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Abstract

The hierarchical generalized Voronoi graph(HGVG) is a new
roadmap developed for sensor-based exploration in unknown en-
vironments. This paper defines the HGVG structure: a robot can
plan a path between two locations in its work space or configura-
tion space by simply planning a path onto the HGVG, then along
the HGVG, and finally from the HGVG to the goal. Since the bulk
of the path planning occurs on the one-dimensional HGVG, motion
planning in arbitrary dimensioned spaces is virtually reduced to a
one-dimensional search problem. A bulk of this paper is dedicated to
ensuring the HGVG is sufficient for motion planning by demonstrat-
ing the HGVG (with its links) is an arc-wise connected structure.
All of the proofs in this paper that lead toward the connectivity re-
sult focus on a large subset of spaces inR3, but wherever possible,
results are derived inRm. In fact, under a strict set of conditions,
the HGVG (the GVG by itself) is indeed connected, and hence suffi-
cient for motion planning. The chief advantage of the HGVG is that
it possesses an incremental construction procedure, described in a
companion paper, that constructs the HGVG using only line-of-sight
sensor data. Once the robot constructs the HGVG, it has effectively
explored the environment, because it can then use the HGVG to plan
a path between two arbitrary configurations.

KEY WORDS—sensor-based exploration, skeletons, roadmap,
Voronoi diagrams, motion planning

1. Introduction

This work addresses two canonical sensor-based motion-
planning problems for a robot without prior information about
an environment: (1) find a collision-free path to a goal and
(2) map a bounded environment with a systematic exploration
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procedure. Since in a bounded environment, the solution to
the mapping problem automatically solves the collision-free
path-planning problem, we will focus attention on the geo-
metric structure necessary for exploration.

Our mapping procedure relies on aroadmap, a network of
one-dimensional curves that concisely represents the salient
geometry of a robot’s environment. A planner can construct a
path between any two points in a connected component of the
robot’s free space by finding a path onto the roadmap, travers-
ing the roadmap to the vicinity of the goal, and constructing
a path from the roadmap to the goal.

This paper introduces a new roadmap termed thehierarchi-
cal generalized Voronoi graph(HGVG), which can be incre-
mentally constructed using only line-of-sight sensor data. An
incremental construction procedure is important because most
environments do not have a single vantage point from which
the robot can “see” everything, and thus the robot must sys-
tematically move around the environment. Once the robot has
incrementally constructed the roadmap for an environment, it
has in essence explored the environment. The HGVG incre-
mental construction procedure is described in the companion
paper (Choset et al. 2000).

The HGVG is defined in terms of line-of-sight distance
measurements, information that sensors can provide. Most
sensor-based motion planners are limited to planar configura-
tion spaces, but the HGVG is also useful in multidimensional
spaces where the bulk of the motion planning still occurs in a
one-dimensional search space. The HGVG approach differs
from other sensor-based planners in that it offers complete-
ness guarantees that ensure the robot can find a path from start
to goal or report that such a path is not feasible.

While sensor-based planning motivates this work, the
HGVG has many other applications when full knowledge
of the world is available. Potential application areas in-
clude CAD modeling, injection molding, visibility planning,
and inspection. For example, just as the HGVG reveals the
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underlying geometry of a robot’s environment, it could also
emit the geometry of an injection mold. A designer could
infer mold properties from the HGVG, early in the design
phase, before committing to a particular design.

1.1. Relation to Prior Work

Roboticmotion planninggenerally determines apath that a
robot must follow to reach a goal location or configuration
without penetrating any obstacles (Latombe 1991). This path
may exist in the robot’s environment or in the robot’sconfig-
uration space,the set of all robot locations and postures that
do not intersect an obstacle for a particular environment. A
motion planner iscompleteif it can, in finite time, find a path
or determine that no such path exists.

Classical motion planning assumes that the robot has a
priori information about the environment, but when the robot
does not have any previous information, it must rely on sen-
sor information. Therefore, the robot must usesensor-based
motion planning. This type of planning has recently received
increased attention, as it is a requirement for the realistic de-
ployment of autonomous robots into unstructured and com-
pletely unknown environments.

Much current work in sensor-based planning applies to
two-dimensional scenarios and is heuristic (therefore, not
complete). One class of heuristic algorithms employs a
behavioral-based approach, in which the robot is armed with a
simple set of behaviors (e.g., following a wall) (Brooks 1986).
A hierarchy of cooperating behaviors then composes more
complicated actions, such as exploration. Sequencing con-
stitutes an extension of this approach (Gat and Dorais 1994).
While strong experimental results suggest the utility of the be-
havioral approaches, none of these methods possesses proofs
of correctness guaranteeing that a path can be found, nor
do they contain well-established thresholds specifying when
their heuristic algorithms fail. Finally, these approaches do
not generalize to higher dimensions.

Complete sensor-based planners are typically limited to the
plane (Rao et al. 1993). For example, one of the first com-
plete sensor-based schemes is Lumelsky’s “bug” algorithm
(Lumelsky and Stepanov 1987), but it is limited to the plane
and does not provide a map of the environment. One of the
first complete sensor-based schemes to map an unknown en-
vironment is described in Rao, Stolzfus, and Iyengar (1991).
This method is based on the generalized Voronoi diagram,
described below, and is also limited to the plane.

Our approach adapts the structure of a rigorous motion-
planning scheme that functions in higher dimensions. One
such method relies on aroadmap(Canny 1988), a concept
analogous to highway systems having the following properties
of accessibility, connectivity, anddepartability. Accessibility
means that the planner can construct a path from any point
in the environment onto the roadmap. Connectivity, as its
name suggests, means that the roadmap is connected, i.e.,

there is only one connected roadmap per connected region of
free space. Finally, departability means that a path can be
constructed from a point on the roadmap to any point in the
free space.

An example of a roadmap scheme is the Opportunistic
Path Planner (OPP) (Canny and Lin 1993). Rimon adapted
this motion-planning scheme for sensor-based use (Rimon
and Canny 1994). The sensor-based planner requires active
perception to guarantee connectivity of the roadmap, but it
does not describe the active perception procedure nor when
to invoke it. Furthermore, the sensor-based approach does
not contain a detailed procedure for constructing the roadmap
fragments from sensor data, and finally, the robot must contain
sensors that can detect “interesting critical points” and “inter-
esting saddle points,” whose implementation is described only
for a handful of special cases.

Another type of roadmap is thegeneralized Voronoi dia-
gram (GVD), the locus of points equidistant to two or more
obstacles. The GVD is an extension of the Voronoi diagram
(VD), the set of points equidistant to two or more points
(sometimes termed sites) in the plane. The GVD was first used
almost 20 years ago in robotics for machine vision (Rowat
1979). Active research in applying the GVD to motion plan-
ning began with Ó’Dúnlaing and Yap 1985), who consid-
ered motion planning for a disk in the plane. However, their
method requires full knowledge of the world’s geometry prior
to the planning event and its retract methodology may not
extend to nonplanar problems. Later work (Rao, Stolzfus,
and Iyengar 1991) introduces an incremental approach to cre-
ate a GVD-like structure, which is limited to the case of a
plane. Prior work (Avis and Bhattacharya 1983) describes
theVoronoi graph(VG), which is the one-dimensional locus
of points inm dimensions equidistant tom point sites. Our
approach can be viewed as a blend of the OPP and Voronoi
methods.

1.2. Contributions

The HGVG roadmap represents one of the first motion-
planning techniques that (1) relies only on line-of-sight sensor
information, (2) functions in higher dimensions, and (3) offers
completeness guarantees. Since many sensors provide dis-
tance information, a motion planner that relies on a distance
function, one that measures the distance between a point and
an obstacle, is useful for sensor-based planning. The GVD
roadmap is well suited to sensor-based implementation be-
cause it is defined in terms of just such function.

Nevertheless, to accommodate free-flying and highly ar-
ticulated robots, the challenge is to develop a roadmap for
multidimensional spaces. The GVD is only a roadmap for
planar environments. Consequently, the first step in this work
produces thegeneralized Voronoi graph(GVG), which is a
natural extension of the GVD into higher dimensions; it is the
one-dimensional set of points inm dimensions equidistant to
m obstacles.
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However, unlike the GVD, the GVG is not necessarily con-
nected in dimensions greater than two, and thus, in general,
is not a roadmap. Additional structures, termedhigher order
generalized Voronoi graphs, connect GVG components, and
together with the GVG form the HGVG. The HGVG is well
suited to motion planning in multidimensional spaces (such as
configuration spaces) because a motion planner can perform
a bulk of its search on the one-dimensional HGVG. Figure 1
summarizes the evolution of the HGVG.

1.3. Basic Assumptions

Throughout this work, we assume that the robot is modeled
as a point operating in a subsetW of anm-dimensional Eu-
clidean space. We termW to be the work space even though it
could be the robot’s work space or configuration space, which
is C2-diffeomorphic toRm. The work spaceW is populated
by obstaclesC1, . . . , Cn, which are closed sets. We assume,
when necessary, that nonconvex obstacles are locally convex,
i.e., they are modeled as the union of the convex sets. For
example, in Figure 2, the robot considers the L-shaped obsta-
cle as two obstacles when attending to the “interior” of the L,
but as one when focusing on the regions: the left and under-
neath the L. This makes sense from a sensor-based point of
view. When the robot is “in” the L, it “sees” two objects that
connect, whereas outside and to the left, the robot “sees” one
obstacle. The set of points where the robot is free to move
is called thefree spaceand is defined asF7 = W\⋃i=n

i=1 Ci

(see Fig. 2).
This work makes two assumptions underlying the place-

ment of obstacles in the environment. The first is stated be-
low, and the second is introduced in Section 3.4. Finally, for
x ∈ Rm, let nbhd(x) be a neighborhood ofx that is contained
in Rm.

Fig. 1. Evolution of the HGVG.

Fig. 2. The robot operates in a bounded subset of the free
space. Concave obstacles are modeled as the union of convex
obstacles.

ASSUMPTION1. Boundedness Assumption: The robot op-
erates in a bounded, connected subset of the free spaceF7.
This subset is bounded by obstacles.

When Assumption 1 is valid,n ≥ m + 1. For example, in
R3 it takes a minimum four convex obstacles to bound a subset
of F7. Also note that when Assumption 1 holds, although the
robot is operating in a bounded connected subset ofF7, the
free spaceF7 itself may be unbounded.

2. Distance Functions

The HGVG is defined in terms of a distance function that
measures distance between a point and an obstacle. This sec-
tion defines two types of distance functions: the X-distance
function and the V-distance function, both of which provide
a geometric foundation for our definition of the roadmap. A
more complete discussion of these functions and their prop-
erties can be found in Choset and Burdick (1994).

2.1. X-Distance Function

The distance between a pointx and a convex setCi is

dX
i (x) = min

c0∈Ci

‖x − c0‖, (1)

where‖ · ‖ is the two-norm inRm. In Clarke (1990), it is
shown that the gradient ofdX

i (x) is

∇dX
i (x) = x − c0

‖x − c0‖ ∈ TxRm, (2)

wherec0 is the point closest tox in Ci . That is,c0 is the
point where‖x − c0‖ = minc∈Ci

‖x − c‖. In later sections,
we writec0 = argmindX

i (x). The gradient∇dX
i (x) is a unit

vector, based atx, pointing away fromc0 along a line defined
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by c0 andx (see Fig. 3). For convex sets, the closest point is
always unique and thus, in the interior of the free space, the
single object distance function is smooth (Clarke 1990).

Typically, the environment is populated with multiple ob-
stacles, and thus we define amultiobject distance function,
which is the distance between a pointx and the closest point
in the closest obstacle, i.e.,

D(x) = min
i

dX
i (x). (3)

Sometimes,D(x) can be stated as the distance between a point
and the environment.

The multiobject distance function is nonsmooth (Choset
1998), and hence its gradient cannot be trivially defined.
However, using nonsmooth analysis, which is reviewed in
Choset (1998), it can be shown that thegeneralized gradient
of D(x) is

∂D(x) = Co{∇dX
i (x) : i ∈ I (x)}, (4)

where (1) Co is the convex hull operation, (2)∂ is the gener-
alized gradient operator, and (3)I (x) is defined as the set of
indices such that∀i ∈ I (x), eachCi is the closest object tox
(x may be equidistant to two or more obstacles). Notationally,
if ∂ appears in front of a set, as opposed to a function, then it
refers to the boundary of the set.

The definition of the distance function in this section does
not consider occlusions. That is, the distance between a point
x and an obstacleCi can always be determined, even if there
are other obstacles betweenx andCi . Therefore, for the sake
of terminology, we will term the particular distance function
defined in this section as theX-distance functionbecause its
implementation assumes a robot can see through obstacles, as
if the robot has X-ray vision.

Fig. 3. Distance betweenx andCi is the distance to the closest
point onCi . The gradient is a unit vector pointing away from
the nearest point.

