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Abstract. In familiar design domains, expert designers are able to quickly
focus on “good designs”, based on constraints they have learned while
exploring the design space. This ability to learn novel constraints is a
key aspect in which design differs from traditional optimization; the
constraints on the search are constantly re-defined based on the search
experience itself. Moreover, such constraints are often implicit, i.e. the
designer may find it difficult to articulate these constraints and provide
reasons for them. Here, we ask if computer-aided-design systems can
discover such implicit constraints in well-understood design situations,
where the function can be articulated clearly enough to be quantified
in terms of performance metrics. By considering function across a large
number of design instances, patterns of functional feasibility may be
learned as a byproduct of evaluating different designs. We show how
patterns of functional infeasibility result in novel constraints that rule
out certain regions of the design space. We demonstrate this process us-
ing examples from the design of simple locking mechanisms, and as in
human experience, we show that the nature of the constraints learned
depends on the extent of exposure in the design space, and may be widely
variable in early stages. We also show how the process of design change,
when the design space is modified, e.g. by adding new design variables,
can build on patterns learned on past designs. In conclusion, we dis-
cuss the ramifications of this process on chunking and representational
change, and also on design creativity.

”The expert designer has explored extensively in previous sessions and
no longer needs to try out many different alternatives. The expert is
confident of immediately choosing a good one, based on experience. [16]”

1 Implicit Constraints in Expert Design

Repeated studies have observed how experienced designers come up immediately
with designs that are superior in most respects to those produced by novice
designers or CAD systems [16, 19, 5]. Clearly, this proficiency is related to some
patterns learned in past experience.

This paper builds on the well-known cognitive claim that in part, the expert’s
ability to immediately come up with such good designs lies in her use of addi-
tional constraints, which are often implicit in the sense that the designer herself
may not be able to articulate them coherently. In think-aloud sessions, design-
ers may use terms like “looks right” without giving more detailed justifications
other expressions such as “worked before”. This phenomenon has been called
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“intuition based upon previous experience” [1], contrasting it with situations
where the designer refers to past designs in a deliberate manner.

The implicit nature of such domain-specific constraints appears to be com-
mon in expert behaviour across many domains, ranging from chess, medicine,
computer programming, bridge, physics, etc. [8]. In chess, grand-masters do
not evaluate more positions than far weaker players, but the positions they do
evaluate tend to be the better ones [15]. It has been noted that their constraints
are also implicit; they are rarely revealed in direct introspection, but when the
expert is questioned as to why a certain line was not considered, they will often
say that it simply did not strike them [15]. Later that line almost invariably
turns out to be flawed, thus validating the power of the intuitive constraint that
was used. While analogies of design processes with domains such as chess have
been contested since design is a much less well-defined problem [1], the implicit
nature of these intuitions across so many domains cannot be ignored. Among
expert human designers, similar questioning occasionally reveals domain-specific
biases, but the presence of such constraints may be more widespread than ap-
pears in introspective testimony. Indeed, some researchers feel that design is
essentially a process of exploring constraints [28]. Whatever be the nature of
this knowledge, it is clear that somehow the expert is able to convert her experi-
ence in familiar design domains into a constraint that narrows down the design
to a more fruitful region of the search space. On the other hand, the novice
designer (as well as the CAD system) gives equal importance to all designs that
satisfy the design specs. Clearly, the ability to learn such patterns would confer
a significant search advantage for CAD systems.

The discovery of underlying patterns in the design space may be one of the
earliest steps in a long process of cognitive discoveries that forms the core of
design expertise. Sometimes the implicit pattern discovered may draw the de-
signer’s attention to those aspects of behaviour, which may help formulate an
explicit awareness of certain interrelations, what has been called ”situated inven-
tion” [33]. In the long run, this may be the first step towards generalizing over
regions in the design space, a process called chunking, that results in a restruc-
turing of the design representation itself [36]. Differences in evaluating functions
(e.g. aesthetics) or differential explorations of the design space (experience in
different classes of products), may lead to differences in learned patterns, which
possibly constitutes one of the primary factors behind differentiations in design
style.

