triangle, then systematically pivots the ball
around each edge until it touches another point, forming new
triangles as it progresses. This intuitive “walking” process con-
tinues along boundary edges, effectively growing a connected
triangular mesh across the surface. The radius of the pivoting
ball is selected based on the smallest gap between points or
the angle of the scan. The reconstructed object using BPA is
shown in Fig. 6(f). Post-processing steps are then performed,
similar to those used for closed objects. These include outlier
removal, surface smoothing, and closing of small holes to
enhance the final model quality. The final processed object
is shown in Fig. 6(g).

IV. EXPERIMENTAL EVALUATION

We now present the results of our proposed approach.
Unless otherwise mentioned, the scanning angle resolution of
the rotating surface is kept as 2◦. To evaluate the accuracy
of our proposed approach for closed objects, we estimate
the volume of these objects from the LiDAR scanning and
compare them with the original volume, whereas for hollow

objects we estimate the surface area of these objects and
compare them with their actual surface area.
Shape estimation results for the closed objects: We first
scan and analyze a total of 10 closed objects with varying
shapes, sizes, and surface properties. The specifications of
these objects are shown in Table I. Fig. 7 shows the pictorial
depiction of various objects, along with the generated mesh
cloud and their refined, smoothed version. From these figures
we can observe that, our solution can reconstruct all these
different objects shapes with reasonable accuracy.
Volume estimation accuracy: Table II shows the volume
estimation accuracy of different objects, which shows that the
estimation error varies in between 1.5%-6.5%. From Table II
we can also observe that the objects with predominantly
flat surfaces (e.g., cardboard boxes) demonstrate better
accuracy in volume estimation. For example, the brown, white,
and black cardboard boxes have error percentages of
2.80%, 2.91%, and 3.43% respectively, whereas objects with
curved surfaces (e.g., SS bowl, tumbler) show slightly
higher error (typically more than 4%). On the other hand,
larger objects generally yield more accuracy. For instance, the
bottle (having a volume of 634,743 mm3) has the lowest
error rate of 1.54%, whereas smaller objects, such as the
thin cardboard box and bottle cap, show higher
error rates (i.e. 4.03% and 4.36% respectively). This suggests
that our current setup may have limitations in capturing fine
details or accurately representing small objects.

We can also observe that the objects with reflective surfaces,
such as the stainless steel bowl and tumbler, pose
challenges in scanning. The LiDAR rays are often reflected
away from these objects, resulting in sparse and inaccurate
data points, which leads to incomplete mesh clouds and
subsequently, less accurate 3D models. These objects have
error rates of 4.90% and 4.51% respectively. The black
cardboard box, which tends to absorb LiDAR rays, result
in a lower density mesh cloud and a higher error rate (3.43%),
compared to its brown and white counterparts.

The sponge block, with its porous surface, shows the
highest error rate (7.58%), likely due to the complexity of
its surface structure. The porous nature of the sponge likely
caused inconsistent LiDAR scans, resulting in the highest error
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TABLE II
VOLUME ESTIMATION RESULTS FOR SCANNED CLOSED OBJECTS

Object Actual Vol (mm3) Observed Vol (mm3) Error
Brown cardboard box 905,280 930,663.375 2.80%
White cardboard box 1,045,500 1,075,974.75 2.91%
Black cardboard box 1,281,600 1,325,675.125 3.43%
Thin cardboard box 150,700 156,780.671875 4.03%
Sponge block 125,100 134,586.3125 7.58%
SS bowl 320,556.23 336,269.34375 4.90%
Bottle 634,743.47411 644,542.0625 1.54%
Bottle cap 134,460.10 128,590.71875 4.36%
SS tumbler 302,397.14246 316,089.50 4.51%
Combined SS object 622,163.71628 662,393.125 6.46%

TABLE III
EFFECT OF SCANNING ANGLE RESOLUTION FOR CLOSED OBJECTS

Object 2◦ 4◦ 6◦ 8◦
Brown box 2.80% 3.14% 3.38% 3.95%
White box 2.91% 3.35% 3.62% 4.32%
Black box 3.43% 3.94% 4.36% 5.22%
Thin box 4.03% 4.86% 5.30% 5.97%
Sponge block 7.58% 8.13% 8.86% 9.44%
SS bowl 4.90% 5.31% 5.89% 6.84%
Bottle 1.54% 1.87% 2.51% 2.97%
Bottle cap 4.36% 4.92% 5.41% 6.65%
SS tumbler 4.51% 4.88% 5.63% 6.19%
Combined object 6.46% 7.24% 8.34% 9.29%

Fig. 8. Outcomes of our experiment on various objects with hollow surfaces (top), along with the generated mesh cloud (middle) and the refined and smoothed
version (bottom). The objects from left to right are hollow bowl, mug, pot, bowl over box, and a pipe connector with tee shape respectively.