2.2. The V-Distance Function

Since most robot sensors cannot see through obstacles, we will
now develop a distance function that relies solely on line-of-
sight measurements. First, we consider line of sight between
two points, and then between a point and an obstacle. A
point c is within line of sightof a pointx if there exists a
straight line segment that connectsx andc without penetrating
any obstacle. That is,c is within line of sight ofx if for all
t ∈ [0, 1], (x(1 − t) + ct) lies inF7.

Now consider line of sight between a point and an obstacle.
Let C̃i(x) be the set of points on an objectCi that are within
line of sight ofx, i.e.,

C̃i(x) = {c ∈ Ci : (1 − t)x + ct ∈ F7, ∀t ∈ [0, 1]}.

Let c be the nearest point inCi to x, as defined by the X-
distance function, i.e.,c = argmindX

i (x). The obstacleCi

is within visible line of sightat a pointx, if the line segment
that connectsc andx does not penetrate any other obstacle.
In other words,Ci is within visible line of sight atx if c ∈
C̃i(x). In Figure 4, the nearest points on objectsCj andCk,
as measured by the X-ray distance function, are within line
of sight ofx and henceCj andCk are within visible line of
sight ofx.

If C̃i(x) = ∅, thenCi is fully occludedatx. In other words,
there are no points on the object that are within line of sight
of x. Finally, there is an intermediate notion occlusion. Ifc 6∈
C̃i(x), the obstacle isvisibly occludedat x. In Figure 4, the
nearest point on objectCi , as measured by the X-ray distance
function, isnot within line of sight ofx, and hence it is not
within visible line of sight ofx, i.e., Ci is visibly occluded
at x. With this notion of visible line of sight, we can define
distance as

DEFINITION 1. TheV-distance functionmeasures the dis-
tance between a pointx and visible line-of-sight obstacleCi ,
as the distance betweenx and the closest point onCi to x. If

Fig. 4. Using the V-distance function, the distance toCi is
infinity, i.e.,Ci is visibly occluded.
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Ci is not within visible line of sight atx, then the distance is
infinity, i.e., letc = argmindX

i (x), and

dV
i (x) =

{
minc∈Ci

‖x − c‖, if c ∈ interior(C̃i(x)),

∞, if c 6∈ interior(C̃i(x)),
(5)

where interior means the interior of a set.

In Figure 4,Ci is not within visible line of sight atx, and
thus it is occluded atx, makingCk the second closest obstacle.

If an object is not occluded, then the distance function has
an associated gradient, i.e., lettingc = argmindX

i (x), we have

∇dV
i (x) =

{
x−c

‖x−c‖ if c ∈ interior(C̃i(x)),

undefined, ifc 6∈ interior(C̃i(x)).
(6)

By definition, D(x) = mini dV
i (x) = mini dX

i (x).
Throughout this work, we will use the visible distance func-
tion, so theV -superscript is omitted.

Since this distance function is based only on line-of-sight
information, it is more conducive to implementation with re-
alistic sensors than the X-distance function. In fact, an im-
portant characteristic ofdi(x) and∇di(x) is that they can be
computed from sensor data. For example, consider a mobile
robot with a ring of sonar sensors (Fig. 5). The sonar sensor
measurement approximates the value of the distance func-
tion, and the direction opposite to which the sensor is facing
approximates the distance gradient.

3. The Generalized Voronoi Graph

The distance function provides the basis for the HGVG and
related structures such as the GVG and GVD. In this section,

Fig. 5. Mobile robot with sonar ring.

we describe the structures that comprise the GVG and then
show that the GVG is one-dimensional. To do this, we must
introduce a stability assumption requiring that obstacles lie in
a generic environment. Finally, we will discuss the properties
of accessibility and connectivity.

3.1. Equidistant Faces

In the Voronoi diagram literature, aVoronoi regionis the set of
points closest to a particular site (Aurenhammer 1991). Here,
this definition is extended to thegeneralized Voronoi region,
Fi , which is the closure of the set of points closest to one
particular obstacle. In other words,

Fi = cl{x ∈ F7 : di(x) ≤ dh(x) ∀h 6= i}. (7)

The basic building block of the GVD and GVG is the set
of points equidistant to two setsCi andCj , which we term
thetwo-equidistant surface,

7ij = {x ∈ W\(Ci

⋃
Cj ) : di(x) − dj (x) = 0}.

See Figure 6. Of particular interest is the subset of7ij termed
thetwo-equidistant surjective surface,

77ij = cl{x ∈ 7ij : ∇di(x) 6= ∇dj (x)}, (8)

which is the set of pointsx equidistant to two objects such
that ∇di(x) 6= ∇dj (x), i.e., the function∇(di − dj )(x) is
surjective for allx ∈ 77ij . Algebraically, this definition sat-
isfies some requirements of the preimage theorem (Abraham,
Marsden, and Ratiu 1988), but in actuality, the definition of
77ij accommodates nonconvex sets (see Fig. 7). IfCi and
Cj are disjoint convex obstacles, then77ij = 7ij . We are
interested in yet a further subset of77ij , which is

DEFINITION 2. Thetwo-equidistant faceis the set of points
equidistant to obstaclesCi andCj , such that each pointx in
Fij is closer toCi andCj than to any other obstacle, i.e.,

Fij = {x ∈ cl(77ij ) : di(x) = dj (x) ≤ dh(x) ∀h 6= i, j}.
(9)

By definition,Fij ⊂ cl(F7). Note that a two-equidistant
Fij lies on the common boundary of adjacent generalized
Voronoi regions,Fi andFj , i.e.,Fij = Fi

⋂
Fj . See Figure 8

for an example ofFij .
The union of all two-equidistant faces forms the general-

ized Voronoi diagram, i.e., GVD =
⋃n−1

i=1
⋃n

j=i+1 Fij (see
Fig. 9). Note that the GVD can be thought of as a complex
that separates a space into generalized Voronoi regions —
regions closest to a particular obstacle.

The GVD reduces the motion-planning problem by one
dimension, but that is not sufficient. Consider a 30-degree-
of-freedom snake robot. InR30, for example, the GVD is
29-dimensional, which still presents a complicated motion-
planning problem. We seek a one-dimensional roadmap.
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Fig. 6. The solid line represents7ij , the set of points equidis-
tant to obstaclesCi andCj . Note that7ij is unbounded and
contains two components: the left component contains two
linear subcomponents and one parabolic subcomponent, and
the right component is linear. For all points,x, in the right
component,∇di(x) = ∇dj (x). The dotted lines emphasize
that at a point on7ij , di(x) = dj (x).

Fig. 7. The thick solid line with the gentle bend represents
77ij , the set of points equidistant to obstaclesCi andCj such
that the two closest points are distinct. Note that it is also
unbounded and only has one connected component, unlike
7ij . Again, the dotted lines emphasize that for all points on
77ij , di(x) = dj (x) and the two vectors emphasize∇di(x) 6=
∇dj (x).

Fig. 8. The solid line with angled ticks is the set of points
equidistant and closest to obstaclesCi andCj .

Fig. 9. The ticked solid lines is the set of points equidistant
to obstaclesCi andCj from Figure 7, such that each edge
fragment is closest to the equidistant obstacles.
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Therefore, to define the GVG, we continue to define lower di-
mensional subsets ofW. Thethree-equidistant surface, 7ijk,
is the set of points equidistant to three objects,Ci , Cj , andCk,
i.e., 7ijk = 7ij

⋂
7jk

⋂
7ik. Similarly, thethree-equidistant

surjective surface, 77ijk, a subset of7ijk, is the set of points
equidistant to three objects,Ci , Cj , andCk, such that for each
point in77ijk, the gradients of the individual single object dis-
tance functions are distinct, i.e.,77ijk = 77ij

⋂
77jk

⋂
77ik.

The three-equidistant face, Fijk, a subset of77ijk, is the set
of points equidistant toCi , Cj , andCk, such that each point
is closer toCi , Cj , andCk than any other obstacle, i.e.,

Fijk = cl{x ∈ W : 0 ≤ di(x) = dj (x) = dk(x) ≤ dh(x)

such that ∇di(x), ∇dj (x), and ∇di(x)

are linearly independent.}
= Fij

⋂
Fik

⋂
Fjk.

(10)

Continuing in this vein, after taking the appropriate(k − 2)

intersections, one can define ak-equidistant surface, 7i1...ik ,
and ak-equidistant surjective surface, 77i1...ik . We rely on the
Boundedness Assumption (Assumption 1) to guarantee that
there exist “enough” obstacles such that7i1...ik and77i1...ik are
not empty (i.e., they exist). A subset of77i1...ik of particular
interest is thek-equidistant face, Fi1...ik , which is the set of
points equidistant to objectsCi1, . . . , Cik such that each point
is closer to objectsCi1, . . . , Cik than to any other object.

Fi1...ik = {x ∈ W : 0 ≤ di1(x) = · · · = dik (x) ≤ dh(x) and

for all p, q ∈ {1, . . . , k}, ∇dip (x) 6= diq (x)},
= Fi1i2

⋂
Fi1i3

⋂
· · ·
⋂

Fi1ik . (11)

To be consistent with the Voronoi diagram literature, in
Rm, m-equidistant faces and(m+1)-equidistant faces would
be termedgeneralized Voronoi edgesandgeneralized Voronoi
vertices, respectively. However, in this work, we term them-
equidistant faces asGVG edgesand(m+1)-equidistant faces
asmeet pointsbecause GVG edges meet at(m+1)-equidistant
faces. The solid lines in Figures 10 and 11 represent GVG
edges inR3.

3.2. Boundary Face and Floating Boundary Face

To determine the dimension of the equidistant faces, and hence
the GVG edges, we must first identify the structures that lie
in the boundary of equidistant faces. Observe in Figure 11
that a three-equidistant face lies in the boundary of a two-
equidistant face, i.e.,Fijk ⊂ ∂Fij . This can be rigorously
shown via the following relationship (Choset 1996):

∂(A
⋂

B) ⊂ (∂A
⋂

cl(B))
⋃

(∂B
⋂

cl(A)). (12)

Fig. 10. An example of a two-equidistant face that contains
a boundary edge as a portion of its boundary. The boundary
edge is represented by light dotted lines, whereas the GVG
edges are represented by dark solid lines.

Fig. 11. The generalized Voronoi graph in a rectangular en-
closure. The solid lines represent the GVG edges, which meet
at vertices that are termed meet points.
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Let A = {x : di(x) = dj (x)}, B = {x : di(x) ≥ 0}, and
C = {x : ∇di(x) 6= ∇dj (x)}. With these definitions,

Fij = cl(A
⋂

B
⋂

C) = cl{x : 0 ≤ di(x)

= dj (x) ≤ dh(x) ∀h and∇di(x) 6= ∇dj (x)}.
(13)

Equation 12 implies thatFijk ⊂ ∂Fij ; however, this equa-
tion also implies there are two other structures in the bound-
ary: a two-boundary face and a floating two-boundary face,
both defined below. These structures rarely occur and are
not part of the GVG, but they are required in determining the
appropriate dimension count for the GVG.

The set of points on the boundary of the free space where
k obstacles intersect is thek-boundary faceand is defined as

Ci1...ik = {x ∈ Fi1...ik such thatD(x) = 0}. (14)

In m dimensions, an(m − 1)-boundary face is termed a
boundary edgeand is illustrated in Figure 10.Boundary frag-
mentsare connected subsets of the boundary edges and are
denotedcij (cij ⊂ Cij ). Finally, inRm, anm-boundary face,
i.e. aboundary point, is where the GVG edge and boundary
edge meet. Boundary points are also nodes in the GVG.

A floatingk-boundary face, FCi1...ik is the set of points in a
k-equidistant face where at least two gradient vectors become
collinear, i.e.,

FCi1...ik = {x ∈ Fi1...ik : ∇dj1(x) = ∇dj2(x)

wherej1, j2 ∈ {i1, . . . , ik}}.
(15)

Analogous to boundary edges,floating boundary edgesare
floating(m−1)-boundary faces inRm, andfloating boundary
fragmentsare connected subsets of the boundary edges and
are denoted byf cij , wheref cij ⊂ FCij . Just like boundary
edges, in most environments, there are not that many floating
boundary edges (and thus floating boundary fragments) be-
cause these structures are associated with the boundary of the
environment.1 Finally, floating boundary pointsare floating
m-boundary faces inRm. See the appendix for an example
containing boundary and floating boundary edges.

The following proposition guarantees that the(k + 1)-
equidistant face, thek-boundary face, and the floatingk-
boundary face are the only structures that can exist in the
boundary of ak-equidistant face.

PROPOSITION 1. If a (k + 1)-equidistant faceFi1...ik+1 is
nonempty, then thek-equidistant faceFi1...ik must also be
nonempty; however, the converse is not necessarily true.
Furthermore,

∂Fi1...ik = Fi1...ik ik+1

⋃
Cil ...ik

⋃
FCi1...ik .

1. Note that floating boundary faces can be defined alternatively via afloat-
ing k-boundary surface, FSi1...ik

, which is the set of points on the bound-
ary of a k-equidistant surjective surface where two gradient vectors be-
come collinear, i.e.,FSi1...ik

= {x ∈ 77i1...ik
: ∇dj1(x) = ∇dj2(x),

wherej1, j2 ∈ {i1, . . . , ik}}. ThenFCi1...ik
= {x ∈ FSi1...ik

: ∀h 6∈
{i1, . . . , ik}, dh(x) ≥ di1(x) = · · · = dik

(x)}.

