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Abstract

Designers who are experts in a given design domain are well known to be able to Immediately focus on “good designs,”
suggesting that they may have learned additional constraints while exploring the design space based on some functional
aspects. These constraints, which are often implicit, result in a redefinition of the design space, and may be crucial for dis-
covering chunks or interrelations among the design variables. Here we propose a machine-learning approach for discover-
ing such constraints in supervised design tasks. We develop models for specifying design function in situations where the
design has a given structure or embodiment, in terms of a set of performance metrics that evaluate a given design. The func-
tionally feasible regions, which are those parts of the design space that demonstrate high levels of performance, can now be
learned using any general purpose function approximator. We demonstrate this process using examples from the design of
simple locking mechanisms, and as in human experience, we show that the quality of the constraints learned improves with
greater exposure in the design space. Next, we consider changing the embodiment and suggest that similar embodiments
may have similar abstractions. To explore convergence, we also investigate the variability in time and error rates where
the experiential patterns are significantly different. In the process, we also consider the situation where certain functionally
feasible regions may encode lower dimensional manifolds and how this may relate to cognitive chunking.
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1. INTRODUCTION

It is well known that a designer who is an expert in a particular
design domain is “confident of immediately choosing a good
[design] based on experience” (Gross, 1986) or that they “in-
tuitively know that [their] interpretation of the problem and
solution . . . is the correct one” (Lloyd & Scott, 1994). This
rapid convergence to good solutions is a common hallmark
of expertise across a large number of domains ranging from
chess, medicine, computer programming, and bridge to phy-
sics (Ericsson & Lehmann, 1996). Cognitive models of ex-
pertise suggest that these constraints among the parameters
of the task may result in a set of chunks, which provide a
more compact description of the problem (Chase & Simon,
1973; Gobet et al., 2001). For example, experienced padlock
designers may discover that to balance strength evenly, the
U-bolt diameter must increase roughly in proportion with
body size. Thus, these sets of parameters can be combined
in a single chunk, reducing the dimensionality of the design
space. Although this reduces search, it is more important

that it also enables a shorter description of the design problem
and a restructuring of the design representation (Campbell
et al., 2003; Bor & Owen, 2007).

In a cognitive sense, from chess players to human design-
ers, the chunking process is more often implicit than explicit.
Expert chess players often do not see the poorer moves (Go-
bet & Wood, 1999), so that only the better options appear to
be coded. Human designers in think-aloud sessions may use
terms like “looks right” or they may refer to past experience
merely by saying that it “worked before,” although the design
is obviously for a novel task (Ahmed et al., 2003). It has been
suggested that these experiences may also guide the forma-
tion of design knowledge and are related to schema emerg-
ence (Oxman, 2002; Janssen, 2006). At a later stage, some
of this knowledge may become explicit; but even in the early
stages, it may help the designer make quick conjectures that
she moves on to verify (Cross, 2004).

Constructing computational models for these cognitive
processes remains an important challenge for computational
design. In this paper, we suggest that these patterns may be
discovered using machine-learning techniques focusing on
the fact that “good” designs often lie along a limited range
in the design space, which we call the functionally feasible re-
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gion (FFR). As with chunking, the constraints underlying the
FFR may be implicit; that is, the designer may find it difficult
to articulate them or provide reasons for them (Schon, 1983).

Discovering and characterizing FFRs (the regions in the
design space that correspond to good designs), is a critical
first step in the discovery of chunks. This paper explores
this process, and investigates how the patterns underlying
the FFRs may be discovered, how these may be similar across
similar design experiences, and how the process of learning
these patterns may converge. After discovering the FFRs, it
may be seen that these “good solutions” actually occupy a
lower dimensional subspace, in which case they may be good
candidates for chunks. In the language of machine learning,
these chunks lie along a m-dimensional manifold that is a
subspace of the original N-dimensional design space, where
m� N; hence, any point in this m-dimensional space can be
described using m parameters, as opposed to the original N.

Sometimes, when the performance criteria lie over a nar-
row band, the FFR may be easily seen to yield a chunk. For
example, the padlock latch–bolt design fragment dealt with
in Section 3.1, has a two-dimensional design space w, t.
One may consider two performance metrics: strength of the
lock pstr measured as a maximal force and the ease of inser-
tion pease measured in terms of clearance. If the ease of inser-
tion has a tight range of acceptability, the “good designs” for
the latch–bolt fragment are seen to lie along a one-dimen-
sional line (a manifold) with invariant w – t (Fig. 1). This
line can be discovered through design exploration (Fig. 1b),
where the gray region represents the FFR generalized from
a set of feasible design instances (pluses) and black is the in-
feasible region generalized from failed instances (open boxes).
Here the FFR yields a lower dimensional manifold that is
easy to discover, but more generally, it may be nonlinear or
high dimensional and is a difficult problem on its own. How-
ever, the first step in the process is clearly to discover the pat-

tern inherent in the good designs, similar to what Oxman has
called a “perceptual act” operating on a visual memory of de-
signs in his model of design conceptualization (Fig. 2). In this
work, we consider the process of discovering such FFRs and
their implications, and do not consider the manifold learning
step required for discovering chunks per se.

The discovery of underlying patterns while executing de-
signs repeatedly is of value not only because one can quickly
find the good designs, but as an important cognitive discovery
at the core of design expertise. Quite often similar patterns may
hold in other design situations with similar characteristics.
Sometimes the implicit pattern discovered may draw the de-
signer’s attention to those aspects of behavior, which may
help formulate an explicit awareness of certain interrelations,
what has been called ”situated invention” (Suwa et al., 2000).

However, this process of discovering implicit patterns de-
pends on the particular experimental history of the designer.
Differences in evaluating functions (e.g., subjectivity, as in
aesthetics) or differential explorations of the design space (ex-
perience in different classes of products) may lead to differ-
ences in learned patterns, which possibly constitutes one of
primary factors behind differentiations in design style.

The pattern underlying good functional performance is
usually discovered initially in well-defined problems spaces,
what Janssen (2006) calls niche environments. Here we also
limit ourselves to “familiar” classes of designs, similar to an
apprenticeship situation. The set of design variables, the
workings of the design, and ultimately a set of function evalu-
ation metrics are available to the learning system. However,
these evaluation functions are often complex and may require
intermediate computations [e.g., configuration space (C-
space) computations for mechanical devices as in the exam-
ples here]. Hence, identifying the subspace of good designs,
the key task in functional emergence, remains a difficult prob-
lem, and this is what we focus on here.