rate among all tested objects. The combined SS object
(i.e. bowl + tumbler) on the other hand show a higher er-
ror rate (6.46%) compared to the individual objects, suggesting
that complex arrangements may reduce accuracy.
Scanning objects with hollow surfaces: We now discuss our
results of 3D reconstruction for objects with hollow surfaces.
Fig. 8 shows the outcomes of our modified setup with objects
having hollow surfaces. From Fig. 8, we can observe that the
reconstructed object shapes closely match with the original
ones. From these results, we can observe that with minor
adjustments of our setup, we can obtain 3D modeling of
different types of objects with reasonable level of accuracy.
Surface area estimation accuracy: Table IV shows surface
area estimation results for different hollow objects. The ob-
served surface areas closely match the actual values, with
all estimation errors remaining below 3%. The tee structure
shows the highest accuracy, with an error of just 1.24%,
followed by the mug and pot with 2.12% and 1.99% errors,
respectively. The hollow bowl yields a slightly higher error
of 2.67%, likely due to its curved geometry. These results
confirm the system’s effectiveness in accurately estimating the

surface areas of hollow and geometrically diverse objects.
Effect of different scanning angle resolutions: Tables III
and V demonstrate the impact of varying scanning angle
resolutions on the accuracy of both volume and surface
area estimations. As expected, increasing the angle between
successive scans leads to a consistent rise in error percent-
ages for all scanned objects. This trend is attributed to the
resulting reduction in point cloud density, which impairs the
fidelity of surface reconstruction and volumetric estimation.
The sensitivity to scanning angle varies depending on object
geometry. For instance, complex or composite structures such
as the combined object and bowl over box exhibit
more pronounced error escalation compared to simpler shapes
like the bottle or brown box, which maintain relatively
lower errors even at coarser resolutions. Notably, objects
like the sponge block show the highest susceptibility to
angular resolution changes, while the brown box remains
comparatively stable. For surface area estimation, the smallest
scanning angle of 2◦ consistently yields the most accurate
results, with errors ranging from 1.24% (for tee) to 2.67%
(for bowl). However, at 8◦, errors increase significantly—up
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TABLE IV
SURFACE AREA ESTIMATION RESULTS FOR SCANNED HOLLOW OBJECTS

Object Actual area (mm2) Observed area (mm2) Error
Hollow bowl 17942.74 18421.76 2.67%
Mug 20769.72 20328.816 2.12%
Pot 18878.68 18502.39 1.99%
Bowl over box 69785.08 71034.32 1.79%
Tee 11247.48 11387.91 1.24%

TABLE V
EFFECT OF SCANNING ANGLE RESOLUTION FOR HOLLOW OBJECTS

Object 2◦ 4◦ 6◦ 8◦
Hollow bowl 2.67 % 3.55 % 4.54 % 5.82%
Mug 2.12% 1.81% 6.78% 7.48%
Pot 1.99% 4.11% 5.50% 6.54%
Bowl over box 1.79 % 2.93% 5.53% 6.67%
Tee 1.24% 1.96% 4.74% 9.71%

to 9.71% for the for the tee—highlighting the limitations of
coarse scanning for capturing intricate geometrical features.
These results emphasize the importance of maintaining a
fine angular resolution to achieve high-precision 3D scanning,
particularly when dealing with complex objects.

V. DISCUSSIONS AND LIMITATIONS

Our experiments and observation reveal several limitations
of our proposed solution, which we discuss below.
Scanning transparent objects: Our proposed solution has
severe limitations when attempting to scan transparent or glass
objects. The refraction of LiDAR rays through these materials
lead to highly distorted or completely failed scans.
Objects with intricate shapes: Objects with intricate shapes
or sharp edges present challenges in accurate surface recon-
struction. The scanning process tends to smooth out sharp
edges and therefore misses small indentations.
Scanning the bottom surfaces: Another limitation of our
current setup is the inability to capture the bottom part of
the objects resting on the platform. This blind spot occurs
because the object’s base is in direct contact with the scanning
platform, preventing LiDAR rays from reaching this area.
Effects of ambient conditions: Although not explicitly tested
in our controlled environment, factors such as ambient light,
dust, or moisture in the air could potentially affect the
LiDAR’s performance. These environmental variables could
introduce noise or distortions in the scans, particularly for
outdoor or industrial applications.

VI. CONCLUSION

In this paper, we demonstrate a LiDAR-based 3D shape
modeling solution that yield promising results while also
reveal important limitations and areas for future improvement.
The solution is a significant step forward in non-contact and
low-cost measurement technology. The system’s ability to
quickly and accurately model and measure a wide range of ob-
jects offers exciting possibilities across numerous fields, from
manufacturing and logistics to archaeology and conservation.
In future, we want to integrate our LiDAR based solution
with other sensing technologies such as structured light or
photogrammetry, which could help overcome the limitations
related to surface reflectivity and transparency. This hybrid
approach may provide more accurate 3D models, especially
for objects with challenging surface properties.
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