
Digital Communications and Networks xxx (2017) 1–9
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.elsevier .com/locate/dcan
PRECESION: Progressive recovery and restoration planning of
interdependent services in enterprise data centers

Ibrahim El-Shekeil *, Amitangshu Pal, Krishna Kant

Computer and Information Sciences, Temple University, Philadelphia, PA, 19122, USA
A R T I C L E I N F O

Keywords:
Progressive restoration planning
Enterprise data center
Genetic algorithm
Integer linear program
Multi-layer networks
* Corresponding author.
E-mail addresses: ielshekeil@temple.edu (I. El-Shekeil

https://doi.org/10.1016/j.dcan.2017.08.001
Received 26 February 2017; Accepted 4 August 2017
Available online xxxx
2352-8648/© 2017 Chongqing University of Posts and Tel
creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: I. El-Shek
enterprise data centers, Digital Communicatio
A B S T R A C T

The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment
following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center
requires a significant amount of time and human effort. Following a major disruption, the recovery process involves
multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at
some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de-
pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies
between services, along with the limitations of expert human operators. The entire problem turns out to be NP-
hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some
real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs �
600–2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].
1. Introduction

Disruptions in enterprise data centers may occur as a result of hard-
ware failures, operating system or software failures, intrusions, virus
outbreaks, or natural disasters. For example, the 2011 Japan earthquake
and tsunami damaged major data centers in Tokyo [2], and the 2012
Hurricane Sandy in the USA affected some data centers in New York due
to flooding [3]. Other examples include storms and lightning that took
down Google's St. Ghislain data center operations for five days in 2015
[4], and technical hiccups that affected the services of the Bank of
America [5] and Amazon [6] centers for four-six days. Such scenarios or
disruptions may also arise as a result of the relocation and upgrade of a
data center at different sites, which require proper pre-move planning
and expertise. Depending on the scale, such disruptions can either be
partial, impacting only some applications, or full, impacting the entire
data center. When such disruptions occur, they result in significant
downtime, which may lead to a substantial financial and legal impact.
According to a recent study by the Ponemon Institute, a data center
outage can cost an average of $5600 per minute [7].

In light of the above, there is a growing need to optimize the post-
disruption recovery and restoration process for enterprise data centers.
A complete post-disruption restoration process for a large data center
requires multiple stages, as backup resources are brought to the field and
installed, which sometimes requires between a few weeks and several
), amitangshu.pal@temple.edu (A. Pa

ecommunications. Production and ho

eil, et al., PRECESION: Progre
ns and Networks (2017), http
months [9]. Within this entire recovery stage, the partially restored in-
frastructures will still have to operate in a degraded manner and provide
a partial level of service for clients.

A key design challenge of the restoration plan is to support partial
business continuity, which allows applications to progressively come back
online following failures or disruptions. Fig. 1 shows such a data center
recovery process, where the critical applications or services are gradually
recovered over a duration of approximately 3020 hours. Notice that the
recovery processes of all services cannot be started simultaneously,
because the services in an enterprise data center are typically inter-
dependent. The sequencing of data center services that are gradually
recovered will have a direct impact on the effectiveness of the restoration
process, especially after a large-scale disaster where multiple data center
services are down. Thus, the decision regarding the recovery sequence
for these services plays an important role in minimizing losses by
bringing the most critical applications back online.

Another challenge is to determine the number of expert workers
required with the right skills to obtain the optimal uptime. The
sequencing of the restoration of data center services and hiring of the
appropriate number of workers with suitable skills are coupled problems,
which must be solved together to achieve the optimal uptime. However,
in this paper we focus on solving the sequencing problem, and assume
that the number of workers and their skills are given.

In this paper, our main contributions are as follows. We characterize
l), kkant@temple.edu (K. Kant).

sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

ssive recovery and restoration planning of interdependent services in
s://doi.org/10.1016/j.dcan.2017.08.001

mailto:ielshekeil@temple.edu
mailto:amitangshu.pal@temple.edu
mailto:kkant@temple.edu
www.sciencedirect.com/science/journal/23528648
http://www.elsevier.com/locate/dcan
https://doi.org/10.1016/j.dcan.2017.08.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2017.08.001
https://doi.org/10.1016/j.dcan.2017.08.001

Fig. 1. The recovery and restoration timeline of data center services. Service recovery progression from start-to-finish is shown in a red-to-green color scale.

Fig. 2. Dependency graph between the server layer, service layers and user layer.

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
data center users depending on their service requirements, and divide
them into different types. We focus on the post-disruption progressive
data center recovery problem, with the objective of serving the maximum
number of different data center user request types throughout the entire
recovery process. Repairing the disrupted services requires a long time
period, as well as human resources or workers. In a large data center, the
availability of human resources with the desired expertise varies over
time. Various data center services require different skill-sets. However,
larger data centers are not populated by people with the expertise to
restore all services [10,11]. Recovering different services may require
different time to perform manual configuration and the actual restora-
tion, which makes the decision process even more complex. Because the
services in a data center are often interdependent, it is nontrivial to plan,
evaluate and compare different recovery decisions and choose the best
one. Such a complicated service recovery process involving heteroge-
neous worker skill sets and availability is quite different from other job
scheduling problems [12–15], which have the goal of minimizing the
total time to complete a set of jobs in the presence of a certain number of
workers. The entire problem is not only NP-hard, but also rather com-
plex. We propose a genetic algorithm basedmeta-heuristic to solve it, and
show that the proposed genetic algorithm based solution is highly ac-
curate compared to the optimal solution. This is an extension of our
previous paper [16], where we maximized the up-time of different data
center services considering the inter-dependencies between them and the
data center servers. In contrast, in this paper, our main focus is on
enhancing satisfaction levels for different types of user requests, while
considering the interdependencies of various services and types of user
requests with human related constraints and expertise.

The rest of this paper is organized as follows. Sections 2 and 3 address
the overall problem formulation, including its complexity and the pro-
posed meta-heuristic solution. Section 4 reports results based on real data
obtained from enterprise data center environments. Section 5 discusses
related work. Finally, Section 6 concludes the paper and discusses po-
tential future work.

2. Problem description

2.1. Preliminaries and notations

The problem can be formulated using a three layer interdependency
2

framework. Layer 1, or the user layer, consists of different types of user
requests. Layer 2, or the service layer, consists of the set of services that
the enterprise provides, and Layer 3, or the server layer, consists of the
servers that need to be restored to bring back the services, as shown in
Fig. 2. Each type of user request is satisfied by one or more services,
which must be up in order to satisfy the corresponding type of user re-
quests. The services depend on one or more servers to run, and thus thus
the services cannot be brought online until the servers on which they
depend are restored. For example, in Fig. 2, service 1 depends on servers
1 and 2; and thus, service 1 cannot be up and running until servers 1 and
2 are fully restored. Similarly, user requests of type 1 cannot be satisfied

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
until services 1 and 3 are brought online. Such dependencies across the
layers can be modeled as inter-layer dependencies. Table 1 shows a con-
crete example of types of user requests in an enterprise and the corre-
sponding services and servers that they depend on. Assume that Hua

denotes whether user requests of type u are satisfied by the service a or
not. Qai denotes whether the service a is dependent on the server i or not.
Thus, according to Fig. 3, H11 ¼ H13 ¼ 1 as user requests of type 1 are
satisfied by services 1 and 3. Similarly, Q11 ¼ Q12 ¼ 1; as service 1 de-
pends on servers 1 and 2.

On the other hand, in layers 1, 2 and 3, there are dependencies be-
tween different types of user request, services, and servers, which we
define as intra-layer dependencies. For example, the email services, human
resources, and SharePoint depend on the DNS and Active Directory ser-
vices, and thus these two services must be restored first before restoring
others. In the server layer, the front-end web server depends on the
application server, and the application server depends on the database
server. If the database server is down, then the application and web
servers cannot provide services. In the user layer, in order to send email,
access to the network resources and authentication services needs to be up
and running. Assume that Suv denotes whether or not user requests of type
a are dependent on user requests of type b. Similarly, Pab and Oij denote
the dependencies between services and servers. Thus, in Fig. 3, S21 ¼
S23 ¼ S42 ¼ S43 ¼ 1 ; P21 ¼ P42 ¼ P43 ¼ P54 ¼ 1 and O31 ¼ O32 ¼ 1.

Assume that time is divided into slots,with the current slot denoted by
t. Let [0, T] denote the time horizon, where T is the total time (in slots) in
which all primary servers are recovered, and 0 � t � T. We assume that
there are M services that need to be activated, which run on a total of N
servers. Assume that there are U different types of users. The server
restoration process consists of two steps. The first is the exclusive stage,
when an expert worker corresponding to a particular server needs to
begin the restoration tasks in a dedicated fashion. The next phase is the
shared phase, which requires some infrequent monitoring. We thus as-
sume that a worker (or expert) becomes free after the exclusive stage, as
the remaining stage can mostly be taken care of by common operators
without expert intervention. Let us assume that xti represents whether or
not a server i is treated at or before time slot t. Similarly, eti represents
whether or not its exclusive stage complete, and zti represents whether or
not it is completely restored. For example, in Fig. 3, xt1 ¼ 1 for t � 1, et1 ¼
1 for t � 3, and zt1 ¼ 1 for t � 5. Similarly, we assume that yta and gtu
denote whether or not service a and user u are restored at or before time
slot t, respectively. For the problem formulation, we assume that the
exclusive time for server i constitutes li units, and the entire expected
restoration time is Li units.

We assume that the number of expert workers is significantly lower
than the number of servers that need to be restored, i.e., W≪N. Thus,
workers must rotate in order to bring the services back online. Currently,
large data centers are not populated by people who are “jacks of all
trades.” Instead, specialized expertise in large data centers is a growing
Table 1
Dependencies between user request types, servers, and services.

Users Description Enterprise
services

Necessary servers

Type
1

Authenticate MS Active
Directory

Domain controller

Access to network
resources

DNS DNS server

Type
2

Send emails to internal
users

Microsoft
Exchange

Internal email servers

Type
3

Run payroll Human
Resources

Payroll server and employee
database

Access Project Microsoft
Project

Project application and
database

Type
4

Send emails to external
users

Microsoft
Exchange

Email forwarding servers

Access documents in
SharePoint

Microsoft
SharePoint

SharePoint application and
database

3

problem, as applications and configurations are becoming very complex
[10,11]. Workers do not have the expertise to work on all servers, and
thus they need to be assigned one after another to progressively restore
the servers, depending on their availability and expertise.
2.2. Problem formulation

Next, we formulate our optimization problem framework, named
progressive recovery and restoration (PRECESION) planning. The necessary
notations are listed in Table 2. The goal of PRECESION is to serve the
maximum number of different types of user requests during the recovery
process, i.e.,

max
X
u¼1

U X
t

γug
t
u (1)

where
P
t
γugtu represents the total time for which the user request type u is

available. For example, assume that T ¼ 100, and that the user request
type u was satisfied at time slot 10. Thus, the user request remains
available from time slot 10 onwards, and the total availability time of u is
90. Here, γu represents the weight of the type of user request u, which is
proportional to the number of users typically falling into that group. We
next describe the constraints, as follows:

2.2.1. Dependency constraints
Constraint (2) models the intra-layer dependencies, and states that if

a user request u is dependent on a set of user request types DðuÞ, thenDðuÞ
needs to be available before u becomes available. This constraint be-
comes nonlinear due to the presence of the product operator. However the
constraint can be linearized by incorporating the summation operator, as
shown in equation (2). This is explained as follows. Assume that
p; q1; q2; q3 are three binary variables, where p cannot be 1 if any one of
q1; q2; q3 is 0. Thus, p � q1q2q3, which can be linearized by writing
3p � q1 þ q2 þ q3. In both cases, p can be 1 iff q1; q2; q3 becomes 1.