Fig. 1. Functionally feasible regions (FFRs) for a padlock design fragment. (a) 100 N , pstr , 1000 N and 3.5 mm , pease , 4.5 mm. (b)
Learning with 400 data points. The acceptable performance criteria have tight bounds on the ease of insertion. The functionally feasible
region is discovered as a thin elongated region in the design space. It may be viewed as a one-dimensional manifold in the two-dimensional
design space (w, t). This may lead to the discovery of a chunk relating w and t, say, w – t.
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Another key question for the emergent patterns or FFRs is
whether the constraints that are learned for one design gener-
alize to other similar design domains. In order to investigate
this question, we consider two locking mechanisms similar to
our main padlock example. We first consider a change in a so-
lution mechanism (embodiment), from a translational lock
(padlock) to a rotational lock (slotted wheel), and show that
for the latch–groove design fragment, the basic pattern of
FFRs remains similar (Section 4.1). Next, we consider a dif-
ferent design space, where an extra degree of freedom (DOF)
is added to the design (Section 4.2). We also find that for small
values of this new parameter, the behavior remains similar
to the earlier patterns. These initial explorations suggest that
there is a possibility that the patterns underlying these good
designs may apply to families of functional similarity, as op-
posed to the single embodiments on which they are learned.
Although these similarities are apparent, they indicate the
power of methods that can be deployed based on FFRs. How-
ever, the construction of computational formalisms for dis-
covering similarities is beyond the scope of this work.

Because the learning of patterns is based on randomly
drawn instances from the design space, a question may arise
about the stability of the learned pattern. Does the learned pat-
tern always converge to the same pattern? This question is ex-
plored empirically in Section 5. Next, we correlate our search
for patterns in the function space to the models of cognitive
design suggested by Schon, Oxman, and others.

1.1. Design space exploration, sketching, and
emergence

The human designer often uses sketching as the mechanism
of choice for his preliminary exploration of the design space,
which results in patterns of functional effectiveness. During
this process, various design choices are quickly evaluated
for functional feasibility, often using additional visual con-

structs that operate on the sketches themselves (Goel, 1995).
An early insight into this process by Schon (1983) suggests
that the designer shapes a situation, which then talks back.
By observing and evaluating this situation, often through an
external representation, the designer forms new appreciations
that further guide his decisions. This process has been investi-
gated qualitatively by Oxman (2002), who equates perceptual
exploration with recognition or reformulation of the cognitive
models relevant to the design (Fig. 2). This is a key insight
into the design process, but it is expressed rather imprecisely.
It is our goal in this work to suggest a computable model for
the first phases of this insight-generation process.

Recently, Janssen (2006) proposed that computer-aided
design (CAD) models may be able to learn designer precon-
ceptions through evolutionary design ideas. Our model goes
further and proposes a general machine learning model that
actually generates the first preconceptions: the functionally
emergent constraints on the design space. However, the terms
emergent and function have been used in many senses in the
design literature, and it is necessary to clarify the sense in
which we are using these next.

1.1.1. Three types of emergence

The term emergence has various uses in the design litera-
ture, usually involving some form of the exploration–abstrac-
tion process. We observe (at least) the three following usages:

1. Creative emergence: Adding new dimensions of explora-
tion, or expanding the design space. This is the result of
observations of certain possible configurations that
were not present in the original specification. A typical
example from Soufi and Edmonds (1996) is how a trian-
gular construction may be suggested while exploring a
space defined by the intersection of squares (Fig. 3). Rep-
resenting the new shapes require additional design vari-
ables to be introduced (Cagan & Agogino, 1991).

Fig. 2. Learning constraints through exploration. (a) Looking at designs one has evaluated is a recognition, resulting in an abstract pattern
(based on Schon, 1983; Oxman, 2002). The first step in this abstraction process is learning the functionally feasible region. (b) Through
design explorations, the initial design space Vs, bounded by a set of specification constraints fs, shrinks to an emergent design space Ve,
with the emergent functional constraint fe. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Discovering implicit constraints in design 59



2. Functional emergence: A shrinking or restructuring of
the design space based on a characterization of the space
of good designs may be an emergent pattern (Fig. 2b) or
an enabling prejudice or preconception (Janssen, 2006).
The functional constraints discovered may be implicit
(“similar stress worked for other turbine blades”;
Ahmed et al., 2003) or explicit (“A ticket office should
be close to an entrance”; Suwa & Tversky, 1997).
Where the functional constraint reflects a significant di-
mensionality reduction, the resulting abstraction may
get codified as chunks.

3. Symbol emergence: Some patterns arise repeatedly and
come into conscious awareness (are reified). Such pat-
terns may eventually acquire a label in linguistic con-
vention, in which case they become a symbol (Dabbeeru
& Mukerjee, 2010).

In this paper, we limit ourselves to the discovery of the pri-
mary form of functional emergence, the FFRs. Functional
emergence in this view involves the designer realizing that
most designs in the initial design specs are poor designs and
that the designs with superior performance lie in a restricted
region of this space. Thus, functional emergence results in
shrinking the design space to that region where high-perform-
ing solutions are seen to lie. Note that our investigation oper-
ates in an apprenticeship mode, and we do not consider
changes in the function space (i.e., the performance metrics
do not change) and we also do not enlarge the given design
specs. Thus, the aim is less ambitious than attempts such as
Poon and Maher (1996), who consider the simultaneous evo-
lution of both design space and the function space, requiring a

mechanism for abstract diverse functional specifications into
a compact genotype, and measures for evaluating the suitabil-
ity of the function metrics (selecting a problem space). Nor do
we attempt to discover similarities with known designs
(cases) in a design database (e.g., Yaner & Goel, 2008), in
which one assumes that certain symbolic mappings are al-
ready known that enable segmenting vector diagrams of a
design into constituent parts and determining the results of
compositions among these parts. As a simulation of a trainee
being told what to do by a master designer, our goals are more
modest; we merely wish to attempt to model the space of
well-performing designs, which may enable us to learn
some salient aspects of the design space such as how different
variables may have latent interrelations in order to arrive at
good designs. Our work proceeds in two steps. During the in-
itial learning process, it is perhaps appropriate to consider fa-
miliar design spaces, where the function space is stable and
well understood. In the second phase (Section 4) we consider
how these patterns are initially learned in a fixed setting and
how they may generalize to other, related task domains. The
objective here is to discover how good functional perfor-
mance may impose additional (emergent) constraints on the
design space. Before we proceed, however, it is necessary
for us to formally specify what we mean by “function.”

1.2. Function, performance, and embodiment

The term function is used in many senses by designers (Gero,
1990; Wolter & Chandrasekaran, 1991; Faltings, 1992;
Umeda & Tomiyama, 1997; Suwa et al., 2000). It is clearly
related to the user intent, often inchoate, and the designer’s
initial task is to understand its contours. Large problems may
be decomposed into some subtasks. At an early stage, several
solution mechanisms may be proposed, one of which is
adopted, what we call its embodiment. Once this is available,
the user may provide additional constraints on what it is that is
desired. Design is an ill-posed problem because the criteria
are not defined at the outset; these depend on the prejudices
brought to bear by the designer and on the solutions as they
are explored and are thus a part of the dynamics of design.
As the design progresses further, additional constraints be-
come clear. Thus, function is a role of the context in the de-
sign process, what has been referred to as “situatedness”
(Suwa et al., 2000; Gero & Kannengiesser, 2004): at each
stage of design, the meaning of function may be different.