The proof of the above proposition is a simple application
of Equation 12 to the definition of ak-equidistant face, which
is defined as

Fi1...ik = cl{x ∈ W : 0 < di1(x) = · · · = dik (x)

≤ dh(x) ∀h

and∇dp(x) 6= ∇dq(x) ∀p, q ∈ {i1, . . . , ik}}.
However, this proof can intuitively be derived by inspec-

tion of Fi1...ik ’s definition. Starting from the left-hand side of
the definition, the portion of the boundary associated with the
first inequality, 0< di1(x) = · · · = dik (x), is the set of points
where 0= di1(x) = · · · = dik (x); this is ak-boundary face,
Ci1...ik . The portion of the boundary associated with the next
inequality,di1(x) = · · · = dik (x) ≤ dh(x), is the set of points
equidistant tok + 1 obstacles, i.e., a(k + 1)-equidistant face.
Finally, the set of points on the boundary associated with the
final inequality,∇dp(x) 6= ∇dq(x), is a floatingk-boundary
face,FCi1...ik .

3.3. Generalized Voronoi Graph Definition

With the equidistant faces and other structures, we can now
define the GVG as follows:

DEFINITION 3. Thegeneralized Voronoi graph(GVG) is a
graph embedded inRm whose edges arem-equidistant faces
and whose nodes arem + 1 equidistant faces,m-boundary
faces, andm-floating boundary faces, i.e.,

GV G =
[(⋃

Fi1...im

)
,

(⋃
Fi1...im+1

⋃
Ci1...im

⋃
FCi1...im

)]
.

(16)

In other words, GVG comprises edges, the GVG edges,
and the nodes, which include meet points, boundary points,
and floating boundary points. Please note the union operator
(
⋃

) was loosely used in the above definition to mean the union
over all possible indices.

EXAMPLE 1. Figure 11 depicts a generalized Voronoi graph
for a rectangular enclosure inR3. The GVG edges, delin-
eated by solid lines, constitute the locus points equidistant to
three obstacles, and the meet points are where the GVG edges
intersect. There are eight GVG edges that look like spokes;
these have boundary points, in addition to meet points, as end
points.

3.4. Dimension of GVG Components

The GVG is the backbone of the HGVG roadmap, and there-
fore we must first show that it is truly one-dimensional. To
determine the generic dimension of the GVG edges, we will
use the preimage theorem below to show that the GVG is
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one-dimensional. To properly invoke the preimage theorem
to obtain a correct dimension count, we first introduce an im-
portant transversality assumption and discuss its implications.

ASSUMPTION 2. Equidistant Surface Transversality As-
sumption: If equidistant surjective surfaces are manifolds,
then they intersect transversally. That is,77i1...ikj1t̄ 77i1...ikj2

with respect to77i1...ik if j1 6= j2.

In the case thatm = 2 and the obstacles are points, this as-
sumption is equivalent to the “no four points are co-circular”
assumption, which is often made in the Voronoi diagram lit-
erature (Aurenhammer 1991). Assumption 2 is the general-
ization of this statement.

This transversality assumption can also be interpreted as an
assumption on the stability of the equidistant surface intersec-
tion geometry. In Figure 12,77ijk = 77jkl = 77ikl = 77ij l

because there exists a circle that intersects the four obstacles
(a nongeneric case). After a slight perturbation of the ob-
stacles, the equidistant surfaces no longer coincide (Fig. 13).
Since77ijk and77ij l are points in this example, they inter-
sect transversally only if they do not intersect at all. As a
result of Assumption 2,77i1...ikj1 6= 77i1...ikj2 if and only if
j1 6= j2. The condition where two equidistant surjective sur-
faces are equal is an unstable nongeneric one, and thus we do
not consider it because any slight perturbation of the obstacle
locations drastically affects equidistance relationships. With
this assumption in place, we are now ready to determine the
generic dimension of the GVG.

Fig. 12. Nongeneric arrangement.

Fig. 13. Small perturbation in obstacle locations.

Let the mappingG : Rm → R be defined as

G(x) =




(di1 − di2)(x)

(di1 − di3)(x)
...

(di1 − dim)(x)


 .

An m-equidistant surjective surface can be defined as preim-
age of zero under that mappingG. That is, 77i1...im =
G−1(0). Assumption 2 ensures that zero is always a regular
value ofG for all pointsx in the surjective surface77i1...im .
Therefore, the preimage theorem (also known as the submer-
sion theorem) (Abraham, Marsden, and Ratiu 1988) asserts
that77i1...im is one-dimensional.

By a similar argument,m + 1-equidistant surjective sur-
faces,m-boundary faces, and floatingm-boundary surfaces
are zero-dimensional.

Since the GVG edges are subsets ofm-equidistant surjec-
tive surfaces, they could have a dimension as high as one, but
not necessarily one. First, we need to establish that the inte-
rior of the GVG edges are one. We do this via the following
lemma:

LEMMA 1. The interior of thek-equidistant face, interior
(Fi1...ik ), has the same dimension as thek-equidistant surjec-
tive surface,77i1...ik .

Proof. The interior of thek-equidistant face, interior(Fi1...ik ),
has the property that for allx ∈ F7, di1(x) = · · · =
dik (x) < dh(x) ∀h 6∈ {i1, . . . , ik}. Letx ∈ interior(Fi1...ik ).
Therefore,x ∈ 77i1...ik . At a point x where di1(x) =
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· · · = dik (x) < dh(x), there exists an nbhd(x) in 77i1...ik .
Let Y = nbhd(x)

⋂
77i1...ik . To show that interior(Fi1...ik )

has the same dimension as77i1...ik , it suffices to show that
Y ⊂ interior(Fi1...ik ).

Sincex ∈ interior(Fi1...ik ), there exists anh 6∈ {i1, . . . , ik}
such thatdi1(x) = · · · = dik (x) < dh(x). By continuity of
the single object distance function, forε sufficiently small,
di1(x + ε) = · · · = dik (x + ε) < dh(x + ε). Therefore,Y
is an open subset of interior(Fi1...ik ), and thus the dimensions
of 77i1...ik and interior(Fi1...ik ) are the same. �

Now, we can show the following:

PROPOSITION2. The GVG edges are one-dimensional with
zero dimensional boundary.

Proof. Since77i1...im+1 is a zero-dimensional manifold, it
consists of isolated points inW\⋃m

h=1 Ch. Each of these
points is an open set in the topology thatW\⋃m

h=1 Ch in-
duces on77i1...im+1. Furthermore, nonempty subsets of a col-
lection of points are points, and thus all nonempty subsets
of 77i1...im+1 are open sets in the subspace topology. Since
Fi1...im+1 is a nonempty subset of77i1...im+1, Fi1...im+1 is zero-
dimensional. By a similar argumentCi1...im andFCi1...im are
zero-dimensional.

By Proposition 1,Fi1...im can be defined as

interior(Fi1...im)
⋃
β

Fi1...imkβ

⋃
Ci1...im

⋃
FCi1...im .

Since∀β, Fi1...imkβ

⋃
Ci1...im

⋃
FCi1...im is zero-dimensional

and interior(Fi1...im) is one-dimensional, the GVG edge,
Fi1...im , is a one-dimensional manifold with a zero-
dimensional boundary. �

The procedure described in the above paragraph can be
repeated to show that anyk-equidistant face is(m − k + 1)-
dimensional.

3.5. Accessibility

As stated in the previous section, the GVG is the backbone of
the HGVG roadmap. Therefore, if the GVG has the accessi-
bility property, so does the HGVG. In this section, we give an
argument that a path exists from any point in the free space
to a GVG edge, i.e., the GVG has the roadmap accessibility
property.

PROPOSITION3. Given the Boundedness Assumption and
the Equidistant Surface Transversality Assumption, the GVG
has the property of accessibility.

Proof. We demonstrate that a robot can access the GVG by
following a path that is constructed using gradient ascent on
the multiobject distance functionD(x), which is the distance
to the nearest object fromx. AlthoughD(x) is not smooth,
the multiobject distance function does possess ageneralized
gradient, which is denoted

∂D(x) = Co{∇di(x) : ∀i ∈ I (x)}. (17)

Furthermore, it is shown (Choset and Burdick 1994) that
if 0 ∈ interior(∂D(x)), where 0 is the origin of the tangent
space atx, thenx is a local maxima ofD. Using this result
and the following two lemmas, we can conclude that ifx is a
local maxima ofD, then the pointx is equidistant tom + 1
obstacles.

LEMMA 2. Given a set ofn arbitrary vectors inRm, then
0 ∈ interior(Co{vi ∈ Rm : i = 1, . . . , n}) if and only if
{vi ∈ Rm : i = 1, . . . , n} positively spanRm.

LEMMA 3. Goldman and Tucker. It requires a minimum of
(m + 1) vectors to positively spanRm.

The results of Scheimberg and Oliveira (1992) can be ex-
tended to show that the generalized gradient ofD only van-
ishes at a local minima. Assume the robot does not start at a
local minima (this assumption is reasonable because we are
performing a gradient ascent operation and the local minima
are generically isolated unstable extrema points that occur
on a set of measure zero). Therefore, gradient ascent of the
multiobject distance function will bring the robot to a local
maxima ofD, which is a point equidistant tom+1 obstacles,
which is a point on the GVG. (Note that when∂D is a set, the
vector with the smallest norm in∂D is chosen as the gradient
(Scheimberg and Oliveira 1992). �

The explicit numerical implementation of the gradient as-
cent operation is described in the companion paper (Choset
and Burdick 2000).

3.6. Departability

Departability is the property of a roadmap that ensures all
points are accessible from at least one point in the roadmap
(Rimon and Canny 1994). In the case where full knowledge
of the world’s geometry is available, departability is simply
accessibility, but in reverse. The “on-line” case is considered
in the companion paper (Choset and Burdick 2000).

3.7. Connectivity of the GVG

When the GVG is connected, it is a roadmap in its own right,
and thus sufficient for motion planning. The GVD is con-
nected (Ó’Dúnlaing and Yap 1985; Choset 1996), and thus
for planar environments (m = 2), the GVG is connected.
Yap demonstrates a condition in Schwartz and Yap (1987)
that ensures connectivity of the GVG in any dimension, as
follows. The generalized Voronoi regions and equidistant
faces may be viewed as a cellular decomposition ofW into k-
dimensional sets, wherek = 0, . . . , m. If eachk-dimensional
cell is homeomorphic to ak-dimensional disk, then the one-
dimensional cells of such a decomposition form a roadmap
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structure ofW (Schwartz and Yap 1987). The GVG is suf-
ficient for motion planning in any dimensioned configura-
tion spaces if all equidistant faces satisfy this condition. For
example, the equidistant faces in Figure 11 satisfy this condi-
tion and hence the GVG is connected.

4. The Hierarchical Generalized Voronoi Graph

The GVG is a great strategy for motion planning in all planar
environments, and some multidimensional ones under certain
conditions. In environments where these conditions are not
upheld, the GVG is not sufficient for general purpose motion
planning because the GVG is not connected. These environ-
ments are realistic and are not mathematical nongeneric cases.
For example, Figure 14 contains an example of a disconnected
GVG with two connected components: (1) an outer GVG
network similar to the one described in Example 1 and (2)
an inner GVG network that forms a halolike structure around
the inner box. Solving this connectivity problem is a major
contribution of this work.

The two-equidistant face defined by the floor and the ceil-
ing in Figure 14 violates Yap’s condition because the face is
not homeomorphic to a two-dimensional disk, i.e., the halo-
like boundary structure forms a hole in the middle of the face.
In this section, we define additional structures, termedhigher
order generalized Voronoi graphs, and use them to connect
the disconnected boundaries of two-equidistant faces, which
in turn connect the GVG. Essentially, higher order generalized
Voronoi graphs are like GVGs that are recursively defined on
lower dimensional equidistant faces. The HGVG is the GVG
and all higher order generalized Voronoi graphs.

For the rest of this paper, we will focus attention on devel-
oping a roadmap forR3, even though many of the following
results are general toRm. Since we are only considering
W ⊂ R3, then

• the only higher order generalized Voronoi graph is a
second-order generalized Voronoi graph,

• two-equidistant faces are two-dimensional, and

Fig. 14. An example of a disconnected GVG.

• GVG edges are three-equidistant faces formed by the
intersection ofthreetwo-equidistant faces.

The underlying philosophy of the HGVG is to exploit the
connectivity property of the GVD, the union of the two-
equidistant faces. By definition, GVG edges lie on the
boundaries of two-equidistant faces, and thus adjacent two-
equidistant faces share a common GVG edge. If the GVG
edges associated with each two-equidistant face were con-
nected (i.e., the boundary of each two-equidistant face is con-
nected according to Yap’s assumption), then the entire GVG
is connected because the GVD is connected.