1.1 Design Space Exploration, Sketching, and Emergence

The human designer discovers patterns of functional effectiveness while explor-
ing different parts of the design space, often using sketching as the mechanism
of choice for this preliminary exploration. During this process, various design
choices are quickly evaluated for functional feasibility, often using additional vi-
sual constructs that operate on the sketches themselves [13]. In the language of
[14], “one reads off the sketch more information than was invested in its mak-
ing.” Thus the sketch “triggers” other images in the mind, leading to a wider
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exploration of the visual and spatial ramifications of the particular part of the
design space, cycling between “seeing as” and “seeing that”, where the former
may potentially lead to a restructuring of the design space [34]. Where sketches
are explicitly unavailable, the designer may conduct a similar exploration of
the design space using mental imagery, often revealed through gestures or other
modalities [2].

A key aspect of sketch-based exploration is the emergence of new ideas,
closely related with the idea of implicit constraints. Emergence occurs when
“interesting properties” arise that were not part of the initial design goals [4].
These interesting functions often arise from the complex interaction involving
relatively simple low-level mechanisms. An alternate view of emergence is that
aspects that were implicit in the design, are thought to be made explicit[31]. In
either view, design is seen a dynamic process, where both the solution and the
search space evolve dynamically in the course of the design with the evolving
implicit constraints. As a result of these constraints, the process of design is far
from open, and the next sketch is extremely biased by the designer’s evaluation of
the present sketch, so much so that design becomes more a process of generation
rather than exploration [7]. Computational paradigms have attempted to capture
this by simultaneously evolving both the solutions and also the optimization
criteria [27, 30]. As part of this process, new abstractions are formed of what
constitutes the feasible zone for a design in a design space. However, exactly how
these specifications may be computationally reformulated in terms of function
has not been worked out in detail.

2 Discovering Implicit Constraints in Machine Design

Since the origins of Computer-Aided design, e.g. in the very early ideas of Ivan
Sutherland [32], there has been considerable emphasis on the process of dis-
covering constraints in the design space, often through computational imagery
that simulates the process of sketching[28]. Indeed, the idea of constraints on
design parameters, originating in the work of Gossard [26], revolutionized CAD
by introducing the notion of parametric modeling.

However, not much computational work has focused on the task of discover-
ing implicit constraints by exploring function in the design space. Partly this is
because of a difficulty of understanding function. In this work, we only consider
design problems that are well understood, so that function is definable, and may
be expressed in quantifiable terms. Part of the design quest is also this clarity in
defining the function; but as of now, most CAD systems leave the specification
of function for the human designer. Recently, Janssen [19] has proposed CAD
models that incorporate designer preconceptions as similar embodiments and
functions; in this paper, we use the term Functionally Feasible Regions FFRs
to denote these “preconceived” functional constraints. While Janssen character-
izes these functions, we present a mechanism for learning such FFRs within a
computational framework.
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One of the assumptions of this work is that function is well-characterized
for the class of designs under consideration. For instance, in the case of locks,
an important function may be strength, along with weight, cost, and robustness
against jamming. We show how exploration in the multi-function space results
in identification of different levels of feasibility in different parts of the design
space. Some of the constraints learned for our second example design, the slotted
wheel mechanism (rotating barrel lock), some of the constraints “discovered” by
the system are quite enlightening.

In human sketching, functional evaluation uses visual mechanisms that are
made available while exploring the imagery of the sketch itself[34]. In the case
of computational models, such processes can be simulated using computable
functions applied to various fully instantiated 3D models. In order to address
this question computationally, we need a formal notion of design space.

2.1 Design Space

Following the design optimization tradition, the Design Space Ω as the space
defined by a finite set of design variables vi, i.e. the set of independent parameters
that define a design instance. These design variables are traditionally expressed
as the design vector v, v = {v1, v2, v3...vn} ∈ Rn. Fixing all the parameters
results in a unique design, which may then be evaluated for different functions.
Typically the design space is constrained by certain user-specified criteria, often
called design specifications.

Consider the padlock shown in Fig. 1. In our model, the padlock design space
consists of five design variables: bminor, height of the elliptical main body; r: U-
bolt curvature; l: length of U-bolt; t: thickness of latch, and w: width of the
slot opening in the U-bolt. A number of other structural dimensions related to
shape and function are determined from these design variables alone, e.g. the
width (major axis) of the elliptical body, a is specified as 2.5r and there are
few constraints r0 > ri to define valid geometry. The design vector v is the
vector of these five design parameters. The Design Space (Ω) is the space of the
five-dimensional design vectors.