Similarly, constraint (3) models user request-service dependencies,
and states that the user request type u cannot be satisfied without
restoring the set of services DðuÞ. Constraint (4) models the intra-layer
dependencies, and states that if a service a is dependent on a set of ser-
vices DðaÞ, then DðaÞ needs to be ON before a can be made ON. Constraint
(5) models the service-server dependencies, and state that the service a
cannot be ON without restoring the set of servers in DðaÞ. Similarly,
constraint (6) models the dependencies between the servers.

gtu �
Y

v2DðuÞ
gtv⇒

 X
v¼1

U

Suv

!
:gtu �

X
v¼1

U

Suv:gtv ∀u; t (2)

gtu �
Y

a2DðuÞ
yta⇒

 X
a¼1

M

Hua

!
:gtu �

X
a¼1

M

Hua:yta ∀u; t (3)

yta �
Y

b2DðaÞ
ytb⇒

 X
b¼1

M

Pab

!
:yta �

X
b¼1

M

Pab:ytb ∀a; t (4)

yta �
Y
i2DðaÞ

zti⇒

 X
i¼1

N

Qai

!
:yta �

X
i¼1

N

Qai:zti ∀a; t (5)

xti �
Y
j2DðiÞ

ztj⇒

 X
j¼1

N

Oij

!
:xti �

X
j¼1

N

Oij:ztj ∀i; t (6)

2.2.2. Timing constraints
Constraints (7)–(10) model the start and end times of the server

restoration. Constraints (7)–(8) ensure that the exclusive time of server i

Fig. 3. Timing diagram of the worker to server assignment. A1 � A5 denote all the services, whereas U1 � U4 denote different types of user requests.

Table 2
Table of notations.

Indices
a, b ≜ Index for services (1, …, M)
i, j ≜ Index for servers (1, …, N)
t ≜ Index for time units (1, …, T)
w ≜ Index for workers (1, …, W)
u, v ≜ Index for user request type (1, …, U)
Variables
xti ≜ Whether or not restoration of server i has been started by a worker on or

before time slot t
eti ≜ Whether or not the exclusive part of server i is finished on or before time

slot t
gtu ≜ Whether or not user request type u is satisfied at time slot t
γu ≜ Weight of the user request type u
zti ≜ Whether or not server i is up at time slot t
yta ≜ Whether or not service a is up at time slot t
li ≜ Expected exclusive time of server i
Li ≜ Expected restoration time of server i
Oij ≜ Whether or not server i is dependent on server j
Pab ≜ Whether or not service a is dependent on service b
Qai ≜ Whether or not service a is dependent on server i
Suv ≜ Whether or not user request type u is dependent on user request type v
Hua ≜ Whether or not user request type u is dependent on service a
DðaÞ ≜ Set of servers or services on which service a depends
DðiÞ ≜ Set of servers on which server i depends
Awi ≜ Whether or not server i is assigned worker w
Rwi ≜ Whether or not worker w can restore server i

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
is completed after li time slots. Constraints (9)–(10) ensure that server i is
fully restored after Li time units.

xti ¼ etþli
i ∀i; ∀t ¼ ð1; 2;…; T � liÞ (7)

X
t¼1

T�li

xti ¼
X
t¼1

T

eti ∀i (8)

xti ¼ ztþLi
i ∀i; ∀t ¼ ð1; 2;…; T � LiÞ (9)

X
t¼1

T�Li

xti ¼
X
t¼1

T

zti ∀i (10)

2.2.3. Worker assignment constraints
Constraint (11) states that worker w is assigned to restore server i if

they have the expertise to restore it. Constraint (12) ensures that all
servers are assigned a worker, and thus restored by the end of the time
scale T. Constraint (13) states that if worker w is assigned to restore
server i and j, then their exclusive times do not overlap.

Awi � Rwi ∀i; ∀w (11)
4

X
w

Awi ¼ 1 ∀i (12)

xti � eti þ xtj � etj � 1þM
�
2�Awi �Awj

�
∀t; ∀w; ∀i≠j (13)

whereM is a large number that is greater than the maximum value of the
left-hand side. The intuition behind equation (13) is as follows. Assume
that worker w is assigned to restore servers i and j. Thus, the right-hand
side of equation (13) becomes 1. Now, let us assume that at any time slot
t, the exclusive time for restoring servers i and j overlap, i.e., the resto-
ration of server j starts before the exclusive times for server i is complete.
This occurs if xti ¼ xtj ¼ 1 and eti ¼ etj ¼ 0. Thus, xti � eti þ xtj � etj ¼ 2⩽1,
and the inequality in constraint (13) does not hold.

2.2.4. Other constraints
Constraint (14) states that if service a is ON at time slot, t then it will

remain ON at all future time steps. Similarly, if a server is restored, then it
remains active for all future time steps, as modeled in equation (15).
Constraints (16)–(17) state similar constraints, corresponding to the
server restoration start time and exclusive time, respectively. Constraint
(18) states that if a user request of type u is satisfied and becomes
available at time t, then it will remain available for all future time steps.

ytþ1
a � yta ∀a; ∀t ¼ ð1; 2;…; T � 1Þ (14)

ztþ1
i � zti ∀i; ∀t ¼ ð1; 2;…; T � 1Þ (15)

xtþ1
i � xti ∀i; ∀t ¼ ð1; 2;…; T � 1Þ (16)

etþ1
i � eti ∀i; ∀t ¼ ð1; 2;…; T � 1Þ (17)

gtþ1
u � gtu ∀u; ∀t ¼ ð1; 2;…; T � 1Þ (18)

Theorem 1. The PRECESION problem is NP-hard.
Proof 1. We first define the minimum latency set cover problem (MLSC),

which is known to be NP-hard. Let J ¼ fJ1; J2;…; Jmg be a set of jobs to be
processed by a factory. A job Ji has non-negative weight ωi. Let T ¼
ft1; t2;…; tng be a set of tools. Job Jj is associated with a non-empty subset
Sj⊆T. Once the entire tool subset Sj has been installed, job Jj can be processed
instantly. The factory can install a single tool at each time unit. The problem is
to determine the order of tool installation so that the weighted sum of job
completion times is minimized.