When the GVG is disconnected, a two-equidistant face
has a disconnected boundary. However, the HGVG connects
disconnected boundary components on each two-equidistant
face, and thus the HGVG is connected because the GVD is
connected. Now, our goal is to use the second-order GVG,
denoted with a superscript GVG2, to connect the boundaries
of two-equidistant faces with disconnected boundary com-
ponents, thereby connecting all disconnected GVG compo-
nents. In this section, we explicitly define the HGVG inR3

and supply a connectivity proof that makes an assumption.
The ensuing sections relax this assumption, while maintain-
ing connectivity of the HGVG. Finally, Assumption 1 has to
be modified to make sure there are “enough” obstacles for the
following.

4.1. GVG2 Equidistant Edges

The construction of the GVG2 parallels that of the GVG. The
basic building block of the GVG2 is called thesecond-order
two-equidistant surfaceand is defined as7kl |Fij

= {x ∈
Fij : (dl − dk)(x) = 0}. Of particular interest is a subset of
7kl |Fij

termed thetwo-equidistant surjective surface, which
is defined as77kl |Fij

= cl{x ∈ 7kl |Fij
: ∇dl(x) 6= ∇dk(x)}.

We define thesecond-order two-equidistant faceto be

Fkl |Fij
= {x ∈ cl(77kl |Fij

) : ∀h, dh(x) ≥ dk(x)

= dl(x) ≥ di(x) = dj (x)}.
(18)

The second-order two-equidistant face,Fkl |Fij
, is the set of

points on the face,Fij , that are equidistant to two obstacles
Ck andCl such thatCk andCl are thesecondclosest equidis-
tant objects andCi andCj are the closest equidistant obsta-
cles. In Figure 15, the lower-left dotted edge is the set of
points whoseclosestequidistant obstacles are the floor and
ceiling and whose second closest obstacles are the left and
front walls.2 This edge is a second-order two-equidistant
edge.

2. Note that we are counting first and second closest differently than one
would rank winners of a car race. In a race, if two cars tie for first, then
the next car is considered to be “third.” In our counting of first, second,
etc., we would consider the next car to be “second.” Also, we presume that
Assumption 1 ensures there are enough obstacles to define the second-order
equidistant faces.
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Analogous to the GVG, we continue our construction with
lower dimensional subsets ofFij . Thesecond-order three-
equidistant face,

Fklp|Fij
= Fkl |Fij

⋂
Flp|Fij

⋂
Fkp|Fij

,

is the set of points whereCk, Cl , andCp aresecondclosest
equidistant objects andCi andCj are the closest equidistant
objects.

Continuing in this vein, we can define second-orderk-
equidistant faces, but since we are limiting the discussion
to R3, the second-order two-equidistant faces are the GVG2

edges, and the second-order three-equidistant faces are the
second-order meet points.3

The dotted lines in Figure 15 are GVG2 edges. Note that
there is a “cycle” in the second-order GVG, which implies the
existence of the GVG cycle inside of it. With this information,
the robot makes a link from the second-order cycle to the
GVG, thereby connecting the roadmap in this example. This
linking strategy is defined in a later section.

4.2. Second-Order Generalized Voronoi Region

Recall from Section 3.1 that the GVD forms a complex that
separates the robot’s work space into generalized Voronoi
regions, each of which is the set of points closest to a
particular obstacle. Likewise, the GVG2 constrained to a
two-equidistant face, denoted GVG2|Fij

, separates the two-
equidistant faceFij into second-order generalized Voronoi
regions, each of which has a particularsecond closest obsta-
cle(butCi andCj are the closest obstacles). The second-order
generalized Voronoi regions are formally defined as

Fk|Fij
= cl{x ∈ Fij : ∀h 6= i, j, k,

0 < di(x) = dj (x) < dk(x) < dh(x)

and∇di(x) 6= ∇dj (x)}. (19)

EXAMPLE 2. Let GVG2
∣∣
Ffloor/ceiling

be the second-order GVG

for the two-equidistant face,Ffloor/ceiling, defined by the floor
and ceiling of the rectangular enclosure in Figure 15. The
solid lines in Figure 15 represent the GVG, and the dotted
lines represent GVG2

∣∣
Ffloor/ceiling

. The GVG2
∣∣
Ffloor/ceiling

di-

videsFfloor/ceiling into five regions whose closest obstacles are
the floor and ceiling; furthermore, each region has a unique
second closest obstacle: the front face, the right face, the back
face, the left face, and the interior box. These regions are the
second-order generalized Voronoi regions.

Just as the boundaries of the generalized Voronoi regions
define the GVD, the boundaries of the second-order general-

3. It is worth noting that to define the GVG2 edges, Assumption 1 must be
upgraded to ensure there are “enough” obstacles to form one-dimensional
structures. Hence, the GVG and GVG2 in higher dimensions require a clut-
tered environment with at leastm + 1 obstacles, wherem is the dimension
of the space.

Fig. 15. Box in a room.

ized Voronoi regions constitute the second-order generalized
Voronoi graph, i.e., GVG2|Fij

= ⋃
k ∂Fk|Fij

.
If the boundaries of each second-order generalized Voronoi

region are connected (or can be connected with a link), then
the boundaries of the two-equidistant faces, i.e., the GVG
edges, are connected through the second-order generalized
Voronoi graph. Therefore, our goal now is to ensure the
boundaries of the second-order generalized Voronoi regions
are connected or can be connected via a well-defined link.

However, before we can discuss connecting the boundaries
of the second-order generalized Voronoi regions, we must first
identify all of the structures in their boundaries. Unlike the
case in Figure 15, the second-order GVG may contain other
structures. These additional structures are boundary edges,
floating boundary edges, andoccluding edges. Since there
are many types of GVG2 edges, the structures defined in Sec-
tion 4.1 are termedGVG2 equidistant edges.These edges
are similar to GVG edges because they are defined in terms
of equidistant relationships. The boundary edges defined in
Section 3.2 have their name because they exist on the bound-
ary of the environment; inR3, they are the set of points where
the distance to two obstacles is zero. Floating boundary edges
are similar to boundary edges, but “float” in space. The final
edges—occluding edges—are defined in the next section.

4.3. Occluding Edges

The following example motivates the need for an occluding
edge.

EXAMPLE 3. Hole on top of a box: Figure 16 depicts a flat
room with a box in the middle of the room. The box in the
middle of the room contains an opening that can either be
a through-hole, a dimple, or an entrance to another internal
environment.

The GVG structure associated with the box and the hole
(see Fig. 17) contains two connected components: one as-
sociated with the hole and ceiling, and one associated with
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Fig. 16. Room with a box in the middle. The box, outlined
with dotted lines, has an opening on top of it, delineated with
solid lines.

Fig. 17. The GVG edges in the vicinity of the interior box.
This halo-shaped GVG edge is defined by the ceiling, floor,
and box. The two parallel arrowlike structures connected by
a segment is the GVG structure defined by the four sides of
the hole and the ceiling.

the box, the floor, and the ceiling. Unfortunately, the two
connected components are not within line of sight of each
other. Hence, even if the robot possessed a magical “GVG
sensor,” depending on the robot’s initial conditions, it may
“miss” one of these connected components while incremen-
tally constructing the HGVG. Therefore, there is a need to de-
fine an additional structure to link the disconnected connected
components.

DEFINITION 4. Thetwo-occluding face, Vkl |Fij
, is the set of

points on the shared boundary of two adjacent second-order
generalized Voronoi regions,Fk|Fij

andFl |Fij
, where for

x ∈ Vkl |Fij
, s ∈ Fk|Fij

, and t ∈ Fl |Fij
, lims→x dk(s) 6=

lim t→x dl(t).

The occluding faces make the bridge between disconnected
GVG components that are not within line of sight of each
other. InR3, a two-occluding face is called anoccluding edge.

Connected subsets of an occluding edge are termedoccluding
fragmentsand are denotedvij . The following example gives
an intuitive description of the occluding edges.

EXAMPLE 4. Occluding Edge: Recall the rectangular en-
closure with a box in its interior in Figure 15. Consider the
two-equidistant face defined by the box and the ceiling of Fig-
ure 15. This two-equidistant face is shaped like an upside-
down bowl, as depicted in Figure 18. Figure 19 contains a
side view of Figure 18.

Consider a robot in Figure 19 that moves from left to right
while maintaining double equidistance between the inner box
and ceiling (i.e., while it remains on a two-equidistant face).
Assume the robot starts at a point where the second closest
obstacle is the floor. While moving from left to right on the
two-equidistant face, the inner box begins to occlude the floor
as the robot begins to pass over the box. (Recall that we are
using the visible distance function.) When the floor becomes
occluded, there is a discontinuous jump in the value of the
distance to the second closest obstacle. The point where the
floor becomes occluded is a point in an occluding edge.

The dashed lines in Figure 18 represent the occluding edge
in the two-equidistant face defined by floor and ceiling. The
occluding edge encloses a region where points in its exterior
are within line of sight of the floor. (See Fig. 20.)

4.4. Structures of the Second-Order Generalized Voronoi
Graph (Boundary Elements of the Second-Order
Generalized Voronoi Regions)

Since the boundaries of the second-order generalized Voronoi
regions constitute the second-order generalized Voronoi
graph, we now consider them carefully. The following propo-

Fig. 18. Two-equidistant face between the box and the ceiling
(from Fig. 14) is outlined with thin solid lines. All of the en-
closure and box from Figure 14 is removed with the exception
of the top of the box and the ceiling of the enclosure. Dashed
lines delineate an occluding edge.
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Fig. 19. The thick solid line represents a side view of the
equidistant face defined by the box and the ceiling. The thick
arrows that are distributed along the face point toward the
floor, which is the second closest obstacle. There are no ar-
rows on the portion of the face above the box because the box
occludes the floor in that region.

Fig. 20. Two-equidistant face between the box and the ceiling,
as viewed from above, is drawn with an occluding edge.

sition enumerates the boundary structures of a second-order
generalized Voronoi region:

PROPOSITION 4. In Rm, the boundary of a second-order
generalized Voronoi region may contain the following
structures: two-equidistant faces, second-order two-
equidistant faces, two-boundary faces, floating two-boundary
faces, and two-occluding faces.

The proof of the above proposition inRm is an application
of eq. (12) through eq. (19); inspection of eq. (12) yields the
boundary components of a second-order generalized Voronoi
region inR3. Starting from the left, consider the first inequal-
ity, 0 < di(x) = dj (x). The boundary associated with this
inequality is the set of points where 0= di(x) = dj (x); this
corresponds to aboundary edge. Consider the next inequality,
di(x) = dj (x) < dk(x), whose associated boundary is the set
of points,di(x) = dj (x) = dk(x); this corresponds to aGVG
edge.The next inequality,dk(x) < dh(x), is associated with a

common boundary of two adjacent second-order generalized
Voronoi regions. When the distance to the second closest ob-
stacle continuously changes as a robot crosses from one region
to another (i.e.,di(x) = dj (x) < dk(x) = dl(x) < dh(x)),
the corresponding structure is aGVG2 equidistant edge.
When the distance to the second closest obstacle doesnot
continuously change, the corresponding structure is anoc-
cluding boundary edge.The final boundary structure occurs
when two gradients become collinear (∇di(x) = ∇dj (x));
this structure is afloating boundary edge.

4.5. Hierarchical Generalized Voronoi Graph Definition

The GVG2|Fij
edges include boundary edges, floating bound-

ary edges, GVG2|Fij
equidistant edges, and occluding edges.

The nodes are boundary points, floating boundary points,
second-order meet points, and occluding meet points. The
GVG2|Fij

is these collection of edges and nodes, i.e.,

GVG2|Fij
=[(

Cij

⋃
FCij

⋃
k

(⋃
l

(
Fkl |Fij

⋃
Vkl |Fij

)))
,

(
Cijk

⋃
FCijk

⋃
k

(⋃
l

(⋃
p

(
Fklp|Fij

⋃
Vklp|Fij

))))]
.

(20)

5. Roadmap Properties of the Hierarchical
Generalized Voronoi Graph

So now that we have defined the HGVG, we need to show
that it is a roadmap, a one-dimensional structure that has
three properties: accessibility, departability, and connectiv-
ity. Since the GVG possesses the property of accessibility
and is part of the HGVG, the HGVG also has the property
of accessibility. Loosely speaking, departability is a conse-
quence of the fact that each obstacle is within line of sight of
at least one point on the HGVG. Assume the goal is a point
obstacle and create a new HGVG, termed thevirtual HGVG.
There exists a set of pointsU in the virtual HGVG, whose
points are within line of sight of the goal; it can be shown that
at least one point inU is in the HGVG (in fact, “most ofU ” is
in the original HGVG). Therefore, there exists a point in the
HGVG that is within line of sight of the goal. See Figures 21
and 22.

The rest of this section demonstrates that the HGVG is
connected.

The proof of connectivity of the HGVG relies on the fact
that the boundaries of individual second-order generalized
Voronoi regions are connected, or can be readily connected
with a well-defined link. For the sake of explanation, assume
this to be true.
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Fig. 21. The HGVG is a GVG in the plane.

Fig. 22. The virtual GVG.

PROPOSITION5. The HGVG (with its links) is connected.