Given a set of values for the the design variables, these uniquely define a
larger set of structural variables, which are dependent parameters. For the pad-
lock example, given the five design parameters specified above, other structural
variables such as ri can be derived. Given the full set of structural variables,
the final design is uniquely specified. The design space is bounded by defining a
set of specification constraints fs(v) which must be true (here fs is taken to be
boolean; one may consider these to be algebraic functions, of the form f() < 0,
say). These constraints typically define one or more continuous regions in the
space of the design variables, and it is assumed here that the design is not over
constrained (no valid designs are possible) or under constrained (design space is
unbounded). Thus the set of design variables, together with these constraints,
along with the mappings from the design variables to the structural variables,
define the design space Ω.
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(a) (b) (c) (d)

Fig. 1. Functional Constraints: Padlock Example: (a) Padlock design vector v =
{bminor, r, l, t, w}. (b) Design fragment U-bolt and latch moving vertically and hori-
zontally respectively. (c) The (w, t)-slice in the design space. Here w < t is clearly
infeasible, since the latch collides with the slot. If w − t is too small, ease of operation
may be hindered by small misalignments; if it is too large, it may leave too much play
and weaken the lock. Parts of the configuration space for design instances C, B, and A
are shown in the figure (d)Configuration Space for latch-bolt design fragment - relates
horizontal motion of latch (X) with vertical motion of U-bolt (Y ).

2.2 Computational Discovery of Functional Patterns

How might computational processes come up with implicit functional constraints?
We describe a simple approach for learning the patterns underlying the function-
ally feasible regions (FFRs) based on the evaluation of candidate designs. The
discovery of such new constraints may also be called Schemata or patterns in the
design space that underlie expert designer knowledge [25]. Any general purpose
function approximators algorithm can be used; here we use multi-layer percep-
trons as our vehicle for learning the FFRs. In practical systems, the resulting
constraints may be of direct value to novice designers, especially in situations
involving many choices [16]. Clearly this would constitute an important step if
we are to enable computers greater access to the range of creative improvements
possible for the human designer [19]. Computationally, the process of exploring
design, involving computationally expensive analysis of aspects such as strength,
flow, or motion, can then be limited to a much smaller range. More importantly
however, it may be possible to determine a tradeoff between the constraints given
and the functions that are specified, a key requirement in Creative design [5].

In geometric design, the specification constraints fs(v) typically deal with
the relationship between design variables in the form of algebraic (non-linear)
equations. Some of these constraints ensure that the design is geometrically
sound ( e.g. the geometry has no singularities, or that the mapping functions
to the structural variables are not violated). Based on the specific constraint
values, a geometric object may be well constrained, under constrained and over
constrained [18].

Here we are interested in an additional class of constraints, which we may
term as Functional constraints, that specify the relationship between elements
of function. Consider for example, the function of a padlock Fig. 1, where the
latch of thickness t has to enter the slot with a clearance w. Here, the constraint
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Fig. 2. Learning through experience for slotted-wheel. The implicit constraint on the
w, t subspace of the Design Space is learned under the functional specification that the
breaking-torque τ must be greater than 6k-Nm. The exact FFR is shown in the leftmost
figure. The implicit constraint learned by a multi-layer perceptron based on 20, 200,
and 450 samples are shown next. The decision surface learned with fewer trials are
extremely variable, but it stabilizes for larger samples. By 450 instances, the learned
model is quite stable

w > t defines a partition in the design space which may not have been explicitly
specified as part of the formal design specifications fs(v). However, even novice
designers will discover this constraint immediately upon exploring even a single
design; thus this constraint will become explicit very soon. This may be treated
as a trivial instance of an emergent constraint. On the other hand, there may
be other constraints arising from functional considerations, e.g. the strength of
the lock against hammering, which impose other patterns on the design space
which are far from obvious. Quite often, even with experienced designers, such
patterns may be internalized in an inarticulate manner, and will thus remain as
implicit constraints.

As an example of such an implicit constraint that may be learned by our
system, consider the functional specification that a lock (not the padlock, but
one with a rotating barrel, say) must have a strength that can withstand a given
torque. For such a specification, it turns out that the thickness t cannot be too
low, for then the latch will fail too easily. Similarly, if the gap between the slot-
width and the latch, w − t, is very low, the latch may not enter deep enough
into the slot, resulting also in failure. The actual and learned FFRs, or implicit
constraints, for resisting a torque of 6 kilo-newton-meters is shown in Fig. 2.