We now reduce the MLSC to the PRECESION problem.We define one
instance of the MLSC problem where ωi ¼ 1, ∀i. With this, we define an
instance of the PRECESION problem as follows. We assume that there are
no dependencies between user request types, services, and servers.

Table 3
An illustration of a server dependency matrix.

S1 S2 S3 S4 S5

S1 0 0 0 0 0
S2 0 0 0 0 0
S3 1 0 0 0 0
S4 1 1 0 0 0
S5 0 0 1 1 0

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
Furthermore, assume that there is just one worker, who has the expertise
to restore all the servers. The restoration times of all servers are one, with
the shared time assumed to be zero, i.e., li ¼ Li ¼ 1, ∀i. In addition, as-
sume that M ¼ U and Huu ¼ 1, ∀u. This reduction transforms an MLSC
problem instance into a PRECESION instance.

2.3. An illustrative example

Let us consider an example, with U ¼ 4,M ¼ 5, and N ¼ 3. The intra
and inter-layer dependencies are shown in Fig. 2. We use the AMPL
solver [17] for solving the optimization problem. Fig. 3 shows the timing
diagram for the restoration process, obtained by solving the problem (1).
We assume that there are twoworkers, and worker 1 can restore servers 1
and 3, whereas worker 2 can restore servers 1 and 2. The exclusive times
and shared times of all the servers are assumed to consist of two units.
From Fig. 3, we can observe that all the services are dependent on A1 and
A3. Thus servers 1 and 2 are first restored to run these two services.
Server 3 is then restored, in order to run the other services. The user
request typesU1 andU3 are satisfied after bringing up the services A1 and
A3 at time slot 4, whereas at time slot 6 other types of user requests are
also satisfied, thus restoring other services.

3. A genetic algorithm based heuristic to solve the PRECESION
problem

Given the NP-hardness and complexity of the problem, we propose a
genetic algorithm based meta-heuristic to solve it. A genetic algorithm
maintains a population of candidate solutions. Each candidate solution in
the population is encoded into a structure called the chromosome. Each
chromosome is assigned a fitness value, which represents the quality of
the candidate solution. Better-fitted chromosomes have higher chances
of surviving to the next generation. The number of chromosomes per
generation is constant. As for natural life, offspring chromosomes are
obtained from parent chromosomes by mainly using two operators,
crossover and mutation. Some other chromosomes simply survive unal-
tered, while others die off. The different steps of the entire genetic al-
gorithm are described as follows.

3.1. Chromosome structure and fitness value calculation

We define a chromosome structure by considering the sequence in
which the servers need to be restored, i.e., we define a chromosome as a
vector ðc1; c2;…; cNÞ, where ci represents the i-th server (or gene). Thus,
the genes of a chromosome are the servers, and a chromosome defines
the sequence of servers. We assume that there are M chromosomes in a
mating pool. The fitness value of each chromosome is determined as fol-
lows. A chromosome sequence determines the order in which the servers
need to be restored. We use this sequence to assign the workers to the
servers, depending on their expertise and availability, as mentioned in
the next paragraph, and to determine the overall satisfaction levels of
different types of user requests, as obtained from equation (1), which is
considered as the fitness value corresponding to that chromosome.

For the initial assignment of workers, we construct a bipartite graph
of N workers and servers as follows. First, take the sequence of servers
and assign them different weights depending on their precedence. For
example, if the server sequence is given by S1, S2, and S3 then their
corresponding weights can be 3, 2, and 1, respectively. We next construct
N worker-nodes, by setting W nodes and N �W dummy vertices. If
worker w has the expertise to restore server i, then the weight corre-
sponding to that edge is equal to the weight of server i. All the other edges
are assigned a value of 0. In this bipartite graph, we then run a maximum
matching algorithm, such as the Hungarian scheme [18], to assign the
workers to their corresponding servers.

After the initial assignment, the workers become free following the
exclusive time of the corresponding server. Once a worker is free, they
are assigned to the next possible server that can be restored (depending
5

on those already restored) in the sequence based on their expertise. This
process continues until all servers are finally restored.

3.2. Initial mating pool generation

Initially, the mating pool is generated randomly, considering the fact
that chromosomes are generated to satisfy the precedence constraints or
dependency relations between the servers. For example, in Fig. 3(a),
3→2→1 will be an invalid chromosome structure, as server 3 depends on
servers 1 and 2. Thus, server 3 cannot be treated until and unless the
other two servers are completely restored. We thus describe the chro-
mosome generation process in the initial mating pool using the example
in Table 3. Assume that Table 3 shows the precedence/dependency re-
lations among the servers, which we define as the server de-
pendency matrix.

Servers 1 and 2 do not depend on the other servers, i.e., all rows
corresponding to these two servers are 0. Server 3 depends on server 1,
server 4 depends on servers 1 and 2, and server 5 depends on servers 3
and 4. Initially, the chromosomes must be generated such that these
dependency relations are maintained. To do this, we define the candidate
server set (CSS) as the server set with all 0 rows, which consists of servers
1 and 2 in the case of Table 3. We next choose one of the servers from the
CSS randomly, and this server becomes the first gene in the chromosome.
We next remove the row and column corresponding to that server from
Table 3. We then construct the CSS with all 0 rows from the remaining
dependency matrix, and then randomly choose the next gene from the
CSS. This process is repeated to generate all the genes of a chromosome.
The process is then repeated further to generate all the chromosomes in
the initial mating pool. This ensures that the chromosomes in the initial
mating pool are consistent with the precedence relation.