We must distinguish two senses that are often conflated in
discussions of computable models of function. The first views
a set of functional needs as independent of embodiment [e.g.,
“provide illumination,” what Gero (1990) calls “function”].
The second considers how these functions are evaluated or
compared [e.g., “the light intensity variable in user’s room
must be above a certain lumens value” (Chandrasekaran,
2005), similar to what Gero calls expected behavior or Be].
In order to distinguish these more clearly, we use the term per-
formative behaviors for the former, which is the set of user
needs. These are the subset of any object’s behavior that is of

Fig. 3. Creative emergence (novel shapes). (a–c) The initial design space is
based on Boolean operations on two squares. However, while interacting
with these shapes, some other designs such as (d) may suggest themselves
(Soufi & Edmonds, 1996), which are representions that would require addi-
tional variables in the design space. Thus, creative emergence expands the
design space.

M.M. Dabbeeru and A. Mukerjee60



interest to the user (e.g., torque, illumination), and they are gen-
eral characteristics without considering comparison or evalu-
ation. When we say that two design classes have the same func-
tion, we are interpreting function as performative behavior.

The second usage of function is evaluative; given a design
instance, this helps determine if it is satisfactory. This inter-
pretation is captured in what we call the performance metric,
whose construction is dependent on the type of embodiment.
Every performative behavior required of the design, is related
to a performative metric pi, which may be computed for any
design in the particular embodiment class. Different user
needs may result in different levels of satisfactory perfor-
mance, defined as a Boolean function on the set of perfor-
mance metrics, g(p1, p2, . . .), which must be true for the
design to be satisfactory. This acceptability condition (e.g.,
a range of acceptable strengths/light lumens) may also be ne-
gotiable, but here in this apprenticeship situation, we take it as
given. We note that, although we use the term metric and in the
examples below this function is always quantifiable, the pro-
cess we propose would also work if one had a relative mea-
sure or comparison that can order any pair of design instances.

Let us now also define what it means for the design prob-
lem to be familiar or well understood. First, we assume that
we know the solution mechanism to be used, which we call
its embodiment. Second, all designs in this familiar class
have the same set of independent design variables, constitut-
ing the design variable vector y. Third, and most signifi-
cantly, the designs in this class have the same set of perfor-
mance metrics pi(y). This is because designs in the
embodiment class, or the embodiment part family (EPF), in-
stantiate the function in a similar manner. For example, for the
domain of locking devices, the padlock embodiment uses a
latch sliding into a slot on a U-bolt. For all padlock designs,
the performance metrics (e.g., evaluation of strength) would
involve the same function that is ultimately linked to its inde-
pendent design variables. As we will see in the examples be-
low, this may involve some complex operations, for example,
the construction of C-spaces for mechanical assemblies, which
may be possible only for the class of designs that share the fa-
miliar embodiment. To take another example, if the problem
is to provide light and air in an architectural space, the em-
bodiment chosen may be a window, and one may define
the amount of light or air in terms of the dimensions of the
window. Although the performance metrics are same, clearly
different designs may have differing acceptability criteria.

Next we define the notion of “design class” based on the
above notion of function.

1.3. Design process

In its broadest generality, design deals with all possible arti-
facts (Fig. 4, top level), at which point, “function” is at its
most vague. Next, we may consider designs that use similar
principles to serve similar functional needs, which constitute
the phenomenological design domain (PDD), for example,
arranging for light and air in an architectural space or restrict-

ing access to some interior space. There are many ways in
which these design goals may be specified and met. Within
a PDD, the designs that are evaluated in terms of the same
performative behaviors are what we call the functional part
family (FPF). Thus, single-panel windows, multiple-panel
windows, possibly even rolling shutters, if evaluated using
similar performative behaviors, may belong to the same
FPF. However, some other structures, like fixed windows
(which do not have “letting in air” as a performative behavior)
would constitute a different FPF. Within a specific functional
class FPF1 the designs that meet a set of functions using the
same physical structures, so that the design variables map to
the performance metrics in the same way, constitute the EPF
(embodiment class).

The EPF is the niche class that we consider throughout this
paper. We also demonstrate how some of the patterns learned
on one EPF may be similar to those in other EPFs in the same
functional class (Section 4). However, we present a computa-
tional model for obtaining the FFRs only within an EPF, and
do not provide a process for the more difficult problem of
generalizing across EPFs.

For our example of locking devices, the phenomenological
level is based on some physical mechanism for restricting
access. Of these, some may share the same set of performative
behaviors (FPF). In Figure 4, FPF1 and FPF2 both involve keys
moving a latch in and out, except that in the latter the object that
will be constrained by the latch is external to the design object.
For FPF1 (padlocks, rotating barrel locks, etc.), shared perfor-
mance metrics may involve the maximum force it can resist
(strength), weight, ease of use, and so forth. In contrast, class
FPF2, which is intended to be fixed to something like a door
frame, the performative behavior may consider volume instead
of (or in addition to) weight; thus, the set of performative behav-
iors is different. The class of padlocks, which share the same
design structures, constitute an EPF within FPF1.

Each EPF is associated with a design space V, character-
ized by a n-tuple design vector y ¼ (x1, x2, . . . , xn) [ V,
where xi are the independent design variables or driving vari-
ables for the design. Any other variables needed for specify-
ing the final structure (dependent variables) are defined in
terms of these driving variables. At lower levels in the hierar-
chy there are fewer DOFs (i.e., number of design variables go
down), but the function becomes more crisply specified. At
the bottom of the hierarchy are specific design instances,
each of which is completely specified (0 DOF).

In this paper, we are given an EPF and will try to discover
patterns of functional feasibility in its design space. The range
of designs is initially given through a Boolean design speci-
fication function fs(y), and in Section 2 we will see how tighter
constraints on this emerge after evaluating many designs for
their performance. Section 3 demonstrates this approach as
applied to our canonical example, the padlock. To investigate
how learning one FFR for a specific embodiment may help us
understand other similar designs, we consider two other de-
signs from the same FPF in Section 4. Finally, we consider
the question of convergence for the FFR in Section 5.
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2. IMPLICIT CONSTRAINT DISCOVERY

Since the origins of CAD, for example, in the very early ideas
of Ivan Sutherland (1963), there has been considerable em-
phasis on the process of discovering constraints in the design
space, often through computational imagery that simulates
the process of sketching (Gross et al., 1988). The idea of con-
straints on design parameters, originating in the work of Gos-
sard (Lin et al., 1981), revolutionized CAD by introducing the
notion of parametric modeling.

However, not much computational work has focused on
the task of discovering implicit constraints by exploring func-
tion in the design space. This is partly because of the diffi-
culty in understanding function. In this work, we only con-
sider design problems that are well understood, so that
function is definable and may be expressed in quantifiable
terms. We operate at the embodiment level and take functions
to be evaluatable in terms of performance metrics. For our ex-
ample class of locking devices (Fig. 5), possible performative
behaviors may be strength, weight, cost, and robustness
against jamming. For each such behavior of interest, we as-
sume that a performance metric is available, and we show
how exploration in this multifunction space results in identi-
fication of feasible subspaces (FFRs) in the design space.

2.1. Design space shrinking

Any general purpose function approximation algorithm can
be used to learn the implicit patterns that constrain the space
of “good designs.” Here we use multlayer perceptrons as our

vehicle for learning the FFRs. In practical systems, the result-
ing constraints may be of direct value to novice designers, es-
pecially in situations involving many choices (Gross, 1986).
This would constitute an important step if we are to enable
computers to have greater access to the range of creative im-
provements possible for the human designer (Janssen, 2006).
In a computational sense, the process of design, involving com-
putationally expensive analysis of aspects such as strength,
flow, or motion, can then be limited to a much smaller range.
It is more important, however, that it may be possible to dis-
cover abstractions in the design space leading to compact
representations.