2.3 Design Space Shrinking

Since the patterns for the feasible functional regions holds only over designs with
a high functional performance, it results in a narrowing of the design space. Let
Ω be the initial design space defined by the set of design specifications fs(v). Let
fe(v) be an emergent constraint that is learned through exploration, based on
a function characterized by a set of performance metrics π(v). Now, whenever
fe is true, fs must also be true, otherwise these designs v would not have been
explored at all. This is the basis of the following simple result, which motivates
this work.
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Definition 1 (Specification constraints). . The specification constraints fs()
constrain the Design Space Ω, which is defined as: Ω = {v|fs(v)}.

Definition 2 (Emergent constraint). An emergent constraint fe(v) is true
for those design vectors where some functional metric π is higher than elsewhere
in the design space.

Lemma 1. There are some designs v in Ω s.t. {fs(v)∧ ∼ fe(v)}; i.e., for these
designs, the value of the performance metric π is lower than that acceptable by
fe(). ut

Theorem 1 (Design Space Shrinking Theorem).
If fe(v) is an emergent pattern corresponding to some functionally feasible

regions, then applying this constraint narrows the design space from Ω to ΩE,
where ΩE ⊂ Ω.

Proof. This follows from the fact that (∃v){fs(v)∧ ∼ fe(v)}.

If one can obtain a measure for the cardinality of the design space, then one
may also define the effectiveness of an emergent constraint in terms of the degree
of shrinking ‖ΩE‖

‖ΩS‖ . If this shrinking factor is observed to be high, the designer’s
conscious attention is drawn to it, and she may explore the reasons for this be-
haviour. This is possibly the reason behind what [4] has called “interestingness”
of the emergent relation.

Clearly, the function evaluation π is a key aspect of any computational pro-
cess for discovering implicit constraints. In the next section, we develop on our
model of function in terms of a quantifiable performance metric for the examples
of a simple padlock and a rotating barrel padlock. Last, we show how changing
a design space, e.g. by introducing an additional design variable for the rotating
barrel, causes some of these implicit functions to change.

3 Function as Performance Metric

Modeling function and how it relates to structure is a complex question that
has been addressed in many ways [37, 10, 11, 9]. Gero has proposed Function-
Behavior-Structure (FBS) framework, [10] which relates the function of a design
object to its behavior and its structural descriptions. In Umeda’s framework
Function-Behavior-State [35], “state” refers to the physical structure of a de-
sign at a particular physical state during its behavioral process. The state of
a physical structure is not addressed in Gero’s framework but later introduced
“situatedness”[12, 11] as an extension to his original FBS framework. In mechan-
ical assembly design the function of mechanical object is dependent on the way
that motion and forces are transmitted through the contact between pairs [9].

Here we represent function as performance metric [6] defining on set of in-
tended behaviours. For the padlock example, the set of behaviors can include
strength of the lock, (in terms of the maximum force it is expected to sustain),
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ease of locking (resistance to jamming), and other aspects such as cost, ease of as-
sembly, and also subjective aspects such as aesthetics. In mechanical assemblies,
relating functions to structure often involves relative motion of the subparts -
these may be captured using Configuration Space or C-space[24, 22]. However,
computing the C-space for general motions remains an intractable problem [20].
Further, given a C-space, obtaining successful abstractions on it - i.e. segment-
ing the free-space into behaviorally significant regions - e.g., using topologically
different contact types[29], remains a considerable challenge. Here, we assume
that similar designs have been explored already, so that some understanding
of the C-space and its abstractions are available, so that a performance metric
can be defined for a given design instance. This is clearly true only for well-
explored design problems, and implicit constraints can only be learned in such
spaces. Design as search then involves determining the motion (behavior) as de-
termined through kinematically constrained geometry interactions [23]. These
motion constraints among the motion variables are in turn related to the design
variables[21].

In the design search process, a set of structural variables γ define a specific
structure in the structure space Γ . There may be several constraints between
the structural variables in order to obtain a consistent design; these are reflected
in the mappings that obtain the structural variables from the design variables,
and the constraints on the design variables themselves. Together these variables
and their constraints define the design space Ω.