3.3. Selection process

We adopt the well-known elitism selection mechanism, where the
M e <M best chromosomes are placed directly in the next generation. This
ensures that the best chromosomes (or solutions) in a generation are not
lost in future generations. The remainder of the M � M e chromosomes
are chosen using the roulette wheel selection procedure (as determined by
their fitness values) to take part in crossover and mutation to produce
offspring chromosomes. Notice that the elite chromosomes also take part
in the crossover and mutation processes to produce offspring chromo-
somes in the next generation.

3.4. Crossover operation

For the crossover operation, we choose two chromosomes from the
mating pool with probabilities proportional to their fitness values. In the
following, we describe a two-point crossover, although in general an n-
point crossover can also be used. For a two-point crossover, we first
randomly generate a cutting-point. Assuming that the cutting point is c, for
the first chromosome we retain the first c genes, and remove the rows and
columns corresponding to these c genes from the dependency matrix. We
next generate the CSS for the cþ 1-th gene. If the cþ 1-th gene of the
second chromosome is in the CSS, then we replace the cþ 1-th gene of
the first chromosome with that of the second. Otherwise, we randomly
choose a server from the CSS for the cþ 1-th gene. We follow the same

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
procedure for the other genes (from cþ 2 onwards), and repeat the same
for the second chromosome.

3.5. Mutation operation

For the mutation operation, we choose a chromosome randomly, and
also randomly choose a cutting-point c. We retain the first c genes,
generate the CSS, and randomly choose a server from the CSS for the
cþ 1-th gene. This procedure is followed for the remaining genes of the
chromosome. The proposed crossover and mutation operations ensure
that the selection of the chromosomes in the subsequent mating pools is
consistent with the precedence relation.

The algorithm stops when the best solution of a generation does not
significantly improve for a fixed number of consecutive iterations or a
large predefined number of iterations is reached. When the stopping
criterion is reached, the algorithm chooses the chromosome/solution
with the highest fitness value.

4. Experimental results

4.1. Validating the accuracy of the genetic algorithm

We first validated the accuracy of the proposed genetic algorithm
compared with the optimal solution obtained from the PuLP solver [1],
which is a library for the Python scripting language to solve mathemat-
ical problems. We synthetically generated a scenario with five types of
user requests, 17 services and 24 servers for this purpose. We modeled
the dependencies artificially, such that on average a service depends on
1.7 services, and 1.4 servers, whereas each server depends on 1.6 other
servers. On the other hand, each type of user requests depends on one
Fig. 4. (a) Comparison of the genetic algorithm and the optimal solution with different numb
workers remain idle. (c) Comparison of the execution times of the optimal solution and the ge

6

type of user requests and four services. We approximated the servers
storage size to be (200–300) gigabytes for application servers and (1–3)
terabytes for database servers, mailbox servers, and file sharing servers.
Then, we estimated the exclusive time for the restoration of servers to be
(10–180) minutes, and the total restoration time to be (50–700) minutes.

We assumed that all workers are fully skilled in restoring all servers.
We varied the number of workers from three to five.

Fig. 4(a) shows the average levels of satisfaction for the user request
types of the data center with different numbers of workers, which is
defined as the number of hours different for which user request types are
served during the entire restoration process. From this figure, we can
observe that the overall user satisfaction increases by just � 0:5% when
the number of workers increases from three to five. This is because each
type of user request requires multiple services, and their dependent
servers need to be restored. However, with a higher number of workers,
the service restoration time is dominated by the long shared time of their
dependent servers. Before beginning the restoration process corre-
sponding to any server, a worker needs to wait for its dependent servers
to be completely restored. For example, in Fig. 3(b) worker 1 remains idle
at time slot (3, 4) before touching server 3, as the restoration of server 1 is
not finished before time slot 4. This waiting time severely limits the
utilization of the workers. This can be verified from Fig. 4(b), which
shows that in the synthetic scenario for more than 80% of the time a
worker remains idle, especially in the case of the highest number of
workers. This significantly reduces the overall worker efficiency and the
level of parallelism. Because of this, the total completion time also does
not vary significantly with the increase in the number of workers.

From Fig. 4(a), we can also observe that the user satisfaction obtained
from the heuristic solution is 99% of that of the optimal solution, which
confirms that the proposed genetic algorithm based meta-heuristic
ers of workers. (b) Variation of the total completion time and the percentage of time the
netic algorithm.

Table 5
Different cases.

Cases Sub-
cases

W Worker skills

Case
1

1.1 3 W1;W2;W3→Group 1-7
1.2 4 W1– W4→Group 1-7
1.3 6 W1– W6→Group 1-7
1.4 8 W1– W8→Group 1-7
1.5 10 W1 – W10→ Group 1-7
1.6 12 W1– W12→Group 1-7
1.7 14 W1 – W14→ Group 1-7
1.8 16 W1– W16→Group 1-7
1.9 20 W1– W20→Group 1-7

Case
2

2.1 2 W1→ Group 1,6,7; W2→ Group 2-5
2.2 3 W1→Group 1–2; W2→Group 3–4; W3→Group 5-7
2.3 4 W1→Group 1; W2→Group 2,4,5; W3→Group 3;

W4→Group 6,7
2.4 5 W1→Group 1; W2→Group 2,4,5; W3→Group 3;

W4→Group 6; W5→Group 7
2.5 6 W1→Group 1; W2→Group 2,5; W3→Group 3; W4→Group

4; W5→Group 6; W6→Group 7
2.6 7 W1→Group 1; W2→Group 2; W3→Group 3; W4→Group 4;