Let Vs be the initial design space defined by the set of de-
sign specifications fs(y). Let fe(y) be an emergent constraint
that is learned through exploration, based on a function char-
acterized by a set of performance metrics pi(y). Whenever fe
is true, fs must also be true; otherwise, these designs y would
not have been explored at all. Now we provide the following
simple result, which motivates this work.

DEFINITION 1 (specification constraints): The specifica-
tion constraints fs( ) constrain the initial design space Vs,
which is defined as Vs ¼ {yj fs(y)}. B

DEFINITION 2 ( functional constraints): Acceptable
levels of performance are defined as a Boolean function of
the performance metrics g(py), for example, g(pi(y)) ¼
^i(pi(y) – mini) . 0. This ideal functional constraint g( )
is modeled by the emergent functional constraint fe(y) �
g(pi(y)), which is an approximation to g( ) learned over a
set of experienced design instances. B

Fig. 4. Hierarchy in design. Starting with all possible artifacts, the designs that share some principles of operation constitute the phenom-
enological design domain (PDD). Within these, those that have the same set of shared user needs constitute a functional part family (FPF).
Among these, designs with the same embodiment constitute the embodiment part family (EPF). [A color version of this figure can be
viewed online at journals.cambridge.org/aie]
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The functional constraint g( ) is trivial if it holds for all y [
Vs. For any nontrivial functional constraint g(pi(y)), there
exist some design instances y [ Vs, such that :g(pi(y)).

As experience increases (as more design instances are ex-
plored), fe( ) becomes increasingly precise in its approxima-
tion to g( ). In Section 5 we consider some measures for the
accuracy of this approximation.

DEFINITION 3 (FFRs): The ideal FFR is the constrained
design space Vi ¼ {yjg(pi(y))}. This ideal FFR Vi is ap-
proximated by the emergent FFR Ve ¼ {yj fe(y)}. B

THEOREM 1 (design space shrinking): A nontrivial func-
tional constraint g(pi(y)) narrows the design space from Vs

to Vi, where Vi , Vs. B

Proof: This follows from (9y){ fs(y) ^ :fe(y)}. B

Because Ve is an approximation ofVi, it is also expected to
be narrower than Vs.

If one can obtain a measure for the cardinality of the de-
sign space, then one may also define the effectiveness of an
emergent constraint in terms of the degree of shrinking
kVek/kVsk. If this shrinking factor is observed to be high,
the designer’s conscious attention is drawn to it, and she
may explore the reasons for this behavior. This is possibly
one aspect of “interestingness” of the emergent relation.

Note that the set of performance metrics pi constitutes a
mapping from the design space to the performative behaviors.
The acceptable set of y, determined by g(pi(y)) is specified
based on user preferences, as encountered in the past (these
are given to us in the apprenticeship situation). The functions
pi(y) may be quite complex, for example, in products involv-
ing mechanical assemblies, the computation may involve rel-

ative motion of the subparts; these behaviors may be captured
using C-space. The learned emergent constraint fe(y) pro-
vides a more easily computed approximation.

We now demonstrate the process of computing the emerg-
ent design space (or the FFR) for several classes of locking
devices.

2.2. EPF: Locking devices

Let us consider the U-bolt and latch design fragment of a pad-
lock (Fig. 6). The design variables (i.e., the set of independent
variables that define a design instance) constitute the design
vector y, y¼ {w, t}. The dependent variables are the support-
ing length (l1) and the width of the latch (b). These are deter-
mined from the independent variables w, t as l1 ¼ 6 mm and
b ¼ 8 mm space of two-dimensional design vectors, as con-
strained by the design specifications, called specification con-
straints fs(y), is the initial design space Vs ¼ {yj fs(y)}.

Here the set of design variables, these constraints, and the
other design parameters (b, l1), are given to the system. The
design space is bounded by defining a set of specification
constraints fs(y) that must be true (here fs is taken to be Bool-
ean; one may consider these to be defined based on algebraic
functions, say, of the form p( ) . min). Given this initial spec-
ification of the design space, and the performative metrics, our
task is to discover the emergent patterns in the design space
that determine good functional performance.

2.2.1. C-space

In designs such as padlocks that involve mechanical mo-
tion, relating functions to structure often involves abstractions
on the relative motion of the subparts. C-space is a well-known

Fig. 5. Design change. Under the same functional part family (FPF), we consider design change at two levels: an embodiment change,
padlock to slotted wheel mechanism, and a design space expansion, adding an additional variable (e) to the slotted wheel mechanism.
Our objective is to see if the some aspects of the knowledge captured in the functionally feasible regions are similar in these new embodi-
ments. EPF, embodiment part family. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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approach for modeling such abstractions (Faltings, 1992).
However, computing the C-space for general motions re-
mains an intractable problem (Ji & Xiao, 2001). Further,
given a C-space, obtaining successful abstractions on it;
that is, segmenting the free space into behaviorally significant
regions; for example, using topologically different contact
types (Mukerjee & Bhatia, 1995), remains a considerable
challenge. Here, we assume that similar designs have been ex-
plored already, so that some understanding of the C-space and
its abstractions are available for the EPF under consideration,
such as the three locking device embodiments considered be-
low. Thus, a performance metric can be computed for any de-
sign instance in each EPF.

3. DISCOVERING PATTERNS OF FUNCTIONAL
FEASIBILITY

We adopt a supervised learning approach toward discovering
FFRs in the design space. The training set is the set of designs
explored in the design space: each visited design instance is
evaluated with the given performance metrics. Given a set
of acceptability criterion, design instances are categorized
as feasible or infeasible, and the learning system attempts to
construct a hypothesis for these accept/fail evaluations. We
have tested the system with several well-known pattern learn-
ing algorithms (Bishop, 2006): multilayer perceptron, radial
basis functions, and support vector machines. Within the
variability of the process, each of these converges to similar
output, especially where the training set is large. Here we pre-
sent the results from learning with the simplest multilayer
perceptron structure (essentially a steepest gradient learner),
where the input will be the design vector y, the oracle is the
acceptability condition g(pi), and the output is whether the
design instance is feasible. We use a single hidden layer with
50 neurons with a tan–sigmoid transfer function. The weights
and bias values in the backpropagation training are updated
according to the Levenberg–Marquardt optimization technique.
The commercial package Matlab has been used for this.

This process differs from the human designer’s function
emergence process in several significant aspects. For humans,
the process of arriving at the constraint operates at a more ab-
stract level than the design instance; each sketch, or imaged
design, is ambiguous and applies to a region in the design
space rather than a single design (Oxman, 2002). Thus, in hu-
mans this search rules out large subclasses of design at each
step; in the machine learning process adopted here, the ma-
chine can only evaluate designs at the design instance level,
so many more evaluation sequences are required. However,
it is posited that the human is able to operate at a more abstract
level because she already has many “preconceptions,” possi-
bly from exploring similar domains. It is these very precon-
ceptions that the machine is trying to learn at this point.