In the padlock example, of Fig. 1, if we assume the width of the slot w and
the thickness of the latch t to be part of the design vector v, then for the part
of the design space where w < t, the latch cannot enter into the slot, and thus
though the shape is geometrically valid it is functionally infeasible. If we define
a performance metric for ease of assembly that is dependent on the clearance
w − t, then for different minimum acceptable levels of this performance metric,
different regions in the design subspace w, t will become infeasible. Similarly,
strength considerations, as well as other performance issues relating to the man-
ufacturability, assembliability, etc. may further restrict the “good” functional
zones or schemata known to the expert designer. It is our purpose to construct
computational algorithms for exploring such patterns in the design space.

We consider now some specific function metrics for a) the padlock example
introduced in Fig. 1, (b) a Slotted wheel mechanism, and (c) Slotted wheel with
latch vertical shift.

4 Discovering Patterns of Functional Feasibility:
Multi-Layer Perceptron

In this work, we use a simple multi-layer perceptron (MLP Neural Network)
as our device for discovering functionally feasible regions (FFRs) in the design
space. Neural networks are general-purpose function approximators that gener-
alize statistical models from incomplete and uncertain behaviour information,
and can be designed to adapt to the designer’s requirements. Artificial Neu-
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ral Networks (ANN) are computing systems made up of a number of simple,
highly interconnected processing elements, which processes information by their
dynamic state response to external inputs [3]. These ANNs map from a set of
given input patterns to an associated set of known output values.

The MLP network (also called back-propagation) map is trained using a set of
given input patterns for which the associated output values are known. Weighted
sums of the inputs are propagated through one or more hidden layers [17], and
the errors at the output are used to adjust the weights. In our case, design vector
v is the input pattern and the known output is performance metric π. During
the training process, the system uses the evaluations it has made of π on some
of the points in the design space to clamp the output, and this is then used to
adjust the weights of the internal connections to minimize the errors between the
network input and the target output. ANNs, like many other machine learning
systems, can thus be thought of as general purpose function approximation tools.
In the figures of the results shown, the sample designs on which evaluation was
performed are shown with a “+” (infeasible) and “5 ” (feasible), and we have
used different colors for feasible designs (π greater than some minimal π0) from
infeasible ones.

How the sequence of designs are selected for exploration is a critical issue
in design, but this is not evaluated in this work; we use a random selection
of a given number of designs as the training set for the ANN. The network
architecture used has a single hidden layer and 50 neurons with single output
parameter (πstr).

4.1 Example: FFRs for Padlock

To learn the FFRs for the padlock example, we sample many points v in Ω,
each of which corresponds to an actual design. For each design instance, we
evaluate the performance metrics. The performance metrics we consider here
are πstr = σY bl t2

6 l and πease = w − t [6] and see if the design is feasible or
not. Earlier, in Fig. 2, we have presented such learned implicit constraints for a
slotted wheel mechanism.

By applying different standards of acceptability for the performance metrics
to different instantiations in the design space, one can obtain different bounds to
the FFRs. The performance measure for ease of locking is negative for the region
above the w = t line, and this region thus becomes permanently infeasible. For
any positive value of πease, the line shifts more to the right. Similarly, for any
given level of πstr, the material and other dimensions remaining the same, the
strength rises proportionally to t2. Combining these results in the functionally
feasible space shifting to the right and up. At the same time, since high w and
high t also imply higher values for other dimensions, cost and weight considera-
tions are likely to squeeze the feasible region more to the bottom and left. This
would eventually produce different viable zones for different levels of padlock
function.

While for the padlock, this analysis is quite straightforward, clearly there
are no limits to the complexity of the performance metrics. Even mechanisms
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Fig. 3. FFRs (Functionally Feasible Regions) in padlock design space. Even in the
region w > t, some regions close to the boundary may be ruled out at certain levels of
the Ease of Locking metric πease (a), while low values of latch thickness t are likely to
be ruled out by strength considerations in πstr (b). Combining πease and πstr metrics
superposes these constraints; (c) shows the resulting FFR for double the metrics of (a)
and (b).
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Fig. 4. Learning through experience for padlock. The implicit constraint on the w, t
subspace of the Design Space is learned under the functional specification πstr > 500N .
The exact functional constraint is shown in the leftmost figure. An implicit constraint
learned by the system based on exploring 20 design instances is shown next. The
decision surface learned after 80 trials seems more convoluted, but this is because the
sample space is an inadequate model for the actual pattern. By 200 instances, the
learned model is quite good.

exhibiting only slightly more complex motion behaviors will evolve in less obvious
ways. In the following section we explain the slotted wheel mechanism and also
a variant with a vertical shift in the latch axis which in not uncommon in the
actual working mechanisms.