W5→Group 5; W6→Group 6; W7→Group 7
Case
3

3.1 4 W1→Group 1; W2→Group 2,4,5; W3→Group 3;
W4→Group 6,7

3.2 8 W1;W2→Group 1; W3;W4→Group 2,4,5; W5;W6→Group
3; W7;W8→Group 6,7

3.3 12 W1– W3→Group 1; W4– W6→Group 2,4,5; W7– W9→
Group 3; W10– W12→Group 6,7

3.4 16 W1– W4→Group 1; W5 – W8→Group 2,4,5; W9– W12→
Group 3; W13– W16→ Group 6,7

3.5 20 W1– W5→Group 1;W6– W10→Group 2,4,5;W11– W15→
Group 3; W16– W20→Group 6,7

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
provides fairly accurate results compared to its optimal counterpart.
However, in a scenario of a larger data center, some inaccuracy may arise
in the genetic algorithm solution, as in the proposed meta-heuristic a
worker is immediately assigned the next possible server that can be
restored whenever they are free, which may not be optimal in all cases.
To compare the execution times of the two schemes, we executed them
on an Amazon Web Services (AWS) general purpose machine with 8
vCPU and 32 GB memory. Fig. 4(c) compares the execution time of the
proposed genetic algorithm with that of the optimal solution. From this
figure, we can observe that the genetic algorithm executes over 2800
times faster than the optimal solution. The execution time for the optimal
solution using the PuLP solver ran beyond 150 hours.

4.2. Results obtained from a real-world data center environment

We next evaluated the performance of our proposed scheme using
data obtained from a medium-size company that runs a data center for
enterprise and commercial workloads. For privacy reasons, we do not
identify the company name of the above-mentioned data center. We used
a data set containing 15 types of user requests, 60 services, and 107
servers. The mean inter-layer dependencies are found to be 4.5 services
per user request type and 1.8 servers per service, whereas each type of
user request, service, and server depends on 4.5 (user request type), 2.3
(services), and 2.4 (servers), respectively.

Key services are Microsoft (MS) Windows Active Directory domain
and DNS, MS Exchange for mail service, MS Lync for instant messaging
service, Oracle Peoplesoft, Oracle Resource Planning, Oracle iRecruit-
ment, Oracle Enterprise Content Management (ECM), Library manage-
ment system (LMS), Decision Support (BI); a few other business services,
such as intranet, timesheet, and contracts; and a few other infrastructure
management service, such as WLAN registration and Solarwinds for
SNMP management service. Some services, such as Solarwinds, become
online once their server is restored, but require the email service to send
notifications to the administrators. We decompose such services into
multiple services, i.e., the Solarwinds service is up when its corre-
sponding server is restored, whereas the notifications service of Solar-
winds is restored only after both Solarwinds and MS Exchange
are restored.

We considered different cases for workers/skills, and varied the
number of workers in each case. Table 5 shows the different cases. First,
we assumed that all workers are fully skilled in restoring all servers as
Case 1, and varied the number of workers from four to 20. Then, we
grouped the servers based on their vendors. Table 4 shows the different
server groups. Each worker generally has the expertise to restore servers
of a certain group or set of groups. For Case 2 we generated six sub-cases
with the number of workers varied from two to seven, where each worker
possesses a unique set of skills. After that, we chose the sub-case with four
sets of skill-sets (groups) from Case 2, and created Case 3. In Case 3, we
varied the number of workers for each skill-set from one to five. The
detailed workers, expertise are listed in Table 5, where Ww denotes
worker w.

Fig. 5 illustrates restoration results for Case 1, in which all workers
are fully skilled in restoring all servers. We observe that the average
uptimes for user request types increase with the increase in the number of
workers. We notice further that this improvement does not scale with the
Table 4
Technology and number of servers.

Group # Technology # of Servers

1 Oracle DB 30
2 MS SQL 8
3 .NET 28
4 Java 7
5 Microsoft 7
6 Oracle App 10
7 Others 17

7

increase in the number of workers, because it begins to saturate above a
certain number of workers, due to higher completion times. The per-
centage of the increase in uptimes for user request types is between 6%
and 9% when the number of workers increases from three to four and
from four to six. This percentage falls to 2–3% when the number of
workers increases to 10 and then decreases further to less than 1% when
the number of workers increases further. The idle time of workers in-
creases with the increase of the number of workers.

Fig. 6 shows the restoration results for Case 2. In this case, each
worker has the expertise to restore servers of a certain group or set of
groups. We can observe that the uptime, for user request types do not
increase consistently with the increase of the number of workers,
whereas the workers' idle time consistently increases. This is expected,
because workers do not share expertise, and can only work on a limited
number of servers.

Fig. 7 shows the restoration results for Case 3. As mentioned above,
the first sub-case (3.1) is the same as the sub-case 2.3. Then, we increased
the number of workers for each skill-set from one to five, i.e., for sub-case
3.2 two workers can restore a subset of servers, for sub-case 3.3 three
workers can restore a subset of servers, and so on. We notice that the
average uptime for a user request type increases with the increase in the
number of workers that can restore servers.

The completion time is lower in Case 1 than in cases 2 and 3, because
every worker has the skills to restore all servers. It is lowest in Case 2
compared with cases 1 and 3. Case 3 has a better completion time than
Case 2, because more workers can restore the servers. Typically,
workers/skill-set is not like Case 1 because it is rarely possible to find all
workers with all skills. The question of how many workers with specific
skills are required to obtain the best completion time remains an open
problem, which is one of our future research endeavors.

5. Related works

5.1. Multi-layer networks

Multi-layer networks consist of multiple subsystems and layers of

Fig. 5. Results obtained from Case 1.

Fig. 6. Results obtained from Case 2.