We demonstrate this process next with the example of the
padlock latch–bolt design fragment.

3.1. Padlock latch–bolt fragment example: Explicit
constraints

For discovering new functional constraints, we consider two
performative behaviors: ease of insertion and strength. We
consider how performance metrics for these may be specified
for several embodiments for locking devices, which are all in
the same FPF because they share the same set of performative
behaviors.

Considering the latch–bolt fragment of a padlock, we ob-
serve that ease of insertion will decrease as the clearance w
– t is reduced. Hence, we may define the performance metric
for ease of insertion (pease) as the clearance w – t. For the re-
gion of the design space where w , t, the latch cannot enter
into the slot, and the design is infeasible. Further, very low
values of w – t may also make it hard to insert. Acceptability
may then be defined as a minimum acceptable level of this
performance metric.

The strength of the lock depends on a number of factors,
such as the tensile strength of the U-bolt, the bending strength
of the latch, the groove on the U-bolt, the support for the latch

Fig. 6. The latch–bolt design fragment. (a, b) Padlock with U-bolt–latch mechanism. (c) Design variables exerting forces on latch: w, t;
design parameter variables: l1, supporting length; b, breadth of latch (into the page). [A color version of this figure can be viewed online at
journals.cambridge.org/aie]
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inside the lock, and so forth. Here we consider the latch as
supporting beam with roller support as shown in Figure 7a.
When the lock is hammered, an impact force is applied
near the left end of the latch shown as an upward arrow in
Figure 7c. Although the effect of this impact loading is
more difficult to model, a reasonable simplifying assumption
is that a lock that is strong in normal loading would also be
strong in impact loading. Thus, we seek to compute the max-
imum force F, by which the latch can withstand. The maximal
bending s ¼ 6Fl1/bt2, and setting this equal to the yield
strength gives us the maximal sustainable F:

pstr ¼ sY bt2=6l1;

where sY is the yield strength of the material (incorporating a
suitable factor of safety, etc.) and l1 and b are as defined above.

3.1.1. Discovery of functional feasible regions
for padlock

By applying different standards of acceptability for the per-
formance metrics to different instantiations in the design
space, one can obtain different bounds to the FFRs. The per-

formance metric for ease of insertion is negative for the region
above the w ¼ t line, and this region is permanently infeasi-
ble. For increasing minimal acceptability levels of pease, the
feasibility region boundary shifts more to the right. Similarly,
for any given level of pstr, the material and other dimensions
remaining the same, the strength increases proportionally to
t2. Increasing acceptability levels for the combination of these
two performance metrics would result in the t-boundary shift-
ing upward and the w-boundary moving to the right. Figure 8
shows the ideal FFRs in the padlock design space for single or
combined performance metrics.

The ideal FFR is the region defined by the acceptability
condition g( ) defined on the performance metrics. Although
the functions given here are easy to compute, design evalu-
ation in practices is often a computationally expensive task.
In order to abstract patterns on these, it is therefore necessary
to evolve a separate abstraction mechanism, that trains on the
set of designs already explored (the design memory), to learn
a classifier that matches the underlying, ideal FFR as best as it
can. These learned FFRs, for differing levels of design expo-
sure, are shown in Figure 9, corresponding to the ideal FFRs
of Figure 8b and 8c. With very few instances, the system has

Fig. 7. The padlock example. (a) U-bolt moving vertically and latch horizontally and (b) the configuration space (X, Y ) for the latch–bolt
design fragment; the locking region is to the bottom left. (c) A, B, and C are three design instances in the w, t design space; their C-space
locking regions are shown. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 8. Ideal functionally feasible regions (FFRs) for latch–bolt fragment. (a) Ease of insertion metric pease along a narrow range of 3.5 mm
, pease , 4.5 mm. (b) Combining both pease and pstr metrics at 3.5 mm , pease . 4.5 mm and 100 N , pstr , 1000 N. (c) The only lower
bounds for pease and pstr at pstr . 500 N and pease . 1 mm.
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very limited experience and the feasible regions learned at
this stage are ill defined. The learned pattern becomes clear
with more training points. In addition, we find that the process
takes longer to converge for narrow bands (as in Fig. 9c).

For the padlock, the evaluation computation involves two
simple closed-form equations; clearly, there are no limits to
the complexity of the performance metrics. For many prob-
lems, elaborate iterative computations such as finite element
method or finite difference computations over a mesh may
be needed. However, designers in such cases often invoke
“similar” tasks they have explored earlier, for example, “a
similar stress worked for other turbine blades” (Ahmed
et al., 2003). Thus, at least for some situations, there appears
to be a possibility of applying some of the learned abstrac-
tions to different but related embodiments. In the following
section we consider the slotted wheel mechanism and a var-
iant with a vertical shift in the latch axis and explore if there
may be some pattern similarity in these cases. However,
defining a computational procedure for identifying such sim-
ilarities is beyond the scope of the present work; we merely
indicate the possibility of transferring such mechanisms.

4. DESIGN CHANGE

In the previous section we have discovered some function-
based constraints on the design space in terms of the FFRs.
This was done for a specific embodiment (the latch–bolt
of padlocks), based on strength and ease of insertion as the
performative metrics. Next, we ask if it is possible that these
patterns, learned for one embodiment, may inform our per-
ception of such emergent constraints in related design prob-
lems. We explore this question in the context of two other
locking devices that have the same performative behaviors,
that is, they are in the same FPF. For this, we consider two
types of design change: embodiment change (Section 4.1)
and design space expansion (Section 4.2). In both situations,
a latch is inserted into a slot on a rotating barrel as opposed to
a translating U-bolt.

4.1. Design change 1: Slotted wheel mechanism

As a first step we consider a slotted wheel mechanism, with a
latch that enters a slot on a rotating barrel, thus preventing fur-

Fig. 9. Learning functionally feasible regions (FFRs): dependence design experience. Implicit constraints on “good designs” are learned
for (a) 25, (b) 100, and (c) 1000 design instances under the functional specifications 4.5 mm . pease . 3.5 mm and 1000 N . pstr . 100 N
(Fig. 8b). The decision surface learned after sufficient trials matches the ideal FFR very well, but convergence is slower for more complex
patterns. Similarly, other constraints are learned for (d) 25, (e) 100, and (f) 400 design instances for acceptability: pstr . 500 N and pease .

1 mm (ideal FFR, Fig. 8c).
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ther rotation. The design variables for this mechanism are
similar to the latch–bolt: slot width w and latch thickness t.
The other design parameters are the radius of the slotted
wheel (r) and the depth of the groove (bg). The performative
behaviors remain the same: strength and ease of insertion.
However, the kinematics is quite different (Fig. 10), and it be-
longs to a different EPF Figure 4. The latch moves horizon-
tally (X ) as in the padlock but the slotted wheel rotates
(DOF u). These two motion variables define the C-space
for this embodiment. In order to estimate the performance
metrics it is necessary to understand the motion space u, X
of these interacting objects. For this we compute the C-space
of the locking region (Fig. 11b) based on the contact state
graph as shown in Figure 11a. Here each node represents a
contact state between geometric elements (Fig. 10b). For ex-
ample, CS02 involves contacts between v4, ebc and e23, vb. A
contact state constrains the possible states of the contact pair,
removing 1 or 2 DOF. Thus, each CS is represented as a line
(–1 DOF) or point (–2 DOF) in the u, X C-space (Fig. 11b).
Note that, as in the padlock, the locking region in the C-space
is an indentation into the obstacle region, except that the deep
end of the indentation is flat for the padlock (Fig. 7b), and is a
shallow groove in the slotted wheel (Fig. 11b).

The strength performance metric for the slotted wheel is
derived from the maximal torque it can withstand, as opposed
to maximal force. The maximum torque t the latch can sup-

port is given as as pstr ¼ Fr (Fig. 10c), where F is the max-
imal force on the latch and r its moment arm. The maximal
sustainable F occurs when the bending stress 6Fl1/bt2 equals
the yield strength pstr.

The ease of insertion is again determined by the clearance,
pease ¼ w – t. Based on these two performance metrics, the
ideal FFRs are shown in Figure 12.

Given different ranges of acceptability for the performance
metrics, we again obtain different FFRs. We observe that the
shape of the FFRs is similar to that for the padlock for similar
combinations of the performative behaviors, although the
embodiment was quite different; compare Figure 12a to
Figure 8c forpstr and Figure 12b to Figure 8a. The similarities
may be because the C-spaces of the two mechanisms remain
similar, although the embodiments are quite different.

Next, we investigate a second kind of design change. A
new dimension of variability in the design is introduced, re-
sulting in an additional design variable in the new embodi-
ment. If this new mechanism shares the same performative
behaviors, it will come under the same FPF as the padlock
and the slotted wheel. This is considered in the next section.

4.2. Design change 2: Slotted wheel with vertical shift

Consider that the latch of the slotted wheel has an additional
DOF e representing an upward shift in the latch axis

Fig. 10. The slotted wheel mechanism. (a) Design variables: degrees of freedom u, radius of the slotted wheel r, depth of the groove bg,
width w, horizontal movement X, and thickness of latch t. (b) Contact states can be described with sets of vertices and edges of the con-
tacting bodies. (c) The contact state here is the contact between the vertex v1 of the wheel and the edge of the latch eda. The strength pstr is
derived from the maximum torque t that it can withstand. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 11. (a) The contact state graph for computing (b) the configuration space. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]
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(Fig. 13a). This results in a design space w, t, e for this altered
slotted wheel mechanism. Now the translation axis of the
latch is above the slotted wheel center. This may arise as a re-
sult of some constraint in the installation, or as a result of
manufacturing inaccuracies. This shift will then affect the
quality of the penetration, and hence the strength. However,
the performative behaviors considered remain strength and
ease of locking, so that this constitutes a different EPF in
the same FPF.

With the addition of vertical shift e in the latch axis, the
motion behavior changes considerably. In the contact state
graph (Fig. 11a), a new contact state CS04a ¼ ke12, val is ob-
served (Fig. 13b); this causes the mechanism to experience
new set of behaviors at certain e values. The corresponding
C-space is shown in Figure 14 with contact state constraints
(for a detailed analysis, see Dabbeeru & Mukerjee, 2008).
Now we consider the mechanism for a fixed e¼ 0.3 for com-
puting the performative behaviors at a contact state CS04a.

As before, we consider the same performative behaviors
pstr and pease. For computing the performance metrics pstr

of the lock we consider the torque t, it can withstand that
can be determined by the contact force F and its moment
arm; this contact force is in turn limited by the latch strength.
The maximum force that can be supported by the latch is still

given by F ¼ sY bt2/6l. The torque corresponding to this oc-
curs when the horizontal arm of the contact force moment is
given by d¼ (2e cosuþ t cosu – w)/2sinu, and u is the angle at
which this penetration is achieved. The corresponding maxi-
mal torque is then given by t , –F cosu d – F sinu (eþ (t/2)).

The presence of shift e affects the penetration depth and
hence the FFRs (Fig. 15a) would emerge differently for the
same range ofpstr, and similar for pease (Fig. 15b), for the val-
ues considered in unshifted slotted mechanism. The learning
pattern for Figure 15a is shown in Figure 15c.

4.3. Discussion

As humans looking at the FFRs emerging in the three locking
devices (Fig. 16a–c) we observe that the FFR for the padlock
is quite similar to the slotted wheel mechanism although the
performance metrics are different. At a second level of design
change with an additional design variable, for the same ac-
ceptability range for the performative behaviors the emergent
pattern is also quite similar though the lower boundary of the
FFR is now angled up because of the e shift.

To comprehend why this similarity arises although the em-
bodiments in these three instances are quite different, we ob-
serve that the physical principles by which these locking de-

Fig. 12. Ideal functionally feasible regions (FFRs) for the slotted wheel with various functional constraints: (a) pstr . 6 N m and pease .

0.1 mm, (b) pease . 0.3 mm and pease . 0.4 mm, and (c) learning with 600 instances.

Fig. 13. The vertical shift in the latch. (a) The slotted wheel mechanism with shift e. (b) In addition to the contact formations of Figure 11a,
a new contact state ke12, val is seen for upward shift e in the latch. [A color version of this figure can be viewed online at journals.cambridge.
org/aie]
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vices work are similar, in that a latch is inserted into a slot pre-
venting motion of the bolt or barrel containing the slot. This
implies that in the locking region of the C-space, in each of
these, there is a constraint on the motion of the bolt/barrel (Y
or u) when the latch position (X ) is in a certain region. This
can be seen clearly in the C-spaces in the bottom row of Fig-
ure 16, where we observe that for certain values of X, the Y,
u values are constrained and may not increase, thus locking
the device. In contrast, once the latch is moved to the right
(X increases beyond the locking limit), the Y, u motion is unfet-
tered in the free space of the C-space. Thus, the lock can be
opened in these states. This type of similarity in the underlying
principles incorporating function often holds across many em-
bodiment differences, and in such situations one may expect to
see certain similarities in the emergent functional patterns.

It is possible that the designer’s intuitive feel for the degree
to which such transfers are permissible is part of what Janssen
(2006) has called design stance, which involve a broader and
less specific type of preconception than Functional emerg-

ence being considered here. Eventually, it may be possible
that CAD systems would be able to discover such higher level
regularities, but clearly it would take much more experience
and would require as a prerequisite the type of functional pat-
tern abstraction being presented in this initial exploration.

5. VARIABILITY OF EXPERIENCE: ARE
IMPLICIT CONSTRAINTS STABLE?

One of the questions that arise is regarding the nature of the
convergence of the learned classifier function fe(y). We
know that if fe is a good characterization of g(pi) and if it
is well learned, then it will narrow the design space. However,
there are two questions this raises:

1. Degree of convergence: What does it mean to be well
learned, that is, when do we know that the learning pro-
cess has converged?

Fig. 14. The locking region configuration space (a) without axial shift or (b) when there is a upward shift in latch axis by shift e. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 15. Evolving constraints for slotted wheel mechanism with shift. (a,b) Different functionally feasible regions (FFRs) in the w, t design
subspace for differing constraints on pstr and pease and (c) the learned FFR for (a).
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2. Stability of converged pattern: Will two different learn-
ing experiences that are exposed to different trajectories
of design instances end up in the same emergent space
Ve or different ones?