Proof. The proof of HGVG’s connectivity is done in two
steps: (1) show that the HGVG restricted to a two-equidistant
face is connected, and then (2) demonstrate that all of the
HGVGs restricted to all of the two-equidistant faces form a
connected roadmap.

First by definition, the second-order generalized Voronoi
regions, restricted to a two-equidistant face, form an exact
cellular decomposition on that face. That is,

•
⋃

k Fk|Fij
= Fij ,

• interior(Fk|Fij
)
⋂

interior(Fl |Fij
) = ∅ ∀k, l,

• cl(Fk|Fij
)
⋂

cl(Fl |Fij
) 6= ∅ ⇐⇒ ∂Fk|Fij

⋂
∂Fl |Fij6= ∅.

Let q ′
s andq ′

g be two points on the boundary of second-
order generalized Voronoi regions. Consider an arbitrary path
c : [0, 1] → Fij , wherec(0) = q ′

s andc(1) = q ′
g.

Now, we want to identify segments of this path with partic-
ular second-order generalized Voronoi regions. Letk be the
index of the second-order generalized Voronoi regionFk|Fij

.
Let the mappingfc : Fij → {1, . . . , n} determine in which
second-order generalized Voronoi region a point may lie, i.e.,
the index of the second-order generalized Voronoi region.
This function will be piecewise constant.

The entire path is broken down into segments where each
segment is a connected component of the preimage of a

second-order generalized Voronoi region index underfc. The
end points of each segment lie on the boundary of its associ-
ated second-order generalized Voronoi region.

By construction, the concatenation of segments forms a
path from start to goal. For each segment, there exists a
connected path along the boundary of its associated region
between the end points of the segment. Therefore, a new
path can be constructed from the concatenations of these new
boundary-connected path segments that connectsq ′

s andq ′
g

while remaining entirely on the boundaries of the second-
order generalized Voronoi regions (see Figs. 23 and 24).

Since the selection ofq ′
s andq ′

g was arbitrary, the union
of the boundaries of the second-order generalized Voronoi
regions is connected. That is, GVG2|Fij

is connected. The
second part of this proof uses this to show that the HGVG is
connected inR3.

The GVD is connected (Ó’Dúnlaing and Yap 1985; Choset
1996); that is, the union of the two-equidistant faces is con-
nected. Also, by definition adjacent two-equidistant faces
share a common GVG edge. Therefore, the HGVG restricted
to adjacent faces is connected. Since the union of the two-
equidistant faces is connected, all of the HGVGs restricted to
two-equidistant faces form a connected network. That is, the
HGVG is connected. �

EXAMPLE 5. A connected HGVG: Figure 25 depicts the

Fig. 23. Path in two-equidistant face.

Fig. 24. Deformed path.
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Fig. 25. A room with a hole in its side wall. The thick dotted
lines represent the GVG and the thin dotted line marks the
half-height of the room. The thick solid lines are drawn to
emphasize the GVG edges associated with the two-equidistant
face defined by the right wall and ceiling.

disconnected GVG for the environment shown in Figure 47,
from Example 10.

The geometry of the hole with respect to the room causes
the boundary of the two-equidistant face, defined by the wall
and the ceiling in Figure 25, to be disconnected (Fig. 26);
this results in a disconnected GVG. The second-order GVG
prescribes a well-defined path on the two-equidistant face that
connects the disconnected GVG fragments. Therefore, in this
example the HGVG is connected (see Fig. 27).

Now, the HGVG connectivity proof hinges on the con-
nectivity of the boundaries of the second-order generalized
Voronoi regions, so the rest of this paper is devoted to this
topic.

6. Cycles and Periods
When environments such as the one in Figure 15 have char-
acteristics that give rise to cycles in the HGVG, the HGVG
by itself is not necessarily connected. This section presents
a strategy to resolve this issue. After defining the GVG cy-
cle, we show that cycles cause the HGVG to be disconnected,
because they give rise to second-order generalized Voronoi re-
gions whose boundaries are not connected. Next, we demon-
strate a duality between cycles in the second-order GVG and
those in the GVG, which can give rise to a linking proce-
dure to connect them. We also introduce an assumption that
precludes the existence of cycles; this assumption is true in
highly cluttered environments.

6.1. GVG Cycle

DEFINITION 5. GVG Cycle: AGVG cycleis a GVG edge
that isC2-diffeomorphic toS1, the unit circle.

Henceforth, the term “cycle” refers to a GVG cycle. In

Fig. 26. GVG edges, drawn as thick solid lines, are on the
boundary of the two-equidistant face between the wall and
the ceiling of Figure 25 in Example 10. The GVG structure
in the middle of the face is associated with the hole; in
actuality, it “pinches up” out of the face.

Fig. 27. The second-order GVG edges, boundary edges, and
occluding edges are drawn in the two-equidistant face be-
tween the wall and the ceiling of Figure 25 in Example 10. The
thick solid lines are GVG edges, the dotted lines are GVG2

edges, the thin solid line is a boundary edge, and the thick
dashed lines are the occluding edges. Here, the GVG2 links
up disconnected GVG edge fragments on the two-equidistant
face.

Figure 14, the GVG cycle is the locus of points equidistant
to the floor, ceiling, and interior box, which is the halolike
structure that surrounds the box.

PROPOSITION6. In a bounded subset of a three-dimensional
Euclidean space, a GVG edge is a cycle if and only if it is
disconnected from all other edges in the GVG and the GVG2.

Proof. This proof is a consequence of the following lemmas
whose proofs appear in the appendix (Section B).

LEMMA 4. When equidistant faces intersect transversally
(Assumption 2 is upheld), a GVG cycle cannot contain a meet
point.

LEMMA 5. A GVG cycle cannot contain any boundary or
floating boundary points.

LEMMA 6. In R3, a three-equidistant surface,77ijk, is ei-
therC2-diffeomorphic to S1 (i.e., it is a GVG cycle) or it is
unbounded.

LEMMA 7. A GVG2 equidistant edge can only intersect the
GVG at a meet point.
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If a GVG edge is a cycle, then it does not contain meet
points (Lemma 4), boundary points (Lemma 5), or floating
boundary points (Lemma 5), and thus it cannot intersect other
GVG edges and GVG2 edges (Lemma 7). That is, the GVG
cycle is disconnected.

Assume there exists a disconnected GVG edge that is not
a cycle. By Lemma 6, the GVG edge must be unbounded.
However, this contradicts our Boundedness Assumption (As-
sumption 1), and thus the GVG edge is a cycle. �

Whereas Proposition 6 states that the existence of GVG
cycle implies that the HGVG is not connected, the next propo-
sition demonstrates how cycles give rise to second-order gen-
eralized Voronoi regions whose boundaries are not connected.

PROPOSITION7. In a bounded subset of a three-dimensional
Euclidean space, a GVG edge is a disconnected component
of a boundary of a second-order generalized Voronoi region
if and only if it is a cycle.

Proof. This proof is based on the following lemmas, whose
results are general inRm and whose proofs appear in the
appendix.

LEMMA 8. If the three-equidistant faceFijk is not empty,
then the second-order generalized Voronoi regionFk|Fij

must
not be empty. Furthermore, ifFijk 6= ∅, thenFijk ⊂ Fk|Fij

.

LEMMA 9. The boundary of a second-order generalized
Voronoi region contains at mostone three-equidistant face.
That is,Fpqr ( Fk|Fij

for all {p, q, r} 6= {i, j, k}.
By Lemma 8, the GVG edgeFijk must be a subset of

the boundary of a second-order generalized Voronoi region,
Fk|Fij

. In fact, by Lemma 9 it is the only GVG edge

that can be in the boundary ofFk|Fij
. GVG2 equidistant

edges, boundary edges, floating boundary edges, and occlud-
ing edges (Proposition 4) are the other structures thatmay
exist on the boundary of a second-order generalized Voronoi
region.

If Fijk is a cycle, then by Proposition 6 none of the above
listed structures can intersect it, and thusFijk must lie on a
disconnected component of the boundary of the second-order
generalized Voronoi region.

If Fijk is a disconnected boundary component of a second-
order generalized Voronoi region, it does not intersect any
GVG edge, or any GVG2 edge. By Proposition 6,Fijk is a
cycle. �

Recall Example 2, which consists of a room with a box
in its interior. Figure 15 shows the two-equidistant face de-
fined by the floor and ceiling. Solid lines represent the GVG,
and dotted lines represent the GVG2. The inner box defines
a second-order generalized Voronoi region,Fbox

∣∣
Ffloor/ceiling

.

This region contains a cycle on its boundary and thus has a
boundary that is not connected. All of the other second-order

generalized Voronoi regions do not contain any cycles and
thus their boundaries are connected.

6.2. Second-Order Cycles and Periods

Just as there are cycles in the GVG, there are also cycles in
the GVG2. A second-order cycleis a GVG2 equidistant edge
that isC2-diffeomorphic toS1, the unit circle. However, we
are interested in another structure, termed thesecond-order
period, defined below.

DEFINITION 6. GVG2 Period: AGVG2 periodis a connected
second-order generalized Voronoi region boundary compo-
nent that does not contain any GVG edges.

By definition, a GVG2 period is the union of zero or
more GVG2 equidistant edges, zero or more boundary frag-
ments, zero or more floating boundary fragments, and zero
or more occluding fragments. Note that second-order periods
are homeomorphic toS1 and that GVG2 cycles are GVG2

periods.
A GVG2 period that only has GVG2 equidistant edges is

denoted
⋃

l Fkl |Fij
. A GVG2 period that has GVG2 equidis-

tant edges, boundary fragments, floating boundary fragments,
and occluding fragments is denoted by

Cij

⋃
FCij

⋃
l

(
Fkl |Fij

⋃
Vkl |Fij

)
.

For example, if a GVG2 period is composed of three GVG2

equidistant edges and one boundary edge, the GVG2 period
is Fkl1|Fij

⋃
Fkl2|Fij

⋃
Fkl3|Fij

⋃
Cij .

The second-order generalized Voronoi region, depicted in
Figure 28, lies on the two-equidistant face defined by the
floor and ceiling in Figure 15. This second-order generalized
Voronoi region has as its closest obstacles the floor and ceiling
and has as its second closest obstacle the inner box. The
dotted lines on the outer boundary represent GVG2 equidistant
edges, which compose a GVG2 period.

6.3. Inner and Outer Cycles and Periods
Here, we describe the notions of an inner and outer cycle.
Recall the corollary to the Jordan curve lemma, which states
that any closed curve in the plane (or surface diffeomorphic
to a plane) divides the plane into two regions: one termed the
boundedsection and one termed theunboundedsection.

Let∂iFk|Fij
be a boundary component of the second-order

generalized Voronoi region,Fk|Fij
, and let it serve as a Jordan

curve on77ij . If Fk|Fij
lies on the bounded region of77ij ,

then it is anouterboundary component. Otherwise, it is an
inner boundary component. From these two definitions, the
notion of aninner cycle, outer cycle, inner GVG2 period, and
outer GVG2 periodnaturally follow.

EXAMPLE 6. Figure 28 contains the second-order general-
ized Voronoi region that is defined by the box on the two-
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Fig. 28. The second order period is drawn with dotted lines. It is the union of second order GVG edges that forms a connected
boundary component of a second order generalized Voronoi region.

equidistant face, defined by the floor and ceiling from Ex-
ample 2. The dotted lines in Figure 28 represent the GVG2

period that furnishes the outer boundary. The solid line repre-
sents the GVG cycle, which is an inner boundary component
of Fbox

∣∣
Ffloor/ceiling

. Figures 29 and 30 illustrate, respectively,

how the definitions of inner and outer boundaries work. In
Figure 29, when the GVG cycle is a Jordan curve, its as-
sociated second-order generalized Voronoi region lies in the
unbounded region (shaded). Similarly, in Figure 30, when
the GVG2 period is a Jordan curve, its associated second-
order generalized Voronoi region lies in the bounded region
(shaded).

From Figures 15 and 28, it appears that there exists a duality
between the existence of the GVG cycles and GVG2 periods.
The following proposition establishes this duality: for one of
them to exist, the other must exist. Hence, the existence of
one is a clue to the robot that another cycle or period is nearby.
This information is needed for a “linking” strategy to connect
disconnected HGVG components, such as those in Figure 15.

PROPOSITION 8. In R3, if a GVG cycle Fijk is an inner
boundary in a two-equidistant faceFij , then there exists an
outer GVG2 period in the two-equidistant face,Fij .

Proof. By Lemma 8, ifFijk 6= ∅, then the second-order gen-
eralized Voronoi region,Fk|Fij

6= ∅. Furthermore, Lemma
8 asserts thatFijk is in the boundary ofFk|Fij

. By Lemma
9, Fijk is the only GVG edge inFk|Fij

. By the Bounded-
ness Assumption (Assumption 1),Fk|Fij

must be bounded
and thus contains an outer boundary component. Accord-
ing to Proposition 7, this outer boundary component does not
containFijk. Such a boundary component is a GVG2 period
because it is free of GVG edges. �

Although the converse of the above statement is not nec-

essarily true, the following proves to be useful.