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
connectivity or inter-dependency relations between them. Such types of
networks are generally represented as graphs where different agents (or
subsystems) are represented as vertices and the relations between
different pairs of vertices are represented as edges [19]. In the last
decade, multi-layer networks are used in different applications in
different domains, such as interacting power grids [20], cascading fail-
ures and recovery in interconnected power grid and communications
networks [21–24], coupled climate networks [25], interconnected
transportation networks [26,27], social network between cancer re-
searchers, their affiliations and connections [28], etc.
Fig. 7. Results obtain

8

5.2. Operator scheduling

The job-shop scheduling problem along with operators is studied in
Refs. [12–15]. Several approaches are discussed in the literature to solve
this problem: in Ref. [29] The authors have proposed artificial intelli-
gence schemes to solve this problem, whereas the authors in Ref. [30]
have proposed a schedule generation scheme with an objective of
minimizing the total flow time. Operator assignment problem has also
been studied in the context of employee timetabling problems [25,31].
Some of these papers address problems related to the one investigated in
ed from Case 3.

I. El-Shekeil et al. Digital Communications and Networks xxx (2017) 1–9
this paper. In Ref. [32] the authors have studied the timetabling problem
in conjunction with the job shop problem. The resource scheduling
problem has been used for different applications, such as in pharma-
ceutical environments [33], in handicraft production [34], etc.

Our proposed scheme is significantly different from the above
schemes due to several reasons. All the above scheduling schemes have
tried to reduce the overall makespan or total completion time, whereas
our objective is to maximize the level of satisfaction of different types of
user requests during the recovery process. This needs a clear under-
standing and modeling the interdependencies between different servers,
services and data center types of user requests by using a three-layer
dependency modeling, which is unlike in the related literature. Also in
our worker assignment problem, the completion time of an application is
divided into exclusive and shared phases; such an environment is not
considered in the above literature.

6. Conclusions and future works

In this paper, we propose a progressive data center restoration
scheme in the face of large-scale disruptions with an objective of maxi-
mizing the limited service provided by the data center infrastructure
during the recovery process. We propose a heuristic approach to solve
this complicated problem considering the inter-dependencies of different
services as well as the experts' availability. We have conducted extensive
simulations on real world data center traces and shown that the heuristic
approach performs quite well compared to the optimal solution.

While the paper has made a thorough analysis of the progressive re-
covery and restoration problem in the context of large enterprise data
centers, it has simplified a number of practical concerns that arise in
enterprise data center networks. For example, we assumed that when
necessary servers corresponding to a service is restored, the service is up
and running. However, in practice, some services may support partial
load if some critical servers are restored, whereas the performance im-
proves gradually as more servers come up. Also sometimes disruption
may occur as a result of exploited vulnerabilities. Thus, it is necessary to
restore and run patching to fix the vulnerabilities before services can be
restored to avoid future disruptions. Additionally, some services require
successive restoration such as restoring from backup and then restoring
transaction logs or sometimes rebuilding the service's servers and then
complete the configuration. Integrating these practical issues in our
model is one of our future considerations.

References

[1] S. Mitchell, S.M. Consulting, I. Dunning, Pulp: A linear programming toolkit for
python, 2011.

[2] http://iwgcr.org/japan-earthquake-puts-data-centers-and-cloud-services-at-risk/.
[3] http://www.datacenterdynamics.com/content-tracks/power-cooling/hurricane-

sandy-data-center-stories-from-manhattan/72772.fullarticle.
[4] https://thestack.com/data-centre/2015/08/19/lightning-wipes-storage-disks-at-

google-data-centre/.
9

[5] http://www.americanbanker.com/issues/176/_195/bank-of-america-website-
outage-online-banking-1042932-1.html.

[6] http://aws.amazon.com/message/65648/.
[7] http://www.informationweek.com/data-center-outages-generate-big-losses/d/d-

id/1097712?.
[9] http://www.drj.com/drj-world-archives/general-dr-planning/feed/Page-1.html.
[10] http://www.datacenterdynamics.com/news/the-data-center-skills-gap/75576.

fullarticle.
[11] http://www.wipro.com/documents/the-impending-data-center-talent-crisis-and-

how-to-avert-it.pdf.
[12] M.F. Baki, R.G. Vickson, One-operator, two-machine open shop and flow shop

problems with setup times for machines and weighted number of tardy jobs
objective, Optim. Methods Softw. 19 (2) (2004) 165–178.

[13] H. Kellerer, V.A. Strusevich, Scheduling parallel dedicated machines under a single
non-shared resource, Eur. J. Oper. Res. 147 (2) (2003) 345–364.

[14] C.A. Glass, Y.M. Shafransky, V.A. Strusevich, Scheduling for parallel dedicated
machines with a single server, Nav. Res. Logist. 47 (4) (2000) 304–328.

[15] A. Agnetis, M. Flamini, G. Nicosia, A. Pacifici, A job-shop problem with one
additional resource type, J. Sched. 14 (3) (2011) 225–237.

[16] I. El-Shekeil, A. Pal, K. Kant, Progressive recovery of interdependent services in
enterprise data centers, in: IEEE Resilience Week, 2016, pp. 27–32.

[17] http://ampl.com/products/solvers/.
[18] H.W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. Q.

2 (1955) 83–97.
[19] M.D. Domenico, C. Granell, M.A. Porter, A. Arenas, The Physics of Multilayer

Networks, arXiv preprint arXiv:1604.02021, 2016, https://arxiv.org/abs/1604.
02021.

[20] C.D. Brummitt, R.M. D'Souza, E.A. Leicht, Suppressing cascades of load in
interdependent networks, Proc. Natl. Acad. Sci. 109 (12) (2012) E680–E689.

[21] S. Soltan, D. Mazauric, G. Zussman, Cascading failures in power grids: analysis and
algorithms, in: International Conference on Future Energy Systems, 2014,
pp. 195–206.

[22] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, G. Zussman, Power grid
vulnerability to geographically correlated failures - analysis and control
implications, in: IEEE INFOCOM, 2014, pp. 2634–2642.

[23] A. Sen, A. Mazumder, J. Banerjee, A. Das, R. Compton, Identification of K most
vulnerable nodes in multi-layered network using a new model of interdependency,
in: IEEE INFOCOM Workshops, 2014, pp. 831–836.

[24] A. Mazumder, C. Zhou, A. Das, A. Sen, Progressive recovery from failure in multi-
layered interdependent network using a new model of interdependency, in: CRITIS,
2014, pp. 368–380.

[25] O. Guyon, P. Lemaire, Pinson D. Rivreau, Cut generation for an integrated employee
timetabling and production scheduling problem, Eur. J. Oper. Res. 201 (2) (2010)
557–567.

[26] A. Halu, S. Mukherjee, G. Bianconi, Emergence of Overlap in Ensembles of Spatial
Multiplexes and Statistical Mechanics of Spatial Interacting Networks Ensembles.

[27] R. Parshani, C. Rozenblat, D. Ietri, C. Ducruet, S. Havlin, Inter-similarity between
Coupled Networks.

[28] E. Lazega, M.-T. Jourda, L. Mounier, R. Stofer, Catching up with big fish in the big
pond? multi-level network analysis through linked design, Soc. Netw. 30 (2) (2008)
159–176.

[29] T. Yamada, R. Nakano, Genetic algorithms for job-shop scheduling problems, in:
Modern Heuristic for Decision Support, 1997, pp. 474–479.

[30] M.R. Sierra, C. Mencía, R. Varela, Optimally scheduling a job-shop with operators
and total flow time minimization, in: CAEPIA, 2011, pp. 193–202.

[31] C. Artigues, M. Gendreau, L.-M. Rousseau, A. Vergnaud, Solving an integrated
employee timetabling and job-shop scheduling problem via hybrid branch-and-
bound, Comput. Oper. Res./Comput. Oper. Res. 36 (8) (2009) 2330–2340.

[32] O. Guyon, P. Lemaire, R. Pinson, D. Rivreau, Solving an integrated job-shop
problem with human resource constraints, Ann. Oper. Res. 213 (1) (2014) 147–171.

[33] R. Driessel, L. M€onch, An Integrated Scheduling and Material-handling Approach
for Complex Job Shops : a Computational Study, 2012.

[34] A. Agnetis, G. Murgia, S. Sbrilli, A Job Shop Scheduling Problem with Human
Operators in Handicraft Production, 2014.

http://refhub.elsevier.com/S2352-8648(17)30084-6/sref1
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref1
http://iwgcr.org/japan-earthquake-puts-data-centers-and-cloud-services-at-risk/
http://www.datacenterdynamics.com/content-tracks/power-cooling/hurricane-sandy-data-center-stories-from-manhattan/72772.fullarticle
http://www.datacenterdynamics.com/content-tracks/power-cooling/hurricane-sandy-data-center-stories-from-manhattan/72772.fullarticle
https://thestack.com/data-centre/2015/08/19/lightning-wipes-storage-disks-at-google-data-centre/
https://thestack.com/data-centre/2015/08/19/lightning-wipes-storage-disks-at-google-data-centre/
http://www.americanbanker.com/issues/176/_195/bank-of-america-website-outage-online-banking-1042932-1.html
http://www.americanbanker.com/issues/176/_195/bank-of-america-website-outage-online-banking-1042932-1.html
http://aws.amazon.com/message/65648/
http://www.informationweek.com/data-center-outages-generate-big-losses/d/d-id/1097712?
http://www.informationweek.com/data-center-outages-generate-big-losses/d/d-id/1097712?
http://www.drj.com/drj-world-archives/general-dr-planning/feed/Page-1.html
http://www.datacenterdynamics.com/news/the-data-center-skills-gap/75576.fullarticle
http://www.datacenterdynamics.com/news/the-data-center-skills-gap/75576.fullarticle
http://www.wipro.com/documents/the-impending-data-center-talent-crisis-and-how-to-avert-it.pdf
http://www.wipro.com/documents/the-impending-data-center-talent-crisis-and-how-to-avert-it.pdf
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref12
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref12
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref12
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref12
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref13
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref13
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref13
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref14
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref14
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref14
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref15
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref15
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref15
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref16
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref16
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref16
http://ampl.com/products/solvers/
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref18
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref18
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref18
https://arxiv.org/abs/1604.02021
https://arxiv.org/abs/1604.02021
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref20
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref20
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref20
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref21
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref21
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref21
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref21
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref22
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref22
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref22
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref22
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref23
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref23
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref23
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref23
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref24
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref24
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref24
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref24
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref25
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref25
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref25
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref25
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref28
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref28
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref28
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref28
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref29
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref29
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref29
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref30
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref30
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref30
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref31
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref31
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref31
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref31
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref32
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref32
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref32
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref33
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref33
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref33
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref34
http://refhub.elsevier.com/S2352-8648(17)30084-6/sref34

	PRECESION: Progressive recovery and restoration planning of interdependent services in enterprise data centers
	1. Introduction
	2. Problem description
	2.1. Preliminaries and notations
	2.2. Problem formulation
	2.2.1. Dependency constraints
	2.2.2. Timing constraints
	2.2.3. Worker assignment constraints
	2.2.4. Other constraints

	2.3. An illustrative example

	3. A genetic algorithm based heuristic to solve the PRECESION problem
	3.1. Chromosome structure and fitness value calculation
	3.2. Initial mating pool generation
	3.3. Selection process
	3.4. Crossover operation
	3.5. Mutation operation

	4. Experimental results
	4.1. Validating the accuracy of the genetic algorithm
	4.2. Results obtained from a real-world data center environment

	5. Related works
	5.1. Multi-layer networks
	5.2. Operator scheduling

	6. Conclusions and future works
	References