Both questions are classic problems in computational
learning theory. We are given a training sample D, that is, a
set of pairs y, y, where y is a bit indicating whether the design
y is a feasible design. The sample is drawn from a distribution
in the design space, and y is the noise free result, that is,
g(pi(y)). The function fe(y) is said to be a good generaliza-
tion of g if its expected error rate on data drawn from the same
distribution is less than 1 with probability 1 – d [Bishop,
2006]. Constructing such a theoretical analysis requires one
to model the distribution of designs as they are taken up for
exploration; even then, the results present a worst-case anal-
ysis that is often much poorer than actual experience.

In this work we therefore restrict ourselves to an empirical
investigation of these questions with data from the most com-
plex of the three locking devices: the slotted wheel mecha-
nism with axial shift. The first question, whether a learning
process has converged or not, can be determined by estimat-
ing the error rate. This is done using a dense sampling over Vs

at several iterations during the learning process, and seeing if
a large fraction of samples have changed sign from an earlier
learned pattern. The function is said to have stabilized if the

fraction of samples changing signs between iterations is
less than some parameter 1.

In order to study convergence, we consider the error in the
learned function fe as the misclassified fraction, that is, those
design instances that are actually infeasible but show up as ac-
cepted in the learned function, which are false positives
(FPs), and those that are feasible but are rejected, which are
false negatives (FN). True positives (TP) are accepted design
instances and true negative (TN) are the ones rejected by the
learned function. Now we define error as the false results (FP
þ FN) over the whole region Vs (FP þ TP þ FN þ TN). As
we see in figures such as Figure 9a or 9d, patterns learned
based on a small sample of the design space tend to have large
areas that do not match the underlying functional constraint.

As with human designers, we find that our learned function
better reflects the underlying patterns of feasible designs as
the training set increases (Fig. 17 for the slotted wheel with
axial shift; see also Fig. 9 for the padlock). Next, we consider
variations in the learned pattern given a sparse training set (50
samples, Fig. 18a–c), and for a dense training set (500 sam-
ples, Fig. 19a–c). The patterns learned after greater exposure
are clearly more uniform and have a smaller error rate.

We now consider a statistical analysis of the error rate over
a large set of training runs (Fig. 20). All the classifiers here
are attempting to learn the FFRs (feasible region constraint)
for the slotted wheel, for the performance constraint pstr .

Fig. 16. The functional similarity in functional part families. (a,b) Different functionally feasible regions (FFRs) in the w, t design subspace
for differing constraints on pstr and pease at (a) pstr . 500 N and pease . 0.1 mm, (b) pstr . 6 N m and pease . 0.1 mm, and (c) the learned
FFR for (a) at pstr . 6 N m and pease . 0.1 mm. There are certain similarities in the emergent functional patterns for three different em-
bodiments in the w, t design subspace for differing constraints on pstr and pease. The bottom row contains C-space mappings for the locking
regions. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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6 N m. Sample sizes for training are chosen in multiples of
two, from 23 to 210. The mean error and standard deviation
are computed from 25 trials with each sample size. We ob-
serve that even with a meager eight training samples, the error
(percentage of test cases classified wrongly) is only 13.2%.
Although the mean error keeps decreasing, the standard de-
viation remains quite high at about 2.2% up to N¼ 64. Even-
tually, the standard deviation becomes negligible as the train-
ing size approaches 1000 samples and the error percentage,
which is falling asymptotically, goes down to about 1.6%.

Thus, this analysis on these simple initial case studies show
that as expected, the learned function tends to converge closer
to the target function as training size increases. A significant
aspect of this analysis is that, as variance decreases, the sys-
tem acquires greater confidence in the validity of the learned
function; this replicates human experience. In the early
stages, the designer is unsure of her abstractions but becomes
increasingly confident after exploring a large number of de-
sign instances. This can also provide a measure for what con-

stitutes an “adequate” sample size. Clearly, for more complex
design spaces with higher dimensionality, this would still be a
very large number. Finding ways to reduce the dimensionality
and therefore the adequate sample size would be an important
challenge.

5.1. Differences with human sketching

An important difference between human and machine learn-
ing of these implicit constraints is that the program requires
hundreds of sample points to be explored even in this rela-
tively simple design space, whereas designers typically go
through only a handful of sketches even in more complex sit-
uations. This may be explained by three factors. Each sketch
is not a fully defined design instance, so it leaves many as-
pects undefined. Thus, a sketch represents a constrained re-
gion of the design space, and not just a single design. Reject-
ing or refining a sketch is equivalent to exploring hundreds of
design instances in our paradigm, and the human designer

Fig. 17. The quality of implicit constraints learned improves with experience. With increasing experiences of (a) 6 (error¼ 0.1570), (b) 60
(error ¼ 0.0689), and (c) 600 (error ¼ 0.0145) instances, the functionally feasible region (FFR) converges more toward the ideal FFR in
Figure 15a.

Fig. 18. Learning based on 50 design instances. With limited exposure, the functionally feasible regions (FFRs) exhibit wide variation: (a)
error ¼ 0.0592, (b) error ¼ 0.0608, and (c) error ¼ 0.0586.
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rules out large swathes of the design space in each evaluation,
leading to faster convergence. Of more importance, the hu-
man designer is not choosing the sketches randomly; models
that are quickly seen to be unlikely to serve the performance
requirements are not sketched at all. It may be argued that the
progression of sketches already incorporates some idea of the
functional constraints as has been abstracted by the early
experience. As seen above, even a few design explorations re-
veal a good bit about the structure of the space of good de-
signs; hence, using this pattern to drive new sketches, instead
of choosing randomly all of the time, makes for much faster
convergence. Finally, the human designer starts with a al-
ready available store of domain knowledge, defined in terms
of similar functional structures as seen earlier, whereas the
computational process identified here is (at least for now)
blind to such interrelations.

6. CONCLUSION: SCALABILITY AND FUTURE
WORK

In this paper, we have presented a computational process that
attempts to imitate an expert designer’s ability to quickly
come up with good designs via functional emergence, which
is modeled here in terms of FFRs. This is suggested as a first
step in the cognitive process whereby a designer redefines the
design problem in terms of new chunks and eventually sym-
bols, which are emergent properties of the design problem
that are discovered during exploration. Discovering these re-
gions of functional feasibility, the FFRs, is itself an early
form of functional emergence, because the patterns revealed
are novel and may result in considerable narrowing or in-
formation compression. We show how computational algo-
rithms can identify such FFR regions in an apprenticeship
mode, where well-defined problems are presented to it. We
demonstrate this process on a padlock embodiment. By con-
sidering two other embodiments in the same functional class,
we present empirical evidence that such patterns of functional
emergence may be similar across some set of designs in a

functional class, suggesting that one may also be able to learn
higher level patterns of functional emergence beyond the em-
bodiment level. Such a model may be thought of as a key step
in the shift from novice designer behavior, which considers
case-based similarity with a specific design problem, to ex-
pert behavior that schematizes for a class of designs (Linsey
et al., 2008). However, such schematization requires the sys-
tem to discover the kind of abstract representations for each
embodiment class that we are trying to develop here; thus,
the computational procedure for discovering such schemata
for larger classes of designs remains work that can only be
done after this step is well entrenched.

Obtaining the regions of functional feasibility is only the
first step in a long process of abstraction in design. Some-
times, the feasible regions constitute thin parts of the design

Fig. 19. Learning after 500 instances. The error is almost constant with a higher number of different experiences: (a) error ¼ 0.0254, (b)
error ¼ 0.0248, and (c) error ¼ 0.0251.

Fig. 20. The function quality with increasing exposure. The error is the per-
centage of the false region in Ve to the total region Vi in the design subspace
w, t. The mean error of the learned constraint function, as well as its standard
deviation (s), decreases significantly as the number of training instances
increase from 16 to 1024. These data are based on 25 independent runs for
each sample set for the slotted wheel mechanism with e ¼ 0.3r. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]
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space; in such situations they may readily yield lower dimen-
sional manifolds, an example of which is presented for a sim-
ple linear chunk. In other work, we have explored nonlinear
dimensionality reduction, especially as they may relate to
multiple-objective optimization of designs (Mukerjee & Dab-
beeru, 2009). The existence of such lower dimensional mani-
folds indicates the existence of tight interrelations between
the design variables that must hold in order to meet some func-
tional requirement. If these latent interrelations form a stable
pattern, they are likely to represent chunks. Chunking is often
suggested as a key step in the process of developing human ex-
pertise, because they significantly reduce the dimensionality
and hence the complexity of the design search. In our current
work, we are considering various models for discovering
chunks as low-dimensional manifolds in the design space.

The examples demonstrated here are rather simple, and an
important question is that of scalability as we consider increas-
ingly complex designs. Even in more complex cases, for exam-
ple, involving many more design variables and performantive
behaviors, such a process would still be applicable as long as
the function is quantifiable in terms of performance metrics.
However, learning adequately accurate functions is likely to re-
quire a much larger training data in more complex spaces, and
the algorithmic complexity of this training process remains an
important consideration for future. Nonetheless, even as pre-
sented here, the system is possibly a great help to novice de-
signers, who may observe in the resulting patterns some expla-
nation in terms of the underlying parameters, which would add
to her design knowledge in this domain.

6.1. Learning “commonsense” knowledge

One of the aspects in this type of machine-learning process
differs from human design exploration lies in the fact that hu-
mans bring to bear a great degree of broad prior knowledge to
the design task. This helps the human avoid unnecessary
evaluation of thousands of unlikely design instances, where
each evaluation may involve extensive computations. With-

out a similar capability, machine abstraction would clearly
have difficulty in scaling up to larger problems. This much
richer conceptual base, sometimes known as commonsense
knowledge (e.g., that a fat peg cannot go into a thin hole),
may help select more likely candidate designs. In this sense,
the machine may be thought of as an infant first experiencing
such tasks (the peg-in-hole constraint is one of the early con-
straints learned by humans by age 5 months; Spelke & Hes-
pos, 2002). The approach posited here makes only a small
beginning, but it is supposed that in the long run, the func-
tional constraints learned hereby would be generalized to
much broader design systems.

As a simple example of how this may be working, let us
consider the peg-in-hole task a bit further. Consider an infant
playing with inserting sticks into holes, and a padlock de-
signer in the conceptual design stage, thinking about how
the latch enters in a slot in the U-bolt. Both are insertion tasks,
but compared to the infant, the designer has extremely sophis-
ticated abstractions of how objects fit into one another, the
constraints these impose on the relative motion of the parts,
and so forth. We propose that such learning may occur easily
using the paradigms presented here. As a side effect of ex-
ploring the w, t space demonstrated here, the system can
also learn the constraint, at least implicitly, that w , t. This
is shown in Figure 21 for 10, 50, and 200 instances. At this
point, the system is in no position to make any generalizations
from this behavior; after observing similar constraints in a
wide range of other mechanisms, it is possible that the system
may be able to generate a general constraint for insertion sit-
uations from a large number of ab initio explorations such as
this one. As opposed to the human-defined logical formal-
isms, such generalizations, when learned, would be grounded
and be able to “capture product semantics” (Brunetti & Go-
lob, 2000) in a far more flexible manner than the brittleness
of present knowledge-based systems. This work thus pro-
poses that, instead of attempting to preprogram such domain
knowledge, it may be better to acquire this knowledge as
patterns within the design space.

Fig. 21. Learning through experience that the latch must be smaller than the slot (w . t). The quality of the learned pattern improves with
experience: results after experiencing (a) 10, (b) 50, and (c) 200 instances. Crosses indicate feasible trained data, and boxes indicate infea-
sible trained data.
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6.2. Learning symbols

Thus far, we have considered only implicit knowledge, which
is knowledge that is understood as an unstable pattern that is
difficult to relate to newer experiences. In human usage, sym-
bols, which are grounded in experience and have a reference
label, serve the needs for indexing the knowledge structure so
that new experiences can associated with it and modify it. At
the same time, social conventions of symbol usage also tend
to stabilize the model; without it, newer experiences would
continue to shift the symbol, and there would be no stability.
The other aspect of symbols is that they are conscious or ex-
plicit; they are not the implicit functions we have been learn-
ing throughout this paper. We suggest that learning such sym-
bols may not be a very difficult step based on what has been
demonstrated here with FFRs.

Commonsense knowledge of the type shown above, after
being observed in a large number of instances, may become
reified or come into conscious awareness. At this point, if
one talks to human designers, one may learn a preexisting
term for the concept, or one may invent such a term oneself.
Thus, the concept comes to have both a grounded model, say,
a low-dimensional chunk defined on the variable space, and
a label by which it can be indexed in memory. Then new
experiences can attach to this meaning-label pair, which is
traditionally called a symbol. Thus, the process of symbol
emergence involves exploration of the design space, discov-
ery of low-dimensional chunks, and then interaction with (hu-
man) language users to discover preexisting labels, if any. We
feel this process is an important research direction for compu-
tational models of design, because it opens up a bridge from
the creative design models proposed by Schon (1983) to a
more structured knowledge system which can be usefully de-
ployed in design. By developing computational models for
the reflective practice of design, we feel the proposed ap-
proach opens many avenues for discovery of abstractions in
the design process.
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APPENDIX A: GLOSSARY

Design space V The n-dimensional space in which designs are
represented by points, where n is the
number of independent variables

Design variables y The set of independent variables that define
the design, sometimes called driving
variables

EPF Embodiment part family: a set of members, in
which each member will share the same set
of performance measures p and the
mapping from design variables to
performance measures is the same and
hence have the same performance metrics

FPF Functional part family: a set of members, in
which each member will share the same set
of performance behaviors but the specific
performance measure pi may be different
because the mapping from design variables
to performance measures can be different

Performative behaviors The subset of behavior space that is of interest
to the user

PDD Phenomenological design domain: has a set of
members, in which each member will share
some set of performance behaviors

Specification constraints
fs(y)

The specification constraints fs( ) constrain
the unbounded design space V
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