PROPOSITION9. If the outer boundary of a second-order gen-
eralized Voronoi region is a GVG2 period, and there is GVG
edge associated with the same region, then the GVG edge is
an inner GVG cycle.

Proof. Recall that a GVG2 period cannot intersect with a
GVG edge. By hypothesis, the GVG2 period is an outer
boundary. Also, by hypothesis, there exists a GVG edge,
Fijk, inside the second-order period.

Assume that the edgeFijk is not a cycle. IfFijk 6= ∅,
then77ijk 6= ∅ and by Lemma 6 it is unbounded. Therefore,
77ijk must intersect the outer GVG2 period. In particular,
say 77ijk intersectsFkl |Fij

. For all x ∈ 77ijk

⋂
Fkl |Fij

,
dh(x) ≥ di(x) = dj (x) = dk(x) = dl(x), for all h. This
is the definition of a meet point, and thus by Proposition 1,
a GVG edge intersectsFkl |Fij

. This contradicts our original

hypothesis thatFijk is a GVG2 period. Therefore,Fijk is a
cycle. �

Linking from an outer second-order period to an inner
GVG cycle is achieved via gradient descent of the distance to
the second closest obstacle, constrained to a two-equidistant
face. Letx be a point on a second-order period. LetCi and
Cj be the two closest obstacles, letCk andCl be the second
closest obstacle, and letFijk be the inner GVG cycle. Atx,
dk(x) > di(x) = dj (x).

LetπTxFij
∇dk(x) be the projection of the gradient∇dk(x)

onto TxFij . This is the direction that increases distance to
Ck while maintaining double equidistance betweenCi and
Cj . Continuity of the distance function guarantees that a path
traced out byċ(t) = −πTc(t)Fij

∇dk(c(t)), wherec(0) = x

encounters the inner GVG cycle if and only if∇dk(c(t)) does
not vanish. That is, the distance toCk decreases as the distance
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Fig. 29. Inner boundary.

Fig. 30. Outer boundary.

to Ci andCj increases, or the distance toCk decreases at a
rate faster than the distance toCi andCj decrease. In either
case, a link is made from the outer second-order period to an
inner GVG cycle. See Figure 31 to see the linking procedure
for the example originally found in Figure 14.

Finally, we must consider the situation when the gradient to
the second closest obstacle constrained to a two-equidistant
face vanishes. If the robot is performing gradient descent
constrained to a two-equidistant face (i.e.,−∇dk|Fij

) from

a GVG2 equidistant edgeFkl |Fij
and the gradient vanishes,

then there is no GVG edge (i.e.,Fijk = ∅). In such a case,
the robot simply returns to the outer boundary period.

Although the above linking procedure has been demon-
strated in simulation, we are currently deriving a rigorous
proof for it. However, we can introduce a well-stated as-
sumption, which precludes the existence of cycles, thereby
bypassing the need for the above linking procedure. This
assumption is described in the following section.

6.4. Extended Boundedness Assumption

Now, we introduce an assumption that restricts the relative
placement of obstacles in an environment such that no GVG

Fig. 31. Linking to and from cycles.

cycles can result. Also, when this assumption is upheld, all
second-order generalized Voronoi regions contain one and
only one GVG edge, which is useful for ensuring connec-
tivity of the boundaries of second-order generalized Voronoi
regions.

ASSUMPTION 3. Extended Boundedness: InRm, eachp-
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order k-equidistant face has at least onep-order (k + 1)-
equidistant face on its boundary.

In R3 (m = 3), this assumption implies that all GVG edges
(k = 3, p = 1) contain at least one meet point. That is, for
all i, j, k, there existsx ∈ Fijk and there exists anl, such that
dl(x) = dk(x). By the Equidistant Surface Transversality
Assumption (Assumption 2), this point is isolated.

Assumption 3 is not satisfied in the environment in Fig-
ure 15, which consists of a room with a box in its interior.
There is a GVG edge that contains no meet points. However,
when an additional box is placed into this environment, the
HGVG becomes connected(see Fig. 32). The environment
in Figure 32 satisfies the assumption because all GVG edges
have meet points.

Now, we will show that when the Extended Boundedness
Assumption is upheld inR3, all second-order generalized
Voronoi regions posses a GVG edge, as shown by the fol-
lowing lemma. This result is used in demonstrating that en-
vironments that do not uphold the Extended Boundedness
Assumption cannot have cycles.

LEMMA 10. Let the Extended Boundedness Assumption
(Assumption 3) and the visible distance function be in ef-
fect. In this case, all second-order generalized Voronoi re-
gions must contain a three-equidistant face.

Proof. Recall the definition of the second-order generalized
Voronoi region,

Fk|Fij
= {x ∈ Fij : ∀h 6∈ {i, j, k} dh(x) ≥ dk(x) = di(x)}.

Given the Extended Boundedness Assumption (Assump-
tion 3), there exists anh′ 6∈ {i, j} and anx such that
di(x) = dj (x) = dh′(x). If h′ = k, thenFijk 6= ∅, and
by Lemma 8 and Lemma 9, it is the only three-equidistant
face in∂Fk|Fij

.

If h′ 6= k, then that impliesFijh′ must exist (i.e., there
exists anx such thatdi(x) = dj (x) = dh′(x)). However,

Fig. 32. Room with two boxes in its interior. The solid lines
are GVG edges, and the dotted lines are GVG2 edges.

since the second-order generalized Voronoi regionFk|Fij
6=

∅, it must be true thatdk(y) ≤ dh′(y) for all y ∈ Fk|Fij
. By

continuity of the single object distance function,Fijk must
also be a nonempty subset ofFk|Fij

(Lemma 8). This is a
contradiction of Lemma 9, where only one three-equidistant
face may be a subset ofFk|Fij

. Therefore,h′ = k, andFijk

is always a subset ofFk|Fij
. �

LEMMA 11. If Assumptions 2 and 3 hold, then there will be
no GVG cycles, no GVG2 cycles, and no outer GVG2 periods.

Proof. Let Fijk be a GVG edge inR3. By the Extended
Boundedness Assumption (Assumption 3), there exists a point
x ∈ Fijk such that there is an obstacleCl that is positioned
such thatdl(x) = dk(x). Therefore,Fijkl = Fij l

⋂
Fijk 6=

∅. SinceFijk is not disconnected from all other GVG edges,
when the Equidistant Surface Transversality Assumption (As-
sumption 2) is in effect, Proposition 6 asserts thatFijk is not
a cycle.

By Proposition 9, if there exist (1) an outer second-order
period, which is a component of the boundary ofFk|Fij

, and
(2) a generalized Voronoi edge, which is a subset ofFk|Fij

(whose existence is guaranteed by Lemma 11), then there
exists a first-order cycle. The contrapositive of this statement
is also true. If a GVG cycle does not exist, then an outer GVG2

period cannot existor the Extended Boundedness Assumption
is not valid.

The Extended Boundedness Assumption implies that a
GVG cycle cannot exist. This implies that an outer GVG2

period cannot existor the Extended Boundedness Assump-
tion is not in effect. However, since the Extended Bounded-
ness Assumption is in effect, there cannot be any outer GVG2

periods. �
Note that this assumption requires use of the visible dis-

tance function. That is, the robot is only aware of obstacles
that are within line of sight of it. Recall that all structures
are defined in terms of the visible distance function. Also
note that when this assumption is upheld, all second-order
generalized Voronoi edges (k = 2, p = 2) have at least one
second-order meet point.

Also note that the Extended Boundedness Assumption is
a weak one. InRm whenm > 2, the Extended Boundedness
Assumption is true for most “cluttered” work spaces. Robots
whose configuration spaces are high dimensional tend to be
highly articulated and are thus better suited for cluttered envi-
ronments. Such environments do not contain cycles and thus
may contain a connected HGVG.

6.5. Inner-Boundary Periods
Even when the Extended Boundedness Assumption is up-
held, there are environments that contain an arrangement of
obstacles that give rise to a disconnected HGVG. These peri-
ods are always inner periods on at least one two-equidistant
sheet. This subsection introduces one of these periods termed
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inner-boundary periods and describes a linking procedure that
connects them.

EXAMPLE 7. Inner Period: Figure 33 contains a room with
four boxes floating in its interior. Two of the boxes, objects
B1 andB2, are above boxA1. BoxesB1 andB2 have the same
depth as boxA1.

Figure 34 depicts a cross-section of a three-dimensional
world depicted in Figure 33. The cross-sections of the two-
equidistant faces are drawn as solid lines and arc segments.
The cross-sections of the GVG edges are points where three
edges intersect and have circles drawn around them. Figures
35 and 36 display a top view of Figure 33. In these figures,
the solid lines are the GVG edges and the dotted lines are the
GVG2 edges. In Figure 36, it can be seen that the second-order
generalized Voronoi region has an outer and inner boundary.
Lemma 12 allows for a link to be made between the two
boundaries.

LEMMA 12. Inner Boundary Link: If an inner GVG2 period
with GVG2 edges exists on the boundary of the second-order
generalized Voronoi region, then a link exists from the outer
boundary to it.

Proof. By the Extended Boundedness Assumption (Assump-
tion 3), if an inner GVG2 period contains a GVG2 edge, then

Fig. 33. A room with four boxes floating in its interior. Boxes
B1 andB2 are floating above boxA1 and have the same depth
as boxA1.

Fig. 34. Cross-section of the environment in Figure 33. The
cross-section is parallel to the front face of the rectangular en-
closure and cuts it through the three floating boxes. The solid
lines are the two-equidistant faces, which meet at generalized
Voronoi edges, which are circled.

Fig. 35. GVG and GVG2 edges (Top View).

Fig. 36. Inner Period.

it must contain a second-order meet point,Fkl1l2|Fij
, such

that (1) at this point, obstaclesCi andCj are the closest ob-
stacles and obstaclesCk, Cl1, andCl2 are the second closest,
and (2) there exists a point,x, on the outer boundary where
dl1(x) = dl2(x). A link can be formed by tracing77l1l2|Fij

, a
second-order two-equidistant surjective surface constrained
to a two-equidistant face, past a second-order meet point,
Fkl1l2|Fij

. By the Boundedness Assumption (Assumption
1) and Lemma 6,77l1l2|Fij

is guaranteed to be unbounded
and therefore must intersect another boundary component of
Fk|Fij

. �

This section demonstrated how arrangements of GVG
edges and GVG2 equidistant edges, by themselves, can yield
a disconnected HGVG. Next, we introduced a procedure that
either links the disconnected HGVG or states a weak assump-
tion that precludes the possibility a disconnected HGVG could
exist. The following section demonstrates how other GVG2

edges can give rise to a disconnected HGVG and how to con-
nect it.
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7. Connectivity with Boundary and Occluding
Periods

Boundary and occluding edges can also form periods that give
rise to second-order generalized Voronoi regions with dis-
connected boundary components, and hence a disconnected
HGVG. Both periods require the robot to perform gradient
descent of the multiobject distance function constrained to
a two-equidistant face to achieve linking. In fact, they rely
on the property that the multiobject distance function has a
unique minimum on a two-equidistant face, as described by
the following proposition and lemma:

PROPOSITION10. The restriction of the multiobject distance
functionD to ak-equidistant face is smooth. That is, the gen-
eralized gradient ofD(x) projected ontoTxFi1...ik is equal to
πTxFi1...ik

∇di for all i ∈ {i1 . . . ik}, whereπ is the orthogonal

projection operator.

Let E be a plane inTxRm. Let ve be the unique minimum
length vector inE (i.e., ve is based at the origin ofTxRm

and its head is inE). DefinePE to be the subspace ofTxRm

parallel toE, i.e.,PE = E − ve. Let P ⊥
E be the orthogonal

compliment ofPE . Therefore,TxRm = PE

⊕
P ⊥

E and thus
for all vectorsu ∈ TxRm, u can be written as the sumu1 +u2
whereu1 ∈ PE andu2 ∈ P ⊥

E . The orthogonal projection
πPE

(u) is u1. We can now define the orthogonal projection
operatorπE to beπPE

.

Proof. Note that∂D(x) is the affine hull of the heads of
the k gradient vectors∇di1, . . . , ∇dik . So, ∂D(x) can be
viewed as a plane inTxRm. Transversality considerations
imply that∂D(x) andTx77i1...ik intersect at a point, and thus
the generalized gradient ofD constrained toTx77i1...ik is al-
ways a point, not a vector. This point, which we denote
by v ∈ Tx77i1...ik

⋂
∂D(x), is the closest point in∂D(x)

to 0 ∈ TxRm.
Define P to be a subspace ofTxRm given by P =

∂D(x) − v (again,∂D(x) is viewed as a plane). The or-
thogonal projection ofu ∈ ∂D(x) is given by

πTx77i1...ik
: ∂D(x) → Tx77i1...ik . (21)

SinceD andπTx77i1...ik
are continuous, the restriction of the

generalized gradient ofD on 77i1...ik is continuous. There-
fore, the restriction of the multiobject distance functionD to
ak-equidistant face is smooth. �

LEMMA 13. The multiobject distance function, restricted to
a two-equidistant surjective surface of two convex obstacles,
has one global minimum and no other extrema on the two-
equidistant surjective surface. In other words, except at the
global minimum, the generalized gradient of the multiobject
distance function never projects to zero on any tangent space
of a two-equidistant surjective surface.

Proof. Let πTx77ij
be the orthogonal projection operator

onto Tx77ij . Let l be the shortest distance between two
convex obstaclesCi andCj . Therefore, for allx ∈ 77ij ,
D(x) > l. Assume that there exists a pointx where
πTx77ij

∂D(x) = 0. By hypothesis,D(x) = L > l. By
Proposition 10,πTx77ij

∇di(x) = πTx77ij
∇dj (x) = 0. That

is, ∇di(x) and ∇dj (x) are each orthogonal toTx77ij . In
fact, by definition of the two-surjective equidistant surface,
∇di(x) = −∇dj (x).

Let HCi(x) andHCj(x) be two supporting hyperplanes
of Ci andCj , respectively, such that they are orthogonal to
∇di(x) and∇dj (x), respectively, and pass through the nearest
points inCi andCj to x, respectively (see Fig. 37).

Since ∇di(x) = −∇dj (x), HCj(x) is orthogonal to
∇di(x) as well. Therefore,HCi(x) and HCj(x) are par-
allel. Thus, the distance between convex obstaclesCi andCj

can never be less thanL, which is a contradiction. �
With these two results, we can now develop linking strate-

gies to boundary and occluding periods.

7.1. Boundary Periods

EXAMPLE 8. In this example, we consider a variation of the
environment in Figure 16. The box in the middle of the room
has the same height as the room itself. A side view of the two-
equidistant face defined by the box and the ceiling is depicted
in Figure 38 and a top view in Figure 39.

A path from the GVG cycle to the boundary period can be
determined by following the projection of the negated gradient
onto the two-equidistant face.

LEMMA 14. Boundary Link: InR3, if a boundary period ex-
ists on the boundary of the second-order generalized Voronoi
region, then it must be an “inner boundary” and a link exists
from the outer boundary to it.

Fig. 37. The supporting planes for convex obstaclesCi and
Cj .
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Fig. 38. The thick solid line represents a side view of the
equidistant face defined by the box and the ceiling, and the
solid dot delineates a point on the GVG cycle surrounding the
box.

Fig. 39. Two-equidistant face between the box and the ceiling,
as viewed from above, is drawn with a boundary period.

Proof. Proposition 10 states that the multiobject distance
function, which is nominally not smooth, is smooth when it
is constrained to ak-equidistant surjective surface (and thus
ak-equidistant face).

Lemma 17 guarantees that a two-equidistant surjective sur-
face, 77ij , is unbounded. By hypothesis, it has only one
boundary,Cij . WhenCij is a Jordan curve, the bounded
portion of77ij is the empty set, and the unbounded portion
of 77ij is 77ij . Therefore, the generalized Voronoi region,
Fk|Fij

, which hasCij on its boundary, lies in the unbounded
portion of77ij . Therefore,Cij is an inner boundary.

Lemma 17 and Proposition 10 guarantee that in the inte-
rior of the second-order generalized Voronoi region that has
a boundary period, the projected generalized gradient ofD

never vanishes. SinceD(x) > 0 for all x ∈ interiorFk|Fij

andD(x) = 0 on the boundary period, gradient descent of
D constrained toFij traces a path to the boundary period
from any point in the second-order generalized Voronoi re-

gion. Therefore, a link can be made from the outer boundary
to the boundary period via gradient descent ofD. Similarly,
the Boundedness Assumption (Assumption 1) guarantees that
a link can be made from the boundary period to the outer
boundary via gradient ascent ofD. �

7.2. Occluding Period

EXAMPLE 9. Hole on top of box (continued): Recall the en-
vironment from Example 3, which is a rectangular enclosure
with a box in its interior. On top of the box, there is an opening
that could be a through-hole, an entrance to a subenvironment
or a dimple. See Figures 16 and 17.

Since in this example we are only interested in the GVG
edges associated with the box, Figure 40 contains only the
box, the GVG structures associated with it (thick solid lines),
and an occluding edge (thick dotted lines).

The GVG structure associated with the hole is connected
to the occluding edge using GVG2 equidistant edges. Using a
linking procedure described later in Section 7, the outer GVG
is linked to the occluding edge. The result is that the GVG
is now connected through a link, an occluding edge, and a
GVG2 equidistant edge (see Fig. 41).

LEMMA 15. Occluding Link: InR3, if an occluding period
exists on the boundary of a second-order generalized Voronoi
region, then a link can be made to the period.

The proof of the above lemma is broken down into two
cases: (1) when the global minimum ofD constrained to the
two-equidistant face is inside the occluding period (or on it),
and (2) when the global minimum is outside the occluding
period.

LEMMA 16. InR3, if the global minimum ofD is contained
inside of an occluding period, then gradient descent ofD,
constrained to the two-equidistant face, traces a path that is
guaranteed to link the outer boundary of a second-order gen-
eralized Voronoi region to the occluding period.

Proof. Lemma 13 asserts that there is only one extremum
of D, constrained to the two-equidistant face, and that ex-
tremum is the global minimum ofD. Therefore, all paths that
are traced out by gradient descent ofD, constrained to the
two-equidistant face, will terminate at the global minimum of
D. Since the global minimum is inside (or on) the occlud-
ing period, such a path must traverse the occluding period.
Therefore, gradient descent traces a path that brings the robot
to an occluding period. �

When the projected gradient disappears, a more active ap-
proach is required. One option is an exhaustive search of the
two-dimensional second-order generalized Voronoi region in
whichπTxFij

∂D(x)vanishes. Although this option may seem
undesirable, it would only have to be invoked in a handful of
small regions where the gradient goes to zero before arriving
at an occluding period.
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Fig. 40. The occluding edge, represented by a thick dotted
line, is defined by the visible-distance function. The GVG
is represented by the thick solid lines, and the inner box is
drawn in thin dashed lines.

Fig. 41. The GVG surrounding the box is connected to the
GVG associated with the hole through a link from the GVG
surrounding the box to the occluding edge. The box is
removed for clarity.

Fortunately, there exists an alternative method, whose rig-
orous proof is the topic of current work. LetFij be the two-
equidistant face forCi andCj , andCk be the second closest
obstacle. Without loss of generality, assume thatCj occludes
Ck. Letx be the point whereπTxFij

∂D(x) = 0. Letv be any
vector that runs along a line that passes throughx andCk and
is tangent toCj .

In this approach, the robot again performs gradient descent
of D. If it reaches the occluding period, then the procedure
terminates with success. However, since the global minimum
of D is outside of the occluding period, the robot did not
reach the occluding period. In this case, starting from the
global minimum ofD, the robot moves in a path onFij in
such a way thatv and∇dk(x) converge on each other. In other
words, the robot traces a path determined by∇〈−dk(x), v〉.
When the vectorsv and∇dk become collinear, the robot has
arrived at a point on the occluding period.

Note that this method is not guaranteed to work but our
experiments indicate that it works often. In fact, we have not
found a counterexample yet. However, lack of existence of a

counterexample does not serve as a proof. Therefore, when
∇〈−dk(x), v〉 vanishes, the robot must perform an exhaustive
search of the second-order generalized Voronoi region for the
occluding period.

7.3. Exhaustive Search
In this section, we discuss connectivity when all assumptions
are relaxed. Figure 42 contains a cross-section of a three-
dimensional environment similar to the one found in Figure
15. In Figure 42, the floor is slanted and the inner obstacle
is a sphere. The local minimum ofD on Fij is pointed out,
and the shared region represents the set of points that are
visible from this local minimum. Figure 43 contains the same
environment, but the occluding period is drawn as a dotted
line. The gray region is the set of points that arenot visible
from the occluding period.

The robot is guaranteed to travel along the occluding period
and, if necessary, reach the local minimum. Unfortunately,
the robot is still not guaranteed to become within line of sight
of all structures by simply traveling along the occluding period
and encountering the local minimum. The dark gray area in
Figures 44 and 45 is the set of points onCi that cannot be seen
from both local minimum and the occluding period. The robot

Fig. 42. Three-dimensional enclosure with a sphere floating
in the middle of it. Local minimum and region visible from
it are denoted.

Fig. 43. Occluding period and region not visible from it.
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Fig. 44. Region not visible from occluding period and local
minimum.

Fig. 45. Close-up of region not visible from occluding period
and local minimum.

maysee this region when forming the link for the GVG cycle
to the occluding period, but there is no guarantee. Therefore,
in the general case, the robot needs to search this second-order
generalized Voronoi region to find all roadmap fragments.

Other works in three-dimensional exploration have noted
the problem that at some point, the planner requires some
sort of exhaustive search. In Rimon and Canny (1994), Ri-
mon points out that the robot requires some sort of active
perception (i.e., active search) because critical points are not
always guaranteed to be within line of sight of the roadmap
fragment. However, there are no well-established thresholds
or conditions that direct the robot to enter “active search”
mode to find critical points. Moreover, Rimon’s work does
not identify which regions of space require the active search.
Kutulakos, Dyer, and Lumelsky’s (1994) approach to three-
dimensional path planning in unknown environments also re-
quires an exhaustive search of two-dimensional regions that
correspond to the boundaries of the obstacles between the start
and goal. This is not to say that three-dimensional exploration
requires exhaustive search, but the current state-of-the-art in
three-dimensional exploration requires exhaustive search of

subsets or patches of two-dimensional manifolds. The work
presented in this paper identifies these subsets and prescribes
a condition as to when to invoke the exhaustive search process.
It should be noted, however, that for most of the environments
we experimented with, the HGVG approach did not require
exhaustive search of two-dimensional patches.

Figure 46 summarizes the search for occluding periods.

8. Conclusion

This paper introduces a new roadmap structure called thehier-
archical generalized Voronoi graph(HGVG). The robot uses
the HGVG by finding a path onto it (accessibility), traversing
the HGVG to the vicinity of the goal (connectivity), and con-
structing a path from the HGVG to the goal (departability).
Since a bulk of the planning occurs on the one-dimensional
structure of a multidimensional configuration space or work
space, the HGVG dramatically simplifies motion planning for
robots operating in real environments.

To guarantee the appropriate dimension count, we intro-
duce a transversality assumption, which essentially is a stabil-
ity requirement on the placement of obstacles. This transver-
sality assumption is a generalization of the general position
assumptions, such as no four points can be co-circular, that
are often made in Voronoi diagram literature.

To define the HGVG, we introduced a new distance func-
tion that relies solely on line-of-sight information. This is
particularly important for sensor-based construction of the

Fig. 46. Flow Chart.
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HGVG, as sensors can only provide line-of-sight information.
This distance-based definition also allows HGVG to han-
dle concave obstacles, whereas traditional geometric struc-
tures and algorithms are limited to convex obstacles. Essen-
tially, the HGVG definitions require a surjectivity condition
from the preimage theorem, which is ensured when obstacles
are locally convex. Finally, the definition and construction
procedure of the HGVG do not require the obstacles to be
polyhedra, which is an assumption often made with most com-
plete algorithms.

Using some results from nonsmooth analysis, we demon-
strate that the HGVG roadmap has the property of accessibil-
ity in a bounded subset of anm-dimensional Euclidean space.
When full knowledge of the world is available, then departa-
bility reduces to accessibility in reverse and, thus, the HGVG
has departability. However, when the robot is searching for
the goal, a reverse-accessibility procedure cannot serve as a
departability method. Incremental departability is described
in the companion paper.

A bulk of this paper examined connectivity of the HGVG.
First, the GVG (a subset of the HGVG) is shown to be con-
nected when an assumption supplied by Yap is upheld. Un-
fortunately, this assumption was too restrictive, so it was re-
laxed and connectivity of the HGVG inR3 was considered
next. Under a certain set of weak assumptions, the HGVG
was shown to be connected. These assumptions essentially
required the environment to be cluttered and are thus reason-
able for many applications, such as those that require highly
articulated robots.

Finally, connectivity was examined when all assumptions
were relaxed. In this scenario, the robot has to perform an ac-
tive search on some subsets of two-dimensional manifolds to
ensure connectivity. Other three-dimensional path-planning
techniques in unknown environments also require an active
search phase. The HGVG approach supplies conditions of
when to search and localizes where to search, whereas other
methods do not afford these conditions. Future work will con-
sider how to efficiently search these two-dimensional sheets
without having to exhaustively search them.

Our ultimate goal is to enable highly articulated sensor-
equipped robots to explore unknown environments by con-
structing roadmaps. Instead of generalizing the connectivity
result for a point in anm-dimensional configuration space,
future work will include defining a roadmap for a robot mod-
eled as a line segment, sometimes called arod, operating in a
three-dimensional environment. The roadmap will be based
on the distance between a rod and an object. The next step is
to extend the results of the rod roadmap to that of a convex
set, which in turn will be extended to the development of a
roadmap for a chain of convex sets that model a highly artic-
ulated robot. We chose this point-rod-blob-snake approach
because sensors directly provide work space distance infor-
mation but not configuration space distances. Furthermore,
we believe error analysis on work space distance measure-

ments to be more tractable than error analysis on configuration
space distance measurements.

We make no claim that the HGVG has any clear advantage
over other methods for classical motion planning, but since
distance functions define the HGVG, a sensor-based planner
can easily construct it. Once a robot constructs the HGVG,
it has in essence explored the environment because the robot
can use the HGVG for future excursions. A companion paper
(Choset and Burdick 2000) describes the sensor-based con-
struction procedure when the robot has no prior information
about the environment.

Appendix A: Boundary Edge and Floating
Boundary Edge

EXAMPLE 10. Hole: The room depicted in Figure 47 con-
tains a hole or duct in one of its side walls. The bottom and
front faces of the duct are labeledCi andCj , respectively.
Note also that the duct enters the room at a height greater than
half the distance between the floor and ceiling.

Consider the two-equidistant face defined by the duct’s
front and bottom faces,Ci and Cj . The shaded region in
Figure 48 is a portion of a two-equidistant surface,7ij , defined
by objectsCi andCj . The boundary of the shaded region is
dotted to emphasize that it is unbounded (i.e., a sphere of finite
radius cannot contain the two-equidistant surface).

Recall that a two-equidistant surjective surface is the set
of points in a two-equidistant surface such that the gradients
to each defining obstacle do not coincide. The shaded region
in Figure 49 is a portion of the two-equidistant surjective sur-
face,77ij , defined byCi andCj . Note that this region is
unbounded. Figure 50 illustrates the side view of Figure 49,
where the solid line represents the unbounded77ij . The float-

Fig. 47. A room with a hole in its side wall. The dotted line
marks the half-height of the room.
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Fig. 48. The shaded region is7ij . It is bordered by thick
dashed lines to emphasize that7ij is unbounded. The
thick dotted lines correspond to points where7ij intersects
the rectangular enclosures. The thick solid lines on the
rectangular enclosures are drawn to emphasize the features
on the enclosure that are in front of7ij in this view.

Fig. 49. The shaded region77ij , which is also unbounded.
The thick double-arrowed line represents the boundary of
77ij , which is also unbounded. The dotted line simply
represents a path in77ij .

ing boundary surface (solid line, Fig. 49) is the portion of
boundary of the two-equidistant surjective surface where the
two distance function gradient vectors coincide.

The shaded region in Figure 51 depicts the two-equidistant
face,Fij , which is bounded. The boundary ofFij consists
of three parts: a GVG edge, a boundary edge, and a floating
boundary edge. The boundary edge runs along the intersec-
tion of the boundaries of obstaclesCi andCj . D(x) is zero

Fig. 50.77ij (Side view).

Fig. 51.Fij .

for all points on this portion ofFij . The floating boundary
edge is the set of points inFij , whereD(x) is greater than
zero but∇di(x) = ∇dj (x). The nearest point to all points on
the floating boundary edge is a corner of the duct entrance.

Appendix B: Proofs of Lemmas in Section 6

Properties of Equidistant Surjective Surfaces

This section demonstrates two properties of equidistant sur-
jective surfaces: (1) fork intersecting convex obstacles, they
are unbounded, and (2) a two-equidistant faceFij separates
F7 into two connected regions: one whose points are closer
to Ci and the other whose points are closer toCj .

LEMMA 17. If the objectsCi1 . . . , Cik intersect, then the
associatedk-equidistant surjective surface,77i1...ik , is un-
bounded. In fact, if objectsCi1, . . . , Cik intersect, then
none of the gradients,∇di1(x), . . . ,∇dik (x), is orthogonal
to Tx77i1...ik for all x ∈ 77i1...ik . In other words, there are no
extrema ofD in the interior of77i1...ik .

Proof. Assume that there exists anx ∈ 77il ...ik for which
∇di1(x) is orthogonal toTx77i1...ik . By Proposition 10,
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∇dij (x) must be orthogonal toTx77i1...ik for all j = 2, . . . , k

because∇di1(x) is orthogonal toTx77i1...ik .
Let HCi1(x) be the hyperplane that is orthogonal to∇di1

and tangent to the nearest point,ci1 in Ci1 to x. SinceCi1 is
a convex set,Ci1 lies entirely on one side ofHCi1(x). Let
HCij (x) be the hyperplanes similarly defined as above for
j = 2, . . . , k.

In Rm, letS be an(m − 1)-dimensional sphere centered at
x with radiusD(x). By Assumption 2, thek closest points on
thek closest obstacles form a(k−1)-dimensional hyperplane
orthogonal toTx77i1...ik and passing throughx. For k > 2,
thesek points define a(k − 2)-dimensional sphere, termed a
subsphere(Ssub), which is a subset ofS and has a radius less
than or equal toD(x). When the radius ofSsub is equal to
the radius ofS, we say thatSsub is amajor subsphereof S.
For j = 1, . . . , k, HCij is tangent toS and passes through a
point on the(k − 2)-dimensional subsphere,Ssub.

Next, it needs to be shown thatHCi1, . . . , HCik cannot
intersect at a point. We first show this whenk = 2. The sphere
S has co-dimension one. If∇di1 and∇di2 are orthogonal to
Tx77i1i2, then there are only two points (at opposite poles
of the sphere) where the separating planes are tangent toS.
In this case, the separating planes are parallel to each other
(Fig. 37). By definition of a convex set, if the separating planes
never intersect, then the obstacles cannot intersect. This is a
contradiction. Therefore, fork = 2, no gradient vector can be
orthogonal toTx77i1...ik , and thus∂D(x) has no local maxima.
Since∂D(x) has no local maxima, it has no global maxima
and thus77i1...ik is unbounded.

In general, if the gradients∇di1(x), . . . ,∇dik (x) are or-
thogonal toTx77i1...ik , thenSsub andS have the same radius.
In other words,Ssub is a major subsphere. It can be shown
that if k hyperplanes are tangent toS at a point inSsub, then
they can never intersect at a point. SinceHCi1, . . . , HCik can
never intersect at a point, the obstaclesCi1, . . . , Cik cannot
intersect at a point either. This is a contradiction, and thus
77i1...ik is unbounded. �

LEMMA 18. A two-equidistant surjective surface for two dis-
joint convex sets is an unbounded separator inW.

Proof. Let 77ij be a two-equidistant surface for obstacles
Ci andCj in the spaceW\(⋃h6=i,j Ch). Let 7i be the set
of points inW\(⋃h6=i,j Ch) closer toCi thanCj . Define7j

similarly. That is,

7i = {x ∈ W\(
⋃

h6=i,j

Ch) : di(x) ≤ dj (x)}

7j = {x ∈ W\(
⋃

h6=i,j

Ch) : dj (x) ≤ di(x)}. (22)

The two-equidistant surjective surface,77ij , is on the bound-
ary of both7i and7j .

Let F t
i be the flow of∇di and let77i = {x ∈ 7i : F t

i ∈
77ij for somet}. Define77j similarly.

The mappingFi : R × 7i → W\Ci is a continuous map-
ping. LetQi = F−1(77ij ). Qi is closed because it is the
preimage of a closed set under a continuous mapping. Note
that (t, x) ∈ Qi if and only if F t

i (x) ∈ 77ij . (So,x ∈ 77ij

implies that(0, x) ∈ Qi .)
Since77ij is the image of a connected set under a contin-

uous mappingFi , 77ij is connected. Therefore,7i and7j

share a common connected boundary:77ij . This boundary
separatesW into two regions: points closer toCi and points
closer toCj . Since7i and7j are both unbounded, so must be
77ij .

�

Proof of Lemma 8

LEMMA 8. If the three-equidistant faceFijk is not empty,
then the second-order generalized Voronoi regionFk|Fij

must
not be empty. Furthermore, ifFijk 6= ∅, thenFijk ⊂ Fk|Fij

.

Proof. Pick x ∈ interior(Fijk). By definition, di(x) =
dj (x) = dk(x) < dh(x) for all h 6= i, j, k. For a nbhd(x), let
Y (x) = nbhd(x)

⋂
(interior(Fij )\interior(Fijk)). By defini-

tion, di(y) = dj (y) < dk(y) for all y ∈ Y (x). By continuity
of the single object distance function, for allh 6= i, j, k,
dk(y) < dh(y) for all y ∈ Y (x). Therefore, for ally ∈ Y (x),
di(y) = dj (y) < dk(y) < dh(y) for all h 6= i, j, k.

Therefore, there exists a region whereCi and Cj are
the closest obstacles andCk is the second closest. That
is, Fk|Fij

6= ∅. Furthermore,Fijk is a subset of∂Fk|Fij

because

Fijk = {x : ∀h dh(x) ≥ di(x) = dj (x) = dk(x)}
⊂ ∂{x : ∀h d(h) ≥ dk(x) ≥ dj (x) = di(x)}
= ∂Fk|Fij

, dk(x) = di(x) = dj (x)}.

where∂ is the boundary operator.
Therefore, by definition, ifFijk 6= ∅, then it is a nonempty

subset of the boundary ofFk|Fij
. �

Proof of Lemma 9

LEMMA 9 The boundary of a second-order generalized
Voronoi region contains at mostone three-equidistant face.
That is,Fpqr ( Fk|Fij

for all {p, q, r} 6= {i, j, k}.
Proof. Assume thatFijk andFij l are on the boundary of
Fk|Fij

. By definition, for allx ∈ Fk|Fij
, it must be true that

dl(x) ≥ dk(x) ≥ di(x) = dj (x) for all l 6= i, j, k. Since
Fij l ⊂ Fk|Fij

(by assumption), for allx ∈ Fij l , dk(x) ≤
dl(x). Thus, for allx ∈ Fij l\Fijk (which is a subset of
Fk|Fij

), dk(x) ≤ dl(x). However, this is a contradiction
because for allx ∈ Fij l\Fijk, dl(x) < dk(x). �
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Proof of Lemma 4

LEMMA 4. When equidistant faces intersect transversally
(Assumption 2 is upheld), a GVG cycle cannot contain a meet
point.

Let Fijk be the GVG edge equidistant to obstaclesCi , Cj ,
andCk. Assume there is an objectCl positioned such that
x ∈ Fijk is a point wheredi(x) = dl(x). By Proposition 1, the
GVG edgeFij l 6= ∅ and it intersectsFijk atx. By definition
of the surjective equidistant surfaces,77ijk and 77ij l also
intersect atx. The three-equidistant surjective surface77ij l

must tangentially intersect77ijk becauseFijk is a cycle. Such
an intersection is nontransversal, which cannot occur when
Assumption 2 is in effect. Therefore, there cannot be an object
Cl positioned such that there is a pointx ∈ Fijk such that
di(x) = dl(x), and hence a GVG cycle cannot contain any
meet points.

Proof of Lemma 5

LEMMA 5. A GVG cycle cannot contain any boundary or
floating boundary points.

Proof. LetFijk be a GVG edge equidistant to objectsCi , Cj ,
andCk. Since the GVG edge is a cycle, it is bounded and,
thus, there exists a pointx∗ such thatD(x∗) > D(x) for all
x ∈ Fijk. At x∗, ∇di(x) is orthogonal toTx∗Fijk.

Now the proof follows by contradiction. Assume there is
a point whereD(x) = 0. That is,Ci , Cj , andCk intersect
to form a boundary point. By Lemma 17, introduced earlier,
there cannot be a point where∇di(x) is orthogonal toTxFijk.
This, however, is a contradiction, and thus there cannot be a
point on a GVG cycle whereD(x) = 0.

A similar argument can be made for floating boundary
points. �

Proof of Lemma 6

LEMMA 6. In R3, a three-equidistant surface,77ijk, is ei-
therC2-diffeomorphic to S1 (i.e., it is a GVG cycle) or it is
unbounded.

Proof. First, we show the case whenCi , Cj , andCk are
disjoint convex sets and then we show the case when they
overlap. By Lemma 18, a two-equidistant surjective surface
for two disjoint convex sets is a separator inW.

By a similar argument, it can be shown that77ijk is a
separator on77ij . In R3, the preimage theorem asserts that
77ijk is one-dimensional. By the Jordan curve lemma,77ijk

in R3 can either be (1) a manifoldC2-diffeomorphic toS1 or
(2) an unbounded manifoldC2-diffeomorphic toR.

Now, we consider the case where the obstacles,Ci , Cj ,
andCk, intersect to form a boundary point,Cijk, out of which
77ijk emanates. Lemma 17 asserts that77ijk is unbounded.
�

Proof of Lemma 7

LEMMA 7. A GVG2 equidistant edge can only intersect the
GVG at a meet point.

Proof. Consider the GVG2 equidistant edgeFkl |Fij
. For

all pointsx ∈ Fkl |Fij
, dk(x) = dl(x) ≥ di(x) = dj (x).

When di(x) = dj (x) = dk(x) for somex ∈ Fkl |Fij
,

di(x) = dj (x) = dk(x) = dl(x). However,x cannot be
in the interior of a generalized Voronoi edgeFijk because for
all y ∈ interior(Fijk), di(y) = dj (y) = dk(y) < dh(y) for
all h. �
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