5 Slotted Wheel Mechanism

The constraints discovered in the padlock example seem extremely straightfor-
ward, of the kind that even a novice designer may discover within a few trials,
along with the causal process underlying this constraint. Thus for the human
therefore these FFRs become explicit, leading to a process of chunking and re-
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(a) (b) (c) (d)

Fig. 5. (a) Design Parameters for Slotted-Wheel mechanism: radius r, width w, breadth
b, thickness of the latch t and φ = sin−1( w

2r
). φ is a dependent parameter on design

parameters. (b) Its geometric elements’ representation (c) CF =< PC1 > is a con-
tact formation having single principal contact (d) CF =< PC1, PC2 > is a contact
formation which has two principal contacts.

structuring the design space. For a machine, the constraint would remain implicit
unless it has access to further domain knowledge.

Even with this very simple methodology however, we may encounter patterns
of constraints that are not very obvious at all. Let us now consider a mechanism
only a little more complex than the padlock - a lock mechanism with a rotational
slotted wheel and a translational latch (Fig.5(a)). The rotation of the wheel will
be locked when the latch assembles into the slot of the wheel.

Fig. 6. Contact State Graph: (a) Each node represents a contact state and the edge
represents the transition of neighboring contact states (b) C-space with different contact
states

Each contact curve in Fig. 6(b) satisfies a contact equation f(x, θ, v) = 0
which represents the function of each contact and it is result of solving contact
constraints among the touching geometric elements. The shape of the curves
depends upon the shape of the contacting geometric elements and type of con-
tact. If the functional specification is to reach the contact state CS00, (PC =
< e23, eab >) then it is a point in the contact space at θ = 0.

A key aspect of design is reformulating the problem itself. Part of this process
may be changing the design variables, e.g. by adding a new variable. Here, for
the slotted wheel, we shall now explore how such a design change may add a
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variable for a shift in the latch so that it is no longer along the axis of the
rotating wheel.

6 Emergence and Design Change

(a) (b) (c)

Fig. 7. Vertical Shift in Latch (a) Note that in addition to the contact formations of Fig.
6(a) two new contact formations are observed for shifts that are positive (CFa,Fig.(b)),
or negative (CFb, Fig.(c)).

We next consider incorporating a new design variable as a design change.
Based the designer’s exploration of the behaviour of the slotted wheel lock, it
becomes clear that if the latch were to be shifted so that the rotation axis of
the barrel is below the latch, e.g. as a result of some constraint in the installa-
tion, then it would affect the quality of the penetration, and hence the strength,
profoundly. Exploring this possibility necessitates adding this shift as a new
design variable. The shift may also arise as a result of manufacturing inaccu-
racies, and the same analysis is relevant to the modeling of tolerances.Consider
the slotted-wheel lock mechanism where the latch translational axis is displaced
from the slotted wheel center by a distance e(Fig. 7a). In the new design space
Ω, the design vector v will be {r, w, t, b, e}. With this design change we find out
the feasible and infeasible regions in the design sub space (w,t) based on the
functional constraints.The mechanism is in the locked state when the latch is
inserted into the slot of the rotating wheel. As e becomes more than w−t

2 , the
degree of penetration varies considerably, and this affects its function. Here, the
strength of the lock may be measured in terms of the maximum torque that
the barrel can withstand. The contact state graph(6)(a) also changes; two new
contact nodes(7(b),(c)), emerge with the addition of vertical shift e; and this
causes the mechanism to experience new set of behaviors at certain e values.

