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Abstract procedure. Since in a bounded environment, the solution to
the mapping problem automatically solves the collision-free
The hierarchical generalized Voronoi graghiGVG) is a new path-planning problem, we will focus attention on the geo-
roadmap developed for sensor-based exploration in unknown emetric structure necessary for exploration.
vironments. This paper defines the HGVG structure: a robot can Our mapping procedure relies omaadmap a network of
plan a path between two locations in its work space or configuraane-dimensional curves that concisely represents the salient
tion space by simply planning a path onto the HGVG, then alongeometry of a robot’s environment. A planner can construct a
the HGVG, and finally from the HGVG to the goal. Since the bulpath between any two points in a connected component of the
of the path planning occurs on the one-dimensional HGVG, motiambot’s free space by finding a path onto the roadmap, travers-
planning in arbitrary dimensioned spaces is virtually reduced to éng the roadmap to the vicinity of the goal, and constructing
one-dimensional search problem. A bulk of this paper is dedicated ¢goppath from the roadmap to the goal.
ensuring the HGVG is sufficient for motion planning by demonstrat- This paper introduces a new roadmap termedhtbearchi-
ing the HGVG (with its links) is an arc-wise connected structurecal generalized Voronoi grapfHGVG), which can be incre-
All of the proofs in this paper that lead toward the connectivity rementally constructed using only line-of-sight sensor data. An
sult focus on a large subset of space® but wherever possible, incremental construction procedure isimportant because most
results are derived iiR™. In fact, under a strict set of conditions, environments do not have a single vantage point from which
the HGVG (the GVG by itself) is indeed connected, and hence suffie robot can “see” everything, and thus the robot must sys-
cient for motion planning. The chief advantage of the HGVG is thaematically move around the environment. Once the robot has
it possesses an incremental construction procedure, described inricrementally constructed the roadmap for an environment, it
companion paper, that constructs the HGVG using only line-of-sightas in essence explored the environment. The HGVG incre-
sensor data. Once the robot constructs the HGVG, it has effectivatyental construction procedure is described in the companion
explored the environment, because it can then use the HGVG to plgaper (Choset et al. 2000).
a path between two arbitrary configurations. The HGVG is defined in terms of line-of-sight distance
KEY WORDS—sensor-based exploration, skeletons, roadma gsurements, in'formation that SENsors can provide. .MOSt
Voronoi diagrams, motion planning ;ensor—based motion planngrs are Ilmlteq to plapa}r conﬁgura-
tion spaces, but the HGVG is also useful in multidimensional
spaces where the bulk of the motion planning still occurs in a
1. Introduction one-dimensional search space. The HGVG approach differs
from other sensor-based planners in that it offers complete-
This work addresses two canonical sensor-based motigress guarantees that ensure the robot can find a path from start
planning problems for a robot without prior information abouto goal or report that such a path is not feasible.
an environment: (1) find a collision-free path to a goal and While sensor-based planning motivates this work, the
(2) map a bounded environment with a systematic exploratid#GVG has many other applications when full knowledge
of the world is available. Potential application areas in-
The International Journal of Robotics Research clude CAD modeling, injection molding, visibility planning,
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underlying geometry of a robot’s environment, it could als¢here is only one connected roadmap per connected region of
emit the geometry of an injection mold. A designer couldree space. Finally, departