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Abstract

Multi-view 3D reconstruction driven augmented, virtual, and mixed

reality applications are becoming increasingly edge-native, due

to factors such as, rapid reconstruction needs, security/privacy

concerns, and lack of connectivity to cloud platforms. Managing

edge-native 3D reconstruction, due to edge resource constraints

and inherent dynamism of ‘in the wild’ 3D environments, involves

striking a balance between conflicting objectives of achieving rapid

reconstruction and satisfying minimum quality requirements. In

this paper, we take a deeper dive into multi-view 3D reconstruc-

tion latency-quality trade-off, with an emphasis on reconstruction

of dynamic 3D scenes. We propose data-level and task-level par-

allelization of 3D reconstruction pipelines, holistic edge system

optimizations to reduce reconstruction latency, and long-term min-

imum reconstruction quality satisfaction. The proposed solutions

are validated through collection of real-world 3D scenes with vary-

ing degree of dynamism that are used to perform experiments on

hardware edge testbed. The results show that our solutions can

achieve between 50% to 75% latency reduction without violating

long term minimum quality requirements.

CCSConcepts: •Computer systems organization→Real-time

systems; Distributed architectures; Reliability; • Mathematics

of computing→ Network optimization; •Human-centered com-

puting→ Ubiquitous and mobile computing systems and tools.

Keywords: 3D reconstruction, edge computing, openMVG, open-
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1 Introduction

With the widespread adoption of video processing use cases, such

as, robotic surveillance [12, 34], public safety [35–37], and tactical

scenarios [4], creating reliable augmented/virtual/mixed reality [8]

environments is becoming critical. For such applications, real world

objects (often dynamic) captured from multiple vantage points

(through camera enabled devices) are needed to be placed within

a virtual 3D environment. Thus, multi-view 3D reconstruction is
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Figure 1. Fire rescue involving first responders viewing 3D constructed scene from
2D video streams captured by drones from multiple vantage angles

playing a critical role to efficiently create such reliable immersive en-

vironments, especially in aforementioned mission-critical use cases.

Fig. 1 describes one such multi-view 3D reconstruction-driven fire

rescue recon mission where ground first responders capture videos

of a high-rise fire situation involving human beings and other living

objects trapped in fire using camera equipped drones. The drones

live stream the 2D video frames for rapid 3D reconstruction of the

fire scene, before sending the reconstructed outcome to ground

first responders. Carrying out such 3D reconstruction in cloud

data centers (especially for mission-critical use cases) is considered

impractical due to three key factors: 1) the substantial data trans-

mission demands, 2) the risk of losing connectivity to data centers,

and 3) privacy and security concerns. In contrast, edge computing

can become an important enabler towards such rapid 3D recon-

struction by bringing compute resources (e.g., CPU, GPU) closer to

the video generation and consumption site(s). Fig. 1 shows adop-

tion of such edge system where a ground fire truck equipped with

communication and computational resources acts as ‘on-premise

edge servers’ that runs 3D reconstruction algorithms and sends the

reconstructed data to the hand-held devices of the first responders.

Traditionally, 3D reconstruction is achieved by photogrammetric

algorithms, such as Structure from Motion (SfM), that compute

image features and matchings across views from a set of unordered

2D images [15] which can then be intensified and textured by Multi-

view Stereo (MVS) methods [5]. Unlike, simpler video processing

applications, SfM+MVS pipeline based 3D reconstruction methods,

such as, widely used openMVG/openMVS [5, 15, 24] are extremely

compute-intensive, and thereby time-consuming, especially when

reconstructing ‘in the wild’, i.e., unknown real-world scenes for

critical use cases. Most SfM+MVS pipeline-based multi-view 3D

reconstruction methods are designed to focus on reconstruction

quality, and not on rapid processing. Thus, they are well suited to

run on cloud environments with theoretically unlimited compute

resources. Consequently, when run on computationally constrained

typical edge severs, it is non-trivial to generate high-quality results

that can successfully reconstruct all the dynamic objects inside a 3D
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scene within a short amount of time. E.g., a typical video stream of

80 sec. from 5 different cameras (with 2000 frames per camera @ 25

frames/sec) would typically need 9 hours to generate high quality

reconstruction on typical low-cost edge servers. Any attempt to

reduce the latency will severely impact the reconstruction quality.

Such inability to produce high quality reconstruction can severely

impact the success of the involved mission.

Therefore, one of the most critical challenges of edge-native 3D

reconstruction is to ensure rapid processing with limited impact on

their quality, i.e., striking a balance between reconstruction latency

and quality. However, there exists limited work that deal with la-

tency reduction of complex video processing applications, such as

3D reconstruction. Works, such as [10, 19, 28] propose edge-native

frameworks for video analytics by jointly selecting of a variety

of configurations. Others, such as [21, 32, 33] work on pipeline

scheduling problems. However, both groups often ignore the ne-

cessity of application-specific optimization, thus are unsuitable for

3D reconstruction application. Furthermore, none of the existing

works aim to capture the characteristics of video data content (cap-

tured from unknown real-world scenes) where components of the

scene are often dynamic. 3D reconstruction of such dynamic scenes

typically involves one or many moving objects with changing loca-

tions, poses, or shapes. Because of the presence of these dynamic

(foreground) objects, the 3D information of the scene changes over

time, requiring the reconstruction algorithm to recompute the 3D

map iteratively. Inability to capture such dynamism efficiently and

promptly may lead to massively redundant computation, resulting

in prolonged latency. Contrarily, attempt to reduce reconstruction

latency without addressing such dynamism can lead to considerably

low quality and useless reconstruction.

To address these challenges, in this paper, we take a deeper dive

into multi-view 3D reconstruction latency-quality inter-conflict,

with an emphasis on reconstructing dynamic scenes. In particular:

• We address the lack of dynamic scene reconstruction in the cur-

rent literature by setting up our own 3D scenes that mimic real-

world scenarios and by collecting long sequencemulti-view video

datasets with different degrees of dynamism within the scene.

• We use these datasets to perform benchmarking experiments to

demonstrate the need for intelligent orchestration of 3D recon-

struction related data and resources to achieve optimal latency-

quality trade-offs to sustain desired performance.

• We propose a hybrid approach of practical data-driven adapta-

tions and more holistic system optimizations of edge resources.

In particular, we model the entire process of reconstructing a

dynamic 3D scene as a series of upcoming reconstruction tasks.

• We implement a difference detector to filter out consecutive tasks

with high similarity and assign only a subset of tasks to the edge

server for execution. This reduces computation redundancy.

• We establish analytical models, based on data-driven measure-

ments, to characterize the relationship between system parame-

ters impacting reconstruction latency and quality requirements.

• We propose a long-term and dynamic optimization problem that

is solved with Lyapunov optimization with virtual queue that

transforms the problem into multiple, per-epoch, and computa-

tionally tractable optimization problems.

• We propose a window-based pipeline that implements task exe-

cution, difference detection, and optimization in parallel through

in-advance optimization and delayed-task assignment.

We implement and evaluate the proposed solutions on a hard-

ware edge testbed using our own and publicly available datasets.

Our evaluation methodology focuses on both long-term quality

satisfaction and reduction of reconstruction latency of the entire

video stream. The experiment results show that our solutions are

able to flexibly balance long-term quality satisfaction and total re-

construction time. Moreover, the proposed pipeline parallelization

approach executes much faster than the traditional approach with

guaranteed quality bounds. Compared to the traditional approach,

the reconstruction latency is reduced by 15% to 30% based on dif-

ferent system configurations. We also compare our solution with

baseline strategies that do not account for the dynamic changes in

the video content. Through experiment on real-world datasets, we

demonstrate that our solution greatly (between 50% to 75%) reduces

the total reconstruction latency (based on video content and the

quality requirements) by eliminating unnecessary reconstructions.

The rest of the paper is organized as follows. Section 2 presents

the background and related work. Section 3 discusses data col-

lection and problem evidence analysis. Section 4 presents system

model and problem formulation. Section 5 discusses Lyapunov op-

timization based solution and system design. Section 6 discusses

implementation and evaluation. Section 7 concludes the paper.

2 Background and Related Work

In order to better articulate the detailed contributions of our work,

we briefly explain the multi-view 3D reconstruction of dynamic

scenes with particular emphasis on the most widely used SfM+MVS

pipeline, along with the state-of-the-art in latency reduction of such.

2.1 Multi-view 3D reconstruction of Dynamic scenes
Multi-view 3D reconstruction is an extremely complex video pro-

cessing application that is typically carried out by forming geo-

metric relations of the image pixels through photogrammetric al-

gorithms, such as Structure from Motion (SfM) [15, 23]. The SfM

process estimates the 3D coordinates of a scene’s feature points

(captured by multiple cameras from their vantage points) belonging

to both the dynamic (i.e., moving, e.g., human beings, moving ob-

jects) and static (i.e., stationary, e.g., furniture, walls) components,

referred to as the sparse 3D point cloud, along with the camera

poses (e.g., locations and orientations). This is followed by MVS

dense point cloud estimation steps [27] that utilize the sparse point

cloud and interpolation techniques to generate a realistic 3D scene.

Dynamic scenes typically involve one of many moving objects with

changing locations, poses, or shapes. Because of the presence of

these dynamic (foreground) objects, the 3D information of the scene

changes over time requiring the reconstruction algorithm to recom-

pute the 3D map iteratively. Recently, a new branch of methods has

emerged that uses deep learning models with single or multiple

images for the 3D shape estimation of single or multiple objects,

as well as 3D reconstruction of the whole scene [22]. Although

these approaches are generally faster, SfM+MVS pipeline-based

methods are still considered to be the golden standard for 3D recon-

struction as deep learning based methods yield lower accuracy and

do not generalize well for unknown objects and scenes [22] that

are quite common for aforementioned mission-critical use cases.

Among the SfM+MVS based multi-view reconstruction techniques

that yield high quality 3D reconstruction of dynamic scenes, open-

MVG/openMVS [5, 15] is the most widely adopted because of its

friendly coding style, modular design, and open-source nature [15],
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Figure 2. Captured scenes from different view angle

making them easy to modify depending on the specific needs of

particular applications. This provides the developers with complete

control over the implemented functionalities [24]. For the purpose

of this work, we analyze the 3D reconstruction latency-quality

trade-off issues and propose solutions that are geared towards

openMVG/openMVS. However, the proposed methods are equally

effective for any SfM+MVS based 3D reconstruction pipelines.

2.2 Techniques to Optimize 3D Reconstruction Latency

SfM+MVS pipelines including openMVG/openMVS, like most other

multi-view 3D reconstruction methods, are extremely computation-

intensive and thereby time-consuming, especially when performed

within a resource-constrained edge environment. This is particu-

larly true for reconstructing large ‘in the wild’, i.e. unknown scenes

(e.g., large public places, disaster-stricken areas, and enemy territo-

ries) that typically need a large number of high-resolution cameras

to capture the target scene from different angles, involving many

dynamic components. There exists only a few works in the current

literature that seek to reduce 3D reconstruction processing latency.

Among them, in [7], the authors directly use the RGB-D camera

to obtain the depth information of the target scene, instead of run-

ning cumbersome algorithms to calculate the depth map from a

regular RGB image set. In order to reduce the optimization time,

the authors in [25] group several pixels into superpixels, i.e., a new

point cloud after generating an one.

There exists even fewer methods that specifically work on la-

tency reduction of SfM+MVS pipelines. Authors in [11] sort the

input images based on the spatial orders of the cameras ensuring

large overlaps between two subsequent images of the ordered set

in order to reduce the computation cost in the feature-matching

step. In [31], the authors optimize the densify point cloud step

with a quasi-dense feature matching approach and achieved 9% im-

provement in latency. Authors in [30], group the sparse 3D points

into different clusters and process each cluster separately for dense

textured mesh generation, resulting in 13% reduction in total pro-

cessing time. In our previous work [34], we separate a scene into

foreground and background parts to perform 3D reconstruction

separately before merging the outcomes at the end. However, re-

construction times of the dynamic scenes for most of the above

solutions are still too long to be considered rapid 3D reconstruction

(about 12 seconds per image set), which we seek to address.

3 Problem Evidence Analysis

In this section, we first discuss the motivation and details of lab

based multi-view 3D dataset generation that are tailor-made for

mission-critical use cases mentioned earlier. This is followed by

3D reconstruction latency-quality inter-conflict problem evidence

analysis using the same datasets.

3.1 Multi-view Dataset Generation

As mentioned earlier, latency reduction of multi-view 3D recon-

struction pipelines while satisfying minimum quality requirements

is non-trivial for scenes with dynamic objects. Currently, only a

few publicly available datasets (e.g., Dance1, Odzemok [16]) are

available that can be used and tested for 3D reconstruction of such

dynamic scenes. These datasets contain a limited number of sequen-

tial images and only a few subsets can generate high-quality 3D

reconstruction results. Short sequence datasets are more likely to

run out of images before any optimization can converge, leading to

non-accurate optimization performance. Many recent works [17]

advocate the need for long sequence of dynamic scenes to test and

improve the robustness of 3D reconstruction related optimizations.

Additionally, sound analysis of 3D reconstruction latency-quality

inter-conflict and validation of optimization solutions for multi-

view 3D reconstruction use cases (e.g., robotic surveillance, search

and rescue, and tactical scenarios) that require rapid processing

at high quality, warrant datasets of 3D scenes that are representa-

tive of such use cases in terms of scene complexity and dynamism.

Unfortunately, none of the existing 3D datasets provide that.

Background scene setup: Thus, for our data collection, we aim

to create an indoor scene that is colorful, full of diverse objects,

and has different degrees of dynamism in terms of the moving

objects. In the scene, toys and food items are selected because they

come in multiple colors. Boxes are used to cover most empty space

of the scene; a wooden frame with a white sheet is placed in the

background; a black chair is placed in the middle of the scene;

and a large multi-colored toy is placed at 45 degrees of the chair to

increase the overall brightness of the scene. All the camera positions

are adjusted based on the chair in the middle, as it is the focal point

of the scene for different dynamic activities. The complete scene

from different view points is shown in Fig. 2.

Acquisition system setup: A high-level representation of the

acquisition system is shown in Fig. 3 where we implement a Python

UDP-based script operating as client-server network structure. The

socket program runs on a Host PC that acts as the server while 5

Raspberry pi boards act as clients. Similar to several other research

works [1, 2, 14], we use Raspberry Pi Module 2 cameras and Model

B boards due to their low price and ease of availability. Each Rasp-

berry Pi camera (with highest resolution 1980 × 1080) connects to

a Raspberry Pi board and with board connected to the Host PC

through WiFi. The video capture (at a variable frame rate of 25-30

frames/sec.) starts when the host PC sends a ‘start recording’ com-

mand to all boards simultaneously. To finish video capture, the Host

PC sends a ‘stop recording’ command to all boards. Once a board

receives the stop command, it saves the captured videos locally as

H264 files which are later transferred to the PC. The acquisition sys-

tem also has the capability of live streaming the video to the server.

We use OpenCV to extract all images from the H264 files which are

then used for 3D reconstruction using openMVG/openMVS.

Based on the above background scene and acquisition system

setups, we generate three multi-view datasets representing different

degrees of indoor dynamic scenes, viz., Pickup,Walk, andHandshake

as shown in Fig.4. In Pickup, a person sits on the middle chair

and picks up a book from the ground. This scene represents low
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Figure 3. Acquisition system for capturing 3D scenes

(a) Pickup (b) Walk (c) Handshake

Figure 4. Image samples from the captured multi-view dataset

movement with the rest of the scene being static. In a comparatively

more dynamic sceneWalk, a person walks across the scene from

one end to another. Finally, Handshake represents high level of

dynamism where two people walk from two different side of the

scene and shake hands in the middle. Using these three datasets,

we next provide key evidences of non-triviality of latency-quality

inter-conflict for 3D reconstruction. Later we will recreate these

scenes for evaluating and validating our solutions in Section 6.

3.2 Problem Evidence Analyses

The objectives of problem evidence analyses are threefold: first,

we show how the traditional SfM+MVS pipelines, without any op-

timization, fail to guarantee rapid 3D reconstruction; second, we

demonstrate how ‘quick-fix’ strategies to reduce processing latency

that work for other simpler video processing application, do not

work for 3D reconstruction quite so well; and third, how 3D recon-

struction of highly dynamic environments make the latency-quality

inter-conflict evenmore challenging to address. Overall, these analy-

ses results will motivate the need for optimizations to strike latency-

quality trade-off. To this end, we use openMVG/openMVS on our

collected Pickup, Walk, and Handshake datasets. The reconstructed

3D scenes are obtained by processing the video sequences on a Dell

Gigabyte desktop with AMD Ryzen9 3900X @3.8GHz, 125GB RAM,

and NVIDIA GeForce RTX 1080Ti, which is a typical configuration

for a low-cost edge device used in various edge-native use cases.

Experiment results: From Table 1, it can be observed that the

best quality 3D rendering is achieved when the highest resolution

(i.e., setting scale=1) video frames/images are used for reconstruc-

tion. Here, for quality evaluation, we use widely accepted F-score

metric proposed in [20]. From the table, we also observe that this

baseline case requires a latency of 16.86 sec. to reconstruct one set

of images (for Pickup). This means that a video steam consisting of

2000 frames/images from each camera, would need 2000×16.86 ≈ 9

hours to complete reconstruction, which, by far, fails to meet the

rapid reconstruction requirements of many critical use cases [29].

Now, one of the most obvious and popular ‘quick fix strategies’

among researchers [33] is to reduce the resolution of images col-

lected from the cameras with the objective of reducing the total

data size for processing. Table 1 illustrates that when 30% resolution

reduction is applied (i.e., scale=0.7), the latency indeed reduces to

11.19 sec., but leads to significant degradation of reconstruction

quality (i.e., from F-score 1.0 to 0.92). The same can be observed

through qualitative analysis in Fig. 5, which shows that from a

visual perspective, reconstructed scenes with 70% resolution lack

the richness and many important details as compared to the best

quality reconstructed scenes shown in Figs. 5(a) and 5(c). Such

degradations can severely impair proper operation of critical use

cases using 3D reconstruction. Both quantitative and qualitative

results demonstrate that this trend of latency reduction at the cost

of quality degradation is consistent across datasets.

We also observe that such quality degradations get magnified

for scenes that have relatively pronounced dynamic components.

E.g., in Pickup, the quality degradations from scale=1 to scale=0.7

and scale=0.5 are 7% and 15% respectively. Whereas, with more

dynamism in the scene, such degradations increase to 9% and 18%,

and to 11% and 25% (as shown in Table 1). Similar trends can be

observed in Fig. 5, where more details are missing in reconstructed

Walk scene than reconstructed Pickup scene. These results together

demonstrate the need for intelligent orchestration of 3D reconstruction

application related data and resources, to achieve optimal latency-

quality trade-offs for sustaining desired performance.

4 System Model and Problem Formulation

Asmulti-view SfM+MVS algorithms are extremely time-consuming,

especially in use cases with dynamic scenes that need to continu-

ously reconstruct 3D scenes for every upcoming set of 2D images

(defined as a task), not only the reconstruction time of every sin-

gle such task needs to be shortened, but the total reconstruction

time of a sequence of tasks (i.e., the entire video stream) needs

to be reduced. In order to solve this fundamental problem of reduc-

ing 3D reconstruction latency at the edge with less than significant

impact on reconstruction quality, we take a hybrid approach that

implements practical data-driven adaptations, as well as more holis-

tic system optimizations. Thus, we seek to design and implement

an approach that intelligently executes reconstruction tasks with

different frequencies and frame resolutions based on the desired

quality requirement.

For this work, we assume a typical edge-native real-world use

case (such as, robotic surveillance, search and rescue, tactical sce-

narios) where the edge computing system comprises of a hetero-

geneous resource pool (in terms of available CPU and GPU units,

RAM size) that has considerably more computational capacity than

the camera-enabled devices themselves, but nothing close to the re-

sources available at typical cloud data centers. In accordance with

real-world scenarios, we assume that the resource components,

i.e., computing units are connected with each other through high-

bandwidth connections. Thus, the inter-communication delay for

data offloading between such units is ignored. The computational

units are primarily categorized into two: i) difference detector (DD)

and ii) a set of servers {1, 2, ..., 𝐾}, both running continuously. The

DD controls the task (as explained earlier, a set of 2D images to

be reconstructed) execution frequency by filtering tasks with high

similarity, while the servers run reconstruction tasks in batches. In

this paper, we seek perform data-level and task-level parallelization

of 3D reconstruction pipeline (as part of the data-driven adapta-

tions) and optimize the following parameters (as part of the holistic

system optimizations):
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Table 1. 3D reconstruction quality (in F-score) and latency comparison with varying camera resolution

(scale=1

Pickup)

(scale=0.7

Pickup)

(scale=0.5

Pickup)

(scale=1

Walk)

(scale=0.7

Walk)

(scale=0.5

Walk)

(scale=1

Handshake)

(scale=0.7

Handshake)

(scale=0.5

Handshake)

F-score 1.0 0.93 0.85 1.0 0.91 0.82 1.0 0.89 0.75

Latency 16.86 11.19 NA 16.43 10.6 NA 16.96 8.97 NA

(a) Pickup with scale=1 (b) Pickup with scale=0.7 (c) Walk with scale=1 (d) Walk with scale=0.7

Figure 5. Qualitative analysis of openMVG/openMVS pipeline with varying camera resolution

• Difference threshold 𝑑 : The objective of DD is to filter out tasks

with high similarity and thus eliminate unnecessary reconstruc-

tions (i.e., computations) that considerably lengthen the recon-

struction process over time. However, achieving this for dynamic

scenes is non-trivial. Our proposed DD computes ‘percentage

pixel-wise difference’ between two image frames. Specifically, it

computes the percentage difference between the current frame

and the frame corresponding to the last reconstructed task, for

each camera viewpoint. Subsequently, as the average percent-

age differences are estimated for all cameras, the current task

is executed (i.e., reconstruction for the current set of frames is

performed) only when such average difference exceeds a cer-

tain threshold, viz., difference threshold 𝑑 . By adjusting 𝑑 , the
DD is able to adapt reconstruction frequency that can balance

reconstruction latency and quality.

• Image resizing ratio 𝑟 : As explained in Section 3.2, image resolu-

tion or image resizing ratio 𝑟 ∈ (0, 1] plays a key role in reducing

reconstruction latency. However, this may come at a price of

degraded quality. In particular, the choice of 𝑟 also impacts the

ability of proper reconstruction of dynamic objects, and failing

to do so can severely impact the reconstruction quality. Thus, we

choose 𝑟 as a parameter for our optimization process.

• Task assignment x: Finally, we define a task assignment/place-

ment parameter x = {𝑥1, ..., 𝑥𝐾 }: 𝑥𝑘 that indicates the number of

reconstruction tasks assigned to the 𝑘-th server. Since servers

are heterogeneous, the goal of task assignment is to minimize

the maximum task completion time of all servers.

Overall, the system parameter tuple or policy {𝑑, 𝑟, x} is optimized

to balance reconstruction latency and quality. With the system

parameters defined, we first discuss the 3D reconstruction pipeline

parallelization, followed by the optimization problem formulation.

4.1 Reconstruction Pipeline Parallelization

In order to explain the pipeline parallelization, we first divide the

timeline between the capture of first set of images for reconstruction

and the completion of last reconstruction into successive optimiza-

tion epochs 𝑡 ∈ {1, 2, ...,𝑇 }. Without parallelization, the following

steps that include the 3D reconstruction tasks as well as difference

detection, will be executed in sequence at each epoch 𝑡 : i) running
DD for upcoming tasks at the beginning of epoch 𝑡 , ii) choosing
a batch of tasks for reconstruction by filtering other tasks with

high similarity, iii) at the end of epoch 𝑡 , letting the servers exe-

cute the selected tasks, and iv) making adjustments to the system

parameters, particularly 𝑑 and 𝑟 based on observed quality (i.e.,

re-optimization). Here, the system parameters remain unchanged

for the tasks within the window. In epoch 𝑡 , a task window is

defined (of size 𝑋 𝑡 ) which consists of all the outstanding recon-

struction tasks that were queued between two successive difference

detection periods. Let this window and the set of tasks within this

window be denoted as I𝑡 = {𝑖, 𝑖 + 1, ..., 𝑖 + 𝑋 𝑡 − 1}. The DD se-

lects a subset of the tasks I𝑡𝐷𝐷 to be executed for task window

I𝑡 ; subsequently, I𝑡
−𝐷𝐷 denotes the set of tasks not selected. This

relationship can be described as DD : I𝑡 → I𝑡𝐷𝐷 . Important to

note that 1 ≤ |I𝑡𝐷𝐷 | ≤ 𝑋 𝑡 as the first task at the very beginning of

the reconstruction process is always selected for obvious reasons.

Next, we define task computation period 𝛼𝑡 which denotes the

time taken to complete the execution of tasks in task window I𝑡𝐷𝐷 .

Also, if the speed of DD is 𝑏 tasks per second, then the duration

of DD period can be estimated by 𝛽𝑡 = 𝑋 𝑡/𝑏. However, since DD
needs to compute the average difference between consecutive image

frames coming from all cameras, the computational overhead of

DD increases linearly with the number of cameras. Therefore, the

execution time of DD period 𝛽𝑡 in epoch 𝑡 cannot be ignored in

practice. In order to address that challenge, a pipeline parallelization

approach, as shown in Fig. 6 is deployed. The figure shows that

when the selected tasks in I𝑡𝐷𝐷 are being executed, shown as the

computation period 𝛼𝑡 , the optimization process starts running DD

for the next epoch 𝑡 + 1 (shown as 𝛽𝑡+1) as part of the task window

I𝑡+1. During this epoch, the optimization process (to be introduced

in Section 5) that runs for a small period of time (as shown in Fig. 6)

first determines the optimization parameters for the new epoch, i.e.,

difference threshold 𝑑𝑡+1 and image resizing ratio 𝑟𝑡+1. The new
difference threshold 𝑑𝑡+1 is then used by DD to select new tasks

to be executed, i.e., I𝑡+1𝐷𝐷 from the outstanding set of tasks in I𝑡+1.

The DD performs the task filtering process until all the selected

tasks from the previous epoch 𝑡 are finished execution, i.e., till the

end of 𝛼𝑡 . Given the speed for task filtering by DD, the size of the

new task window in terms of number of outstanding tasks can be

expressed as 𝑋 𝑡+1 = 𝛼𝑡 × 𝑏. This pipeline runs until the last set
of outstanding tasks are selected and executed (if needed). With

this arrangement, the execution of selected tasks for the current

epoch 𝑡 and the execution of DD for the next epoch 𝑡 + 1 are run

in parallel, resulting in 𝛽𝑡+1 = 𝛼𝑡 . As a result, the computing units

for DD and the servers are always fully utilized with the overall

reconstruction time being considerably shortened.
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Figure 6. Parallel pipeline with task windows, task selection, and execution

Figure 7. Scheduled task ratio and reconstruction quality against 𝑑𝑡 forWalk

4.2 Task Selection by DD

With reconstruction pipeline parallelization in place, we next dis-

cuss the different aspects of holistic system optimization, starting

with the task selection process by the DD. To this end, we define

𝑠𝑡 =
|I𝑡

𝐷𝐷 |

|I𝑡 |
as the ratio of selected tasks for task window I𝑡 , where

|I𝑡 | = 𝑋 𝑡 . A higher 𝑠𝑡 would mean longer 𝛼𝑡 and vice versa. Based
on such definition, 𝑠𝑡 should be a function of the selected differ-

ence threshold 𝑑𝑡 . On the other hand, the task selection by DD

also depends on features of the images belonging to the tasks in

the current task window in comparison to the previous window;

more precisely, on the differences among the sequence of 2D im-

ages belonging to the task windows, especially when there are

dynamic objects involved. Therefore, it is important to characterize

the behavior of 𝑠𝑡 against these two factors. In order to do that, we

analyze how 𝑑𝑡 affects 𝑠𝑡 for different sequences of the same 3D

scene through experiments performed on our own 3D dataset. To

this end, we randomly select two task windows (viz., I1 and I2)

of size 50 tasks (starting at different timestamps) inWalk dataset

which signify moderate dynamism. For now, we do not resize the

images; 𝑟𝑡 is kept at 1, i.e., image resolution of 1920 × 1080. The

experiment performs task selection through DD over these two

sets of 50 tasks with different values of 𝑑𝑡 , ranging from 0.01 to

0.08 (as experiments show that the entire range of the task ratio 𝑠𝑡 ,
i.e., [0,1] is observed for this particular range of 𝑑𝑡 ).

In Fig. 7(a), we observe that the interactions between 𝑠𝑡 and 𝑑𝑡

vary for different task windows, viz., I1 and I2. This is caused by

the different motion characteristics of the dynamic object within the

scene at different time periods pertaining to the task windows. In

our Walk dataset, the person moves slower during I2 than during

I1; more precisely, sitting down on a chair versus walking across

the room. As a result, more tasks are filtered out by DD during I2

Figure 8. Reconstruction quality against 𝑟𝑡 for a single task for Walk

than in I1, especially for small difference thresholds. However, irre-

spective of the task window and the relative motion of the dynamic

object, with higher threshold, the task ratio 𝑠𝑡 declines rapidly, sig-
nifying smaller amount of tasks being selected for reconstruction,

which effectively decreases the end-to-end latency. Overall, the

relationship between 𝑠𝑡 and 𝑑𝑡 seems to exhibit a long-tail distribu-

tion. Therefore, we characterize the relationship between 𝑠𝑡 and
𝑑𝑡 as 𝑠𝑡 = S(𝑑𝑡 ;wt), where wt are the weights of the function.

One of the fitted examples of S(𝑑𝑡 ;wt) is 𝑠𝑡 = 𝑤1 × 𝑒−𝑤2𝑑
𝑡
+𝑤3.

The parameters of the fitted functions can be obtained by using

curve_fit function from SciPy [26] which is an open-source Python

library that allows non-linear regression.

Although the observation of reduced reconstruction latency with

higher 𝑑𝑡 is intuitive, there needs to be way to predict the potential

impact of such adaptation of difference threshold on reconstruction

quality. In Fig. 7(b), we analyze reconstruction quality in terms of F-

scores (denoted by 𝑎𝑡 ) against the same range of𝑑𝑡 and for the same

two task windows of the Walk dataset. Here, we observe similar

temporal behavior (to that of 𝑠𝑡 ) for different sequence of tasks. Al-
though both 𝑠𝑡 and 𝑎𝑡 reveal similar decreasing characteristic with

respect to higher difference thresholds, there are subtle differences

in the nature of 𝑎𝑡 between task windows I2 and I1. Based on the

observations, we define function 𝑎𝑡 = A(𝑑𝑡 ; jt) = 𝑗1×𝑒
−𝑗2𝑑

𝑡
+ 𝑗3 to

estimate the reconstruction quality at epoch 𝑡 (with 𝑟𝑡 = 1), where

jt is the weight vector of the function.

As mentioned earlier, both S(𝑑𝑡 ;wt) and A(𝑑𝑡 ; jt) functions as-
sume task execution with original image resolution, i.e., with 𝑟𝑡 = 1.

Thus, we next observe how difference threshold 𝑑𝑡 and image re-

sizing ratio 𝑟𝑡 jointly affect the functions, in particular quality 𝑎𝑡 .
We define the quality function of a single-task as F (𝑟𝑡 ). In Fig. 8,

we observe the characteristics of the quality function against 𝑟𝑡

for different tasks in the same Walk dataset. F (𝑟𝑡 ) exhibit stable
behavior and can be perfectly fitted into a concave function of

F (𝑟𝑡 ) = 0.956 − 1.369 × 𝑒−4.812𝑟
𝑡
which provides a RMSE of 0.003.

We argue that F (𝑟𝑡 ) defines the upper bound of the reconstruction
quality in epoch 𝑡 (if the entireI𝑡 is executed), whileA(𝑑𝑡 ; jt) grad-
ually increases or reduces the quality by adjusting the difference

threshold 𝑑𝑡 . Therefore, a reasonable assumption is that these two

factors (i.e., 𝑑𝑡 and 𝑟𝑡 ), affect the quality 𝑎𝑡 independently. Thus,
we estimate the average quality for tasks in the same epoch 𝑡 by:

𝑎𝑡 ≈ A(𝑑𝑡 ; jt) × F (𝑟𝑡 ) (1)

Nevertheless, such quality approximation exhibits about 0.04 to

0.10 error based on the sequence of images between task periods (as

we have observed in I1 and I2). To address this error, we develop

a mechanism that adjusts 𝑑𝑡 and 𝑟𝑡 appropriately to fill the gap

between expected quality 𝑎𝑡 = A(𝑑𝑡 ; jt) × F (𝑟𝑡 ) and the actual

(i.e., observed) quality, say 𝑎𝑡 . This mechanism is discussed as a

part of the holistic system optimization in Section 5. Important

to note that although the models developed here are based on
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Figure 9. (a) The computation time of a single-task with different image resolution,
(b) the total computation time of running multiple tasks in parallel

Walk dataset, the rationale and procedure behind such modeling

remain universal for any arbitrary 3D scene with the help of run-

time weight update method (Subsection 5.2), where we gradually

generate these functions by collecting run-time observations.

4.3 Task Computation Model

For the next part of the holistic system optimization, we aim to find

the relationship between task computation period 𝛼𝑡 , image resiz-

ing ratio 𝑟𝑡 , and the number of selected reconstruction tasks that

needs to be processed in parallel (i.e., |I𝑡𝐷𝐷 |), all for the time epoch

𝑡 . Since such relationship is machine-specific, we run benchmark-

ing experiments on machines with the configurations specified in

Table 2. The computation/processing times of a single task against

different 𝑟𝑡 values are shown in Fig 9(a). Based on the nature of the

curve, we fit and characterize the average single task computation

time of the 𝑘-th server by O𝑘 (𝑟
𝑡 ; ht) = ℎ1 × (𝑟𝑡 )2 + ℎ2 × 𝑟𝑡 + ℎ3,

which is a monotonically increasing function (i.e., convex).

We next examine the capability of the edge servers to run multi-

ple concurrent tasks, with 𝑟𝑡 = 1. The results of such experiments,

as shown in Fig. 9(b), show that when the number of tasks is less

than 4, 𝑠𝑒𝑟𝑣𝑒𝑟 − 2 computes faster than 𝑠𝑒𝑟𝑣𝑒𝑟 − 1. However, be-

yond that, 𝑠𝑒𝑟𝑣𝑒𝑟 − 1 becomes faster. This is due to 𝑠𝑒𝑟𝑣𝑒𝑟 − 2’s

more powerful CPU but a weaker GPU resources in terms of cuda

cores and memory size. We define function P𝑘 (𝑥
𝑡
𝑘
; gt) as the total

computation time of 𝑘-th server running 𝑥𝑡
𝑘
tasks. Similar to the

observations made in Section 4.2, we find that 𝑟𝑡 and |I𝑡𝐷𝐷 | indepen-
dently affect the total computation time. Thus, we define function

C𝑘 (𝑥
𝑡
𝑘
, 𝑟𝑡 ) as the total computation time of 𝑘-th server handling 𝑥𝑡

𝑘
tasks at image resizing ratio 𝑟𝑡 , which can be approximated by:

C𝑘 (𝑥
𝑡
𝑘 , 𝑟

𝑡 ) ≈
O𝑘 (𝑟

𝑡 ; ht)

O𝑘 (1.0; ht)
× P𝑘 (𝑥

𝑡
𝑘 ; g

t) (2)

Remark 1. The shapes of O𝑘 (𝑟
𝑡 ; ht) and P𝑘 (𝑥

𝑡
𝑘
; gt) are jointly de-

termined by the machines’ computation capacity and the 3D scene.

Therefore, these two functions only need to be shaped once according

to the use case.

We also examine the average computation time per task in Fig. 10

while the total computation time is observed in Fig. 9(b). We ob-

serve that the average computation time decreases as more tasks

are run in parallel. However, it tends to stabilize when the number

of tasks is greater than 4 (due to resource limitation). Under such

given resource conditions, we thus argue that our servers should

run at least 4 tasks in parallel (if possible) at each epoch, in order to

efficiently utilize the server resources. On the other hand, 𝑠𝑒𝑟𝑣𝑒𝑟 −1

Figure 10. Average computation time of tasks when running in parallel

and 𝑠𝑒𝑟𝑣𝑒𝑟 − 2 should not run more than 10 and 8 tasks in parallel

(respectively) to avoid over-utilization of their GPU memory (open-

MVS takes about 1GB of GPU memory). As shown in Fig. 10, we

define such optimal number of tasks and the maximum number of

tasks for the servers as 𝑥𝑂𝑃𝑇
𝑘

and 𝑥𝑀𝐴𝑋
𝑘

, respectively. These two

markers are used to further optimize pipeline execution.

4.4 Holistic Optimization Problem Formulation

Next, we formulate the holistic optimization problem to balance

reconstruction latency and quality. To that end, we define C𝑡 =
{C1 (𝑥

𝑡
1, 𝑟

𝑡 ), C2 (𝑥
𝑡
2, 𝑟

𝑡 ), ..., C𝐾 (𝑥
𝑡
𝐾 , 𝑟

𝑡 )} to be a collection of compu-

tation time of individual servers running the assigned 𝑥𝑡
𝑘
tasks with

image resizing ratio 𝑟𝑡 , at epoch 𝑡 . Since the total computation time

is determined by the slowest server, the objective of the optimal task

assignment to servers is to minimize the maximum computation

time of all servers, i.e., 𝛼𝑡 = max(C𝑡 ). Therefore, our long-term

minimax problem is to find the optimal policy, i.e., system param-

eter tuple or policy {𝑑𝑡 , 𝑟𝑡 , x𝑡 } that minimizes the long-term sum

of task computation time while satisfying the long-term quality

requirement. The optimization problem thus formulated, can be

stated as follows:

min
x𝑡 ,𝑟𝑡 ,𝑑𝑡

𝑇∑
𝑡=1

max(C𝑡 )

s.t. C1:
𝐾∑
𝑘=1

𝑥𝑡𝑘 = S(𝑑𝑡 ;w𝑡 ) × 𝑋 𝑡

C2: 𝑟𝑀𝐼𝑁 < 𝑟𝑡 ≤ 1

C3: 0 ≤ 𝑑𝑡 ≤ 𝑑𝑀𝐴𝑋

C4:

𝑇∑
𝑡=1

A(𝑑𝑡 ; j𝑡 ) × F (𝑟𝑡 ) × 𝑋 𝑡 ≥
𝑇∑
𝑡=1

(𝑋 𝑡 ×𝐴) (P1)

In problem (P1), C1 illustrates the constraint of task assignment

among𝐾 edge servers for an expected number of selected tasks with

respect to 𝑑𝑡 (i.e., |I𝑡𝐷𝐷 |). Constraints C2 and C3 denote the range

of image resizing ratios 𝑟𝑡 and difference thresholds 𝑑𝑡 , respectively.
Constraint C4 specifies that the long-term accumulated quality can

not be lower than
𝑇∑
𝑡=1

(𝑋 𝑡 × 𝐴), where 𝐴 ∈ (0, 1] is a pre-defined

quality requirement for all tasks, while 𝑎𝑡 is for one task period in

epoch 𝑡 . Overall, problem (P1) is a non-trivial problem to solve due

the following challenges:

1. According to Figs. 7(a) and 7(b), having all time epochs share the

same weights can lead to inaccurate predictions in S(𝑑𝑡 ;w𝑡 )
and A(𝑑𝑡 ; j𝑡 ). Therefore, we argue that the weights wt and jt

are time-specific variables and need to be updated regularly.
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Table 2. Machine Configuration

Machines CPU details GPU details

𝑠𝑒𝑟𝑣𝑒𝑟 − 1 Intel(R) Xeon(R) Silver 4215R @3.20GHz×8 Nvidia RTX A4000 (6,144 CUDA cores), 16 GB Memory

𝑠𝑒𝑟𝑣𝑒𝑟 − 2 Intel(R) Core(TM) i7-10700K @3.80GHz×8 Nvidia GeForce RTX 2060 SUPER (1,920 CUDA cores), 8 GB Memory

DD Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz×4 N/A

However, it is impractical to perform the same measurements as

we did in Section 4.2 at beginning of each optimization epoch,

since such weight updates inevitably prolong the optimization

time, which is counter-productive.

2. Due to pipeline parallelization which makes DD and task com-

putation to run in parallel (as shown in Fig. 6), problem (P1) is

solved ahead of task computation period. Therefore, the value

of 𝑋 𝑡 and the number of tasks actually selected by DD (i.e.,

|I𝑡𝐷𝐷 | = S(𝑑𝑡 ;w𝑡 ) × 𝑋 𝑡 ) may be different than expected. In

this case, the system needs to perform task assignment again as

constraint C1 can be violated.

3. As mentioned in Section 4.2, the quality approximation defined

in Eq. (1) is not 100% accurate. According to C4, the error in ac-

cumulated quality could be even larger. In fact, the accumulated

error increases with 𝑋 𝑡 .
4. Finally, challenges 2 and 3 together make the prediction of long-

term system performance even more challenging. If the system

wants to strictly satisfy constraintC4, potential errorsmentioned

in challenges 2 and 3 must be addressed.

Since (P1) is a classic long-term optimization problem, we consider

our proposed pipeline, as shown in Fig. 6, as a dynamic system

where system parameters 𝑑𝑡 , 𝑟𝑡 , and x𝑡 = {𝑥𝑡1, 𝑥
𝑡
2, ..., 𝑥

𝑡
𝐾 } are up-

dated on-demand according to estimated quality defined in C4.

5 Optimization Solution and System Design

Due to the lack of availability of accurately fitted functions before-

hand and the dynamism of ‘in the wild’ 3D scenes, we formulate

the problem as a long-term average quality optimization, rather

than independently optimizing in each epoch. Hence, we apply

Lyapunov approach to create a virtual queue to alternatively ex-

press long-term constraint C4 and the long-term objective function

of (P1). Here, we aim to transform problem (P1) to an equivalent

queue stability problem, where the queue length indicates the sat-

isfaction of constraint C4. Our objective is to jointly stabilize the

queue length andminimize the long-term computation time defined

in problem (P1).

5.1 Optimization and Task Assignment

To this end, we define 𝑄𝑡 ≥ 0 as the length of the virtual queue

at the beginning of optimization epoch 𝑡 . According to the queue
dynamics, which is represented as:

𝑄𝑡 = [𝑄𝑡−1 − (𝑎𝑡−1 −𝐴) × |I𝑡−1 |]+ (3)

However, due to proposed pipeline parallelization, as shown in

Fig. 6, 𝑎𝑡−1 (i.e., actual quality after epoch 𝑡 − 1) cannot be observed

at the beginning of epoch 𝑡 , since tasksI𝑡−1𝐷𝐷 are just being scheduled

to be executed. Additionally, I𝑡 and I𝑡𝐷𝐷 can only be observed

by the end of DD period in epoch 𝑡 . To perform such in-advance

optimization, we use Eq. (1) to compute the expected value of 𝑎𝑡−1

and use 𝑋 𝑡 = max(C𝑡−1) ×𝑏 to estimate the size of the window I𝑡 .

The value of max(C𝑡−1) is produced by the previous optimization.

Thereafter, we integrate Eq. (3) with the quadratic Lyapunov

function and the Lyapunov drift function [6, 9] that transforms the

single-objective and long-term optimization problem (P1) into a

sequence of identical, one-shot, and multi-objective optimization

problems. Essentially, ∀ 𝑡 ∈ {1, 2, ...,𝑇 } we aim to solve:

min
x𝑡 ,𝑟𝑡 ,𝑑𝑡

𝑉 ×max(C𝑡 ) −𝑄𝑡 × (A(𝑑𝑡 ; jt) × F (𝑟𝑡 ) −𝐴) × 𝑋 𝑡

s.t. C1,C2,C3 (P2)

where the trade-off between latency reduction and queue stability

is jointly addressed by a balancing factor 𝑉 [18] and 𝑄𝑡 . As (P2)
is a min-max problem, we introduce an auxiliary variable 𝑍 𝑡 ≥

max(C𝑡 ) which represents the upper bound of computation times

in C𝑡 . We also remove constants in objective function that refor-

mulates (P2) as:

min
x𝑡 ,𝑟𝑡 ,𝑑𝑡

𝑉 × 𝑍 𝑡 −𝑄𝑡 × 𝑎𝑡 ×max(C𝑡−1) × 𝑏

s.t. 𝑍 𝑡 ≥ C𝑘 (𝑥
𝑡
𝑘 , 𝑟

𝑡 ), ∀𝑘 ∈ {1, 2, ..., 𝐾}

C1,C2,C3 (P3)

By the end of DD period, the solution x𝑡 obtained by solv-

ing (P3) at beginning of epoch 𝑡 may become invalid if S(𝑑𝑡 ;w𝑡 ) ×
max(C𝑡−1) × 𝑏 ≠ |I𝑡𝐷𝐷 |. In that case, the system needs to per-

form task assignment again based on the actual value of I𝑡𝐷𝐷 . Such

delayed-task assignment is defined as follows:

min
x𝑡

𝑉 × 𝑍 𝑡

s.t. C1:
𝐾∑
𝑘=1

𝑥𝑡𝑘 = |I𝑡𝐷𝐷 |

C2: 𝑍 𝑡 ≥ C𝑘 (𝑥
𝑡
𝑘 , 𝑟

𝑡 ), ∀𝑘 ∈ {1, 2, ..., 𝐾} (P4)

Both (P3) and (P4) are solved by GEKKO [3].

5.2 Weights Update

In order to solve (P3) and (P4), one prerequisite is to perform the

modeling of S(𝑑𝑡 ;w𝑡 ) andA(𝑑𝑡 ; j𝑡 ), similar to Sections 4.2 and 4.3.

However, it is time-consuming to obtain sufficient measurement

results (e.g., Fig. 7) at the beginning of each optimization epoch

to update w𝑡 and j𝑡 according to upcoming tasks. To address this

issue, we divide [𝑑𝑀𝐼𝑁 , 𝑑𝑀𝐴𝑋 ] into several partitions and assign

the partitions equally among 𝐾 edge servers for obtaining an initial

profiling, i.e., to obtain initial weights w1 and j1 using non-linear

regression models. Once the initial weights are obtained, we gradu-

ally updatew𝑡 and j𝑡 using observed results during run-time. While

this strategy produces large prediction errors in the first few epochs,

eventually this error becomes smaller when the system has enough

observations. On the other hand, the errors will be captured and

mitigated by the quality queuing mechanism and our proposed

Lyapunov method. Therefore, instead of spending a lot of time on

measurements, this approach can gain huge latency benefits by

dynamically updating the model weights.
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Figure 11. The system components and process flowchart

5.3 Regulation on Window Size

Corollary 1. If the task computation speed is greater than task

selection speed, the window I𝑡 decreases, and vice versa. When the

two are equal, the window size if fixed.

To improve resource-efficiency, it is important to find an appro-

priate control policy on I𝑡 size that maximizes the server usage.

In this work, we compare two different control strategies for task

window size, viz., arbitrary window size and fixed window size.

5.3.1 Arbitrary window size. Under this policy, there are no

regulations on the size of window I𝑡 . The execution of DD and

selected tasks follow 𝛽𝑡 = 𝛼𝑡−1. The advantage of this strategy

is that the edge servers and DD are always in use. According to

Corollary 1, the window size changes according to the relationship

between task compute speed in epoch 𝑡 −1 and task selection speed

in epoch 𝑡 . The problem with this strategy is that the window is

likely to increase or decrease monotonically. Therefore, it is either

difficult to converge (if it keeps increasing) or computationally

inefficient (if it keeps decreasing). The following optimizations are

made to prevent the window from becoming too large or too small:

• To prevent the window from becoming too large, we limit

the maximum number of tasks that can be added to I𝐷𝐷 as

|I𝐷𝐷 | ≤
𝐾∑
𝑘=1

𝑥𝑀𝐴𝑋
𝑘

, where 𝑥𝑀𝐴𝑋
𝑘

is the maximum number

of tasks that can be run in parallel on server 𝑘 .
• To prevent the window from becoming too small, we set the

minimum value for 𝛽𝑡 as 𝛽𝑀𝐼𝑁 , i.e., the DD will spend at

least 𝛽𝑀𝐼𝑁 amount of time on task selection.

The total task computation time with arbitrary window size can

thus be stated as

𝐶 =
𝑇∑
𝑡=1

𝑚𝑎𝑥 (𝛼𝑡 , 𝛽𝑀𝐼𝑁 ) (4)

5.3.2 Fixed window size. Under this policy, the window size

of I𝑡 is limited to its maximum size, denoted by |I𝑡 | ≤ |I|𝑚 .

This strategy prevents the window from becoming too large or too

small by cutting off the interaction between 𝛽𝑡 and 𝛼𝑡−1. Since the
length of the task period 𝛼𝑡−1 varies between successive epochs,

Figure 12. Hardware testbed implementation

there will inevitably be idle times (|𝛽𝑡 − 𝛼𝑡−1 | > 0) between DD

and task computation periods. Therefore, the system needs to find

such an optimal |I |𝑚 that guarantees resource-efficiency while: i)

minimizing computation time and ii) satisfying quality requirement.

The optimal size of I𝑡 is the one that minimizes the speed mismatch

between task selection and task computation. The constraint |I𝐷𝐷 | ≤
𝐾∑
𝑘=1

𝑥𝑀𝐴𝑋
𝑘

is also applied to fixed window size policy. Compared

to arbitrary window size policy (Eq. (4)), the total computation of

fixed window size is computed by:

𝐶 =
𝑇∑
𝑡=1

max(𝛼𝑡 , 𝛽𝑡 )

5.4 Overall System Description

The overall description of major components of the system opti-

mization and process flowchart is shown in Fig. 11. By the end of

task execution period in optimization epoch 𝑡 − 1 (which is also the

end of DD period in epoch 𝑡 , therefore I𝑡𝐷𝐷 can be obtained), the

tasks in I𝑡−1 are evaluated by computing the F-score (i.e., ˆ𝑎𝑡−1),
while the servers process I𝑡𝐷𝐷 . The quality 𝑄𝑡 can be updated

according to the following expression:

𝑄𝑡 =

[
𝑄𝑡−1 − |I𝑡−1 | × ( ˆ𝑎𝑡−1 −𝐴)

]+

where ˆ𝑎𝑡−1 is the observed quality. Meanwhile, task assignment (P4)

gives a completion time for finishing I𝑡𝐷𝐷 , denoted by 𝑍 𝑡 . Using

the tuple {𝑍 𝑡 , 𝑄𝑡 , 𝑟𝑡 , 𝑟𝑡 }, the tuple {𝑄𝑡+1, 𝑋 𝑡+1} is approximated.

Then, the optimization (P3) is performed that generates updated

configurations {𝑑𝑡+1, 𝑟𝑡+1}. While servers are processing the tasks

in I𝑡𝐷𝐷 , the DD period of epoch 𝑡 + 1 starts and a new optimization

iteration begins.

6 Performance Evaluation

In this section, we evaluate the performance of the proposed data-

driven adaptations and holistic system optimizations.

6.1 Testbed Implementation and Evaluation Methodology

Our testbed implementation mimicking a typical edge-native 3D re-

construction application is illustrated in Fig. 12. The five Raspberry
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Figure 13. Total reconstruction time for different window size strategies

Pi cameras that are used for data collection (as shown in Fig. 3)

are connected through WiFi to the TP-link router for video stream

upload to the servers. The edge servers (i.e., server-1 and server-2)

and the laptop running DD are linked using high-speed 1 Gbps

Ethernet cable. As mentioned earlier, the networking delay between

components is ignored. The configurations for the machines are

explained earlier in Table 2. The parallelized pipeline and system

implementation within the hardware follows the process flowchart

explained in Fig. 11.

The overall evaluation seeks to answer three overarching ques-

tions: 1) Can the long-term average quality be converged to the

threshold 𝐴? 2) What is the speed of convergence? and 3) What

is the total reconstruction time for a given sequence of task? For

this, we use the distance between the obtained long-term average

quality 𝐴𝑇 (by the end of 𝑇 optimization epochs) and the quality

requirement 𝐴 as the metric to evaluate how strictly the constraint

C4 of problem (P1) is satisfied. If we can get |𝐴𝑇 −𝐴| ≤ 0.01, we
say C4 is “strictly satisfied". In the experiment, the Raspberry Pi

cameras continuously record 2000 timestamps (totally 2000 × 5 im-

ages) @ 25 frames/sec., generating video stream of 80 sec. and total
𝑇∑
𝑡
|I𝑡 |=2000 tasks. Apart from the cameras capturing data live, we

use publicly available dataset Dance1 and Odzemok datasets [16]

that are pre-loaded in the cameras. Unless stated otherwise, the

following results present averages over all datasets and runs.

6.2 Impact of Window Size

Here, we evaluate the impact of window size |I𝑡 | by setting𝐴=0.85
and 𝑉=3, and using Walk dataset as an example of moderate dy-

namism. Fig. 13 shows that a window that is too small or too large

increases the idle time ( |𝛽𝑡 − 𝛼𝑡−1 | > 0) between DD and servers.

The relationship can be treated as a convex function, where the op-

timal window size is obtained near the stationary point (|I |𝑚 = 50

and 𝑡 = 597 seconds). Based on this evidence, we argue that the

task computation speed is close to the task selection speed when

the window size is 50. However, as the two speeds are never exactly

the same, it is impossible to completely eliminate all idle times

between DD and server computation. By contrast, based on server

capacity, the arbitrary window strategy uses maximum and mini-

mum limitations (explained in Section 5.3) to keep DD and servers

running seamlessly. Compared to fixed window size of 50, the arbi-

trary strategy takes 514 seconds for computation, resulting in 14%

latency reduction.

Next, we demonstrate the impact of window size on solution con-

vergence speed in Fig. 14. Since the maximum number of optimiza-

tion epochs 𝑇 decreases as the task window size (|I𝑡 |) increases,

larger windows lead to longer convergence time. This is a conse-

quence of larger windows reducing the frequency of optimization

Figure 14. The convergence of fixed and arbitrary window size strategies

Figure 15. Total reconstruction times for fixed and arbitrary window strategies
against different𝑉

and giving less opportunities to the system to tune its parameters,

which is necessary to minimize the prediction error in S(𝑑𝑡 ;w𝑡 )
and A(𝑑𝑡 ; J𝑡 ) × F (𝑑𝑡 ). Separately, the long term average quality

of reconstruction fluctuates by a certain magnitude after conver-

gence. This is predictable, as each time the convergence point is

approached, the queue length 𝑄𝑡 is cleared or becomes very small.

As explained in Section 5, problem (P2) then focuses on minimizing

the computation time𝑚𝑎𝑥 (C𝑡 ) by choosing a low image resolu-

tion and a large difference threshold, resulting in lower quality. To

ensure that the fluctuation in quality is within an acceptable range

(e.g., 0.01), the task window should not be too large.

6.3 Impact of Balance Factor 𝑉

Next, we evaluate the impact of factor 𝑉 on minimizing the total

reconstruction time and satisfaction of constraint C4 in (P1). Here,

we still consider 𝐴 = 0.85 andWalk dataset. We denote fixed win-

dow and arbitrary window strategies as 𝐹𝑖𝑥𝑒𝑑.𝑉=L and 𝐴𝑟𝑏.𝑉=L

respectively, where 𝑉=L denotes that the value of 𝑉 is set to L

for that particular strategy. In 𝐹𝑖𝑥𝑒𝑑.𝑉 strategy, we set |I |𝑚 = 50.

The time comparison between 𝐹𝑖𝑥𝑒𝑑.𝑉 and𝐴𝑟𝑏.𝑉 against different

𝑉 are shown in Fig. 15. For both strategies, the results prove that

there is a [𝑂 (𝑉 ),𝑂 ( 1𝑉 )] trade-off [13] between the objective func-

tion of (P1) and queue stability. The convergence results against

different 𝑉 ’s are shown in Fig. 16. Here, the long-term quality is

hardly to converge to 𝐴 = 0.85 with 𝑉 ≥ 10. As 𝑉 = 3, the quality

requirement is strictly satisfied after 300 seconds for both strategies.

Overall, the proposed arbitrary window strategy reduces the total

reconstruction time by 20% compared to fixed window strategy and

achieves similar performance on quality satisfaction.

In Fig. 17, we explain the difference between different𝑉 in terms

of quality. In particular, we show the comparison of how strictly the

quality requirement is satisfied for different strategies. Overall, the

distance |𝐴 −𝐴| increases with increasing 𝑉 . Strategies with 𝑉 = 1

and 𝑉 = 3 can strictly meet the quality requirement (|𝐴 − 𝐴| ≤
0.01). However, 𝑉 = 1 takes 20% extra time to finish all the tasks.

Strategies with larger𝑉 fail to strictly satisfy the quality constraint

C4 of (P1). Therefore, we argue that 𝑉 = 3 is a good strategy for
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Figure 16. The convergence of fixed and arbitrary window strategies

Figure 17. Quality requirement satisfaction for fixed and arbitrary window strate-
gies against different𝑉

Figure 18. Reconstruction time for fixed and arbitrary window strategies

balancing the total computation time and quality satisfaction under

these conditions.

6.4 Impact of Quality Constraint 𝐴

Here, we validate the proposed holistic optimization in addressing

various quality constraints imposed by different use cases. We

compare three scenarios: moderate quality requirement with 𝐴 =
0.8, high quality requirement with 𝐴 = 0.85, and extremely high

quality requirement with 𝐴 = 0.9. To address different preferences

on reconstruction time and quality, two different values of 𝑉 are

applied, specifically 𝑉 = 3 and 𝑉 = 10. The quality constraint

results are shown in Fig. 18 and Fig. 19 where the bars in the same

box represent the reconstruction time or distance to𝐴 for strategies

𝐹𝑖𝑥𝑒𝑑.𝑉 (|I |𝑚 = 50) and 𝐴𝑟𝑏.𝑉 under the same preference, e.g.,

𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 and 𝐴𝑟𝑏.𝑉 = 3.

Fig. 18 shows that the average reconstruction time of all cases

increased by 31.8% and 55.1% respectively when the quality re-

quirement increased to 𝐴 = 0.85 and 𝐴 = 0.9 from 𝐴 = 0.8. In
Fig. 19, we observe that when long-term quality requirement is

moderate (i.e.,𝐴 = 0.8), all task window strategies can strictly meet

the long-term quality requirement as the distances in these two

boxes are ≤ 5 × 10−3. However, at 𝐴 = 0.85, only 𝑉 = 3 can strictly

meet the requirement (here, the two distances are 5.2 × 10−3 and

6.3×10−3 respectively, which are still acceptable). For extreme qual-

ity requirement like 𝐴 = 0.9, even 𝑉 = 3 can hardly meet (strictly)

the long-term quality requirement. The average distance to 𝐴 is

27 × 10−3 and 47 × 10−3 respectively for 𝑉=3 and 𝑉=10. Therefore,

a lower 𝑉 is desirable, especially for stricter quality scenarios.

Figure 19. Quality requirement satisfaction for fixed and arbitrary window strate-
gies against different𝐴 and𝑉

Figure 20. The comparison of prediction error in quality

6.5 Measurement Cost and Quality Prediction Error

In order to evaluate the measurement cost and prediction error in

our experiment-driven analytic models, we compare our dynamic

model update strategy with a greedy strategy 𝑆𝑒𝑞.𝑉=L, which per-

forms measurement at the beginning of each optimization epoch

to generate actual functions A(𝑑𝑡 ; jt) and S(𝑑𝑡 ;wt). The detailed

comparisons of all the results are summarized in Table 3. The op-

timal window regulation strategy and preference 𝑉 are selected

based on similar analyses in previous subsection. In Table 3, the

achieved time reductions are 31.6% (for 𝐴=0.8), 30.4% (for 𝐴=0.85),
and 13.4% (for 𝐴=0.9), when compared to 𝑆𝑒𝑞.𝑉 .

In Fig. 20, we show how quality prediction error |𝑎𝑡 − 𝑎𝑡 | is
reduced with the weight update method proposed in subsection 5.2.

We observe that although at beginning the system has relatively

high prediction error, the error gradually decreases when we have

more observations. Moreover, the prediction error reduces as win-

dow size decreases. This is because of the fact that a smaller win-

dow gives the system more observations to reshape the existing

functions. For 𝑆𝑒𝑞.𝑉 , the prediction error is consistently hovers

around 0.04, which provides us with an inherent error created by

the definition of the function, i.e., 𝑎𝑡 ≈ A(𝑑𝑡 ; jt) × F (𝑟𝑡 ). Fig. 20
demonstrates that our final prediction error eventually approaches

0.04. Therefore, we argue that, our proposed dynamic model update

solution is faster and guarantees minimum quality. Furthermore,

the effect of quality prediction error |𝑎𝑡 − 𝑎𝑡 | is mapped to the

quality queue fluctuation |𝑄𝑡 −𝑄𝑡 |, which is eventually addressed

by the trade-off between computation time and queue stability as

we defined in problem (P2). Therefore, the system convergence is

always guaranteed.

Combining all the above results, we conclude that, by adjusting

the value of 𝑉 , our system is able to provide a flexible balance be-

tween reconstruction latency and minimum quality satisfaction. More

specifically, under the premise of satisfying the average quality con-

straint C4, the proposed solution is able to control the convergence

rate by choosing an appropriate 𝑉 based on the preference of total

reconstruction time and quality.
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Table 3. Summary where 𝛿 is the profiling time for modeling S(𝑑𝑡 ;wt) and A(𝑑𝑡 ; jt) ; For parallel pipelines (𝐹𝑖𝑥𝑒𝑑.𝑉 and𝐴𝑟𝑏.𝑉 ), the total profiling time is 𝛿 ; For sequential
pipeline (𝑆𝑒𝑞.𝑉 ), the total profiling time is 20 × 𝛿 . Here, 𝛿 ≈ 10 seconds.

Image Resizing Ratio # Executed Tasks Reconstruction Time Quality satisfaction ( |𝐴̂ −𝐴 | ≤ 0.01)

Quality Strategy Value Strategy Value Strategy Value Strategy |𝐴̂ −𝐴 |

𝐴 = 0.8
(moderate

quality

req.)

𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 0.63 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 188 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 442 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 0

𝐴𝑟𝑏.𝑉 = 3 0.69 𝐴𝑟𝑏.𝑉 = 3 131 𝐴𝑟𝑏.𝑉 = 3 345 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 3 0.0018

𝑆𝑒𝑞.𝑉 = 3 0.66 𝑆𝑒𝑞.𝑉 = 3 150 𝑆𝑒𝑞.𝑉 = 3 305 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 3 0

𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 0.66 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 135 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 401 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 0

𝐴𝑟𝑏.𝑉 = 10 0.59 𝐴𝑟𝑏.𝑉 = 10 177 𝐴𝑟𝑏.𝑉 = 10 337 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 10 0.0046

𝑆𝑒𝑞.𝑉 = 10 0.65 𝑆𝑒𝑞.𝑉 = 10 134 𝑆𝑒𝑞.𝑉 = 10 266 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 10 0.0029

𝐴 = 0.85
(high

quality

req.)

𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 0.80 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 257 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 597 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 0.0052

𝐴𝑟𝑏.𝑉 = 3 0.81 𝐴𝑟𝑏.𝑉 = 3 255 𝐴𝑟𝑏.𝑉 = 3 514 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 3 0.0063

𝑆𝑒𝑞.𝑉 = 3 0.78 𝑆𝑒𝑞.𝑉 = 3 272 𝑆𝑒𝑞.𝑉 = 3 553 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 3 0.0024

𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 0.78 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 209 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 495 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 0.0148

𝐴𝑟𝑏.𝑉 = 10 0.78 𝐴𝑟𝑏.𝑉 = 10 148 𝐴𝑟𝑏.𝑉 = 10 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 10 0.0176

𝑆𝑒𝑞.𝑉 = 10 0.76 𝑆𝑒𝑞.𝑉 = 10 207 𝑆𝑒𝑞.𝑉 = 10 441 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 10 0.0135

𝐹𝑖𝑥𝑒𝑑.𝑉 = 1 0.82 𝐹𝑖𝑥𝑒𝑑.𝑉 = 1 958 𝐹𝑖𝑥𝑒𝑑.𝑉 = 1 1805 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 1 0.0050

𝐴𝑟𝑏.𝑉 = 1 0.92 𝐴𝑟𝑏.𝑉 = 1 650 𝐴𝑟𝑏.𝑉 = 1 1481 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 1 0.0091

𝑆𝑒𝑞.𝑉 = 1 0.84 𝑆𝑒𝑞.𝑉 = 1 849 𝑆𝑒𝑞.𝑉 = 1 1677 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 1 0.0080

𝐴 = 0.9
(extremely

high

quality

req.)

𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 0.86 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 559 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 1192 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 3 0.0161

𝐴𝑟𝑏.𝑉 = 3 0.89 𝐴𝑟𝑏.𝑉 = 3 321 𝐴𝑟𝑏.𝑉 = 3 718 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 3 0.0375

𝑆𝑒𝑞.𝑉 = 3 0.84 𝑆𝑒𝑞.𝑉 = 3 606 𝑆𝑒𝑞.𝑉 = 3 1188 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 3 0.0143

𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 0.85 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 306 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 702 (+1 × 𝛿) 𝐹𝑖𝑥𝑒𝑑.𝑉 = 10 0.0432

𝐴𝑟𝑏.𝑉 = 10 0.85 𝐴𝑟𝑏.𝑉 = 10 252 𝐴𝑟𝑏.𝑉 = 10 562 (+1 × 𝛿) 𝐴𝑟𝑏.𝑉 = 10 0.0511

𝑆𝑒𝑞.𝑉 = 10 0.81 𝑆𝑒𝑞.𝑉 = 10 346 𝑆𝑒𝑞.𝑉 = 10 707 (+20 × 𝛿) 𝑆𝑒𝑞.𝑉 = 10 0.0379

Figure 21. Comparison between the proposed window-based optimization strategy and the baseline strategies

6.6 Comparison Against Baseline Strategy

Finally, we compare our window-based strategy against a baseline

strategy, where all tasks are performed at a specific resolution that

just satisfies the quality requirement. This specific resolution is

selected according to function F (𝑟𝑡 ) that we obtained from Fig. 8.

The results are summarized in Fig. 21 with quality requirements

𝐴 ranging from 0.6 (very low) to 0.9 (extremely high). Overall, we

observe that the total reconstruction time increases gradually with

quality requirement. However, the time increases suddenly and

significantly for high and extremely high quality requirements (i.e.,

for 𝐴 ≥ 0.85). This can be explained by the features described in

Fig. 8 where the growth rate of reconstruction quality converges to

0 at such high values. Consequently, the system has to use much

higher image resolutions for reconstruction; thus explaining longer

reconstruction times. Overall, compared to the baseline strategy, our

proposed strategy which is based on the dynamics of video content

and real-time quality changes eliminates unnecessary reconstruction,

can greatly reduce the total reconstruction time (50% to 75%) without

violating the quality requirements, irrespective of the 3D scene.
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7 Conclusions

In this paper, we proposed latency minimizing edge system adap-

tation and optimization solutions that can guarantee long-term

3D reconstruction quality satisfaction by eliminating redundant

reconstructions. By exploiting data and task-level parallelism, our

parallelized 3D reconstruction pipeline significantly reduced the

total reconstruction time of the entire video stream. Moreover, a

novel in-advance optimization and weight update mechanism that

is driven by real-world measurements showed great advantages

over traditional reconstruction pipelines and baseline strategies

when running on an edge system. Our proposed flexible balancing

mechanism can strike optimal trade-off between reconstruction

time and quality by capturing the inherent dynamism of a 3D scene.

The ideas, models, datasets, and results presented in this paper

could be critical towards a broader paradigm shift that would dic-

tate how edge resources are managed for complex video processing

applications, adopted to support mission-critical use cases.
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