6.1 Performance Metrics

Maximum Penetration The penetration depth (PD) varies with the change
in the vertical shift (e) values. The maximum penetration in the different ranges
of e is shown 8(a).
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(a) (b) (c)

Fig. 8. (a) Maximum penetration depth for different ranges of axial shifts. A,B,C
and D are the different contact states at which maximum penetration is possible for a
design variable t

r
: 0.4, b

r
: 0.5.(b) A typical contact configuration; here the maximum

contact force is determined given the maximum torque that the slotted wheel axis is
expected to bear. This maximum torque τmax is equal to the contact force times a
moment arm d(X, θ) (Eq.1)that depends on the penetration depth of the latch.(c) Free
body diagram of the mechanism.
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Fig. 9. Evolving constraints based on performance measures πstr. These three figures
present various feasible regions (FFRs) in the w, t design subspace, for differing con-
straints on πstr or the maximum torque(τmax). (Slotted wheel mechanism, axial shift
e
r

= 0.3 and b
r

= 0.5)

Strength: Maximum Torque If we are to evaluate this lock based on its
strength, an obvious measure would be the maximum torque τmax it can support.
This torque will vary in different contact states, and we may compute it for the
maximum penetration, as discussed in section 6.1. Let us consider a contact
state B as shown in Fig. 8(a). At this contact state the latch in the mechanism
is considered as a simple supported, for which the free body diagram is shown in
Fig. 8(b). Also, Eq. 1 gives the relation for the maximum strength of the latch
which can withstand against the desired torque τ , where w1 = w

r , t1 = t
r , and

e1 = e
r .
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Here we obtain the following constraints based on Fig. 8(b). The maximum
torque τmax that can be supported is determined by the contact force F and its
moment arm; this contact force is in turn limited by the latch strength.

F =
σY blatch(t1)2

6l

τmax < −F cos θ d(X, θ)− F sin θ (e1 +
t1
2

)

d(X, θ) =
2e1 cos θ + t1 cos θ − w1

2 sin θ
(1)

where d(X, θ) is the moment arm for the vertical component of the contact
force F .

The performance metric πstr for the slotted wheel may be simply set to be
τmax as given in the equations above. Now, asserting different levels of accept-
ability for πstr results in constraints involving different parts of the design space,
as seen in Fig. 9. Designs with thin latches (low values of t)are clearly rejected
by the requirement for strength, but owing to the penetration depth being re-
lated to theta, when e is a significant compared to t, high strength also requires
higher slot width w’s.

7 Design Experience and the Quality of Implicit
Constraints

Although we are able to learn some types of constraints from the function eval-
uations across the design space, there are many questions that remain. For one,
what is the nature of the convergence of the learning function? Are the con-
straints learned indeed reasonable? How do these constraints depend on the
design experience? How can the next design exploration be controlled so as to
maximize the effectiveness of the learning?

Human designers clearly improve in the quality of their immediate design
decisions, as they gain experience. In our case, we can see a similar phenomenon
that can be understood in terms of learning machines. Any function generalizer
that learns from a set of training data is sensitive to the size and distribution
of its data. Clearly, as more samples from the design space become available as
training data, the quality of the learned function will improve.

We next explore how the quality of learning changes depending on the degree
of exploration in the design space. We consider a learning system that learns from
a small (20), medium (200) and large (450) number of samples (Figure 10) for
the slotted wheel with v = { b

r = 0.5, e
r = 0.3}. Here we attempt to learn the

FFRs (feasible region constraint) for the performance constraint τmax > 6.
Given that we can compute the exact FFRs that obtain in the underlying

design space, we can then compute the errors in each case in terms of the per-
centage of false responses in the resulting implicit constraint. We define error
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Fig. 10. Quality of Implicit Constraints learned improves with experience. The design
space shows the learning after experiencing 20,200, and 450 design instances. The actual
functional constraint is shown in the leftmost figure (a).
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Fig. 11. Learning through different experiences for the same design instances. The
design space shows the learning with 20 design instances for the torque τ > 6.

as the false fraction - i.e. those design instances that are actually infeasible but
show up as accepted in the learned function (False Positives, FP), and those
that are feasible but are rejected ( (False Negatives, FN). FP can be visualized
as the part of the reject area in Fig 10a that is marked as reject by the learned
function, and FN is the part of the accept area marked as reject. As expected,
large swathes of the design space are marked falsely with 20 samples, and the
accuracy improves or error decreases considerably with 400.

However, it is observed that the learning does not improve monotonically -
i.e., occasionally the implicit constraint learned after evaluating 50 design in-
stances may be poorer than the pattern with only 10 instances. This is because
of the wide variability in the early stages of learning. This leads us to issues of
convergence in learning the function.

7.1 Convergence: Variability of Learned Function

Statistical methods are commonly used in the development of empirical relation-
ship between various interacting factors. Since it is extremely difficult to model
the convergence of neural networks, we explore the issue of convergence empir-
ically. We consider learning from the identical training data, but with random
variations in the network weights.
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Fig. 12. Learning through different experiences for the same design instances. The
design space shows the learning with 450 design instances for the torque τ > 6. The
sample training input is shown in the leftmost figure.

Fig. 11 shows the implicit constraints, learned on the w, t subspace of the
Design Space under the same functional specification τ > 6 considered for the
20 design instances with the same sample set as input. Here we report the w, t
subspace, holding the other parameters as { b

r = 0.5, e
r = 0.3}. It is observed that

the learned pattern varies remarkably for a sample size of 20, but is markedly
less when the training set is 400 (Fig. 12). This indicates that a high degree
of exploration in the design space is critical to learning adequate constraint
functions. We report the error on each learned constraint pattern in terms of the
fraction of total false reportages.

Data points Mean Standard Deviation

20 0.9210 0.2147
100 0.3213 0.1200
250 0.1949 0.0162
400 0.1189 0.00110

Table 1. Function quality with increasing exposure. The mean error of the learned
constraint function, as well as its variance, decreases significantly as the number of
training instances increase from 20 to 400. This data is based on 25 independent runs
for each sample set, for the slotted wheel mechanism with e = 0.3r.

Variability is measured in terms of standard deviation on the error. Table
1 shows the mean and standard deviations of the total different 25 trials con-
ducted on same set of design instances for different data set. With the increase
in the training input data the mean error and variation is reduced. This repli-
cates human experience; in the early stages, the designer is beginning to form a
function but this its quality varies considerably. Also, as the function improves,
the system is itself able to measure the error rate by considering how subsequent
design explorations fare with this function; thus the rate of convergence, and the
sample size needed for “adequate” exposure can itself be determined empirically.
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Clearly, for more complex design spaces with higher dimensionality, this may be
a large number, and finding ways to reduce the dimensionality and therefore the
adequate sample size, would be an important challenge.

An important difference between human and machine learning of these im-
plicit constraints is that the program requires hundreds of sample points to be
explored even in this relatively simple design space, whereas designers typically
go through only a handful of sketches even in more complex situations. One as-
pect of the human experience is that each sketch represents a large-ish region in
design space, and not just a single design. More importantly, the human designer
is using much more domain knowledge in terms of relations between the under-
lying parameters and their effect on the function, whereas the computational
process identified here is blind to such functional inter-relations.

8 Conclusion and Future Work

In this paper, we have presented a computational process based on theories of
emergence to imitate an expert designer’s ability to learn implicit functions that
indicate regions of high feasibility in the design space. We show how computa-
tional algorithms can also identify such regions, and also present results, using
the simple mechanism of a lock, on how the convergence of such algorithms may
be evaluated by using the quality of the functions even as exploration proceeds.

We have also explored the nature of design change by introducing a new de-
sign variable e(shift) into the design space, and show how even this small change
results in unpredictable changes in behaviour, and how these in turn affect the
functional requirements. While the examples involve very simple designs, there
are no theoretical limits on the complexity of the design spaces on which such
functions can be built. However, in each situation, we require that the function
be well understood and quantifiable in terms of performance metrics - and at
this point, the human user is required to specify these. Also, learning adequately
accurate functions is likely to require a much larger training data in more com-
plex spaces, and the algorithmic complexity of this training process remains an
important consideration for future. Even as presented here, the system is possi-
bly a great help to novice designers, who may observer in the resulting patterns
some explanation in terms of the underlying parameters, which would add to
her design knowledge in this domain.

Discovering such high-feasibility regions and defining implicit constraints
based on them is important for abstracting other patterns of behaviour, and in
particular, for seeding the chunking process, whereby the representation of the
design itself changes, typically accompanied by dimensionality reduction. An-
other area of exploration in the future is the possibility of starting with a simple
physics knowledge-base and developing representations that capture such func-
tional relations among the parameters based on multiple design experiences for
different classes of objects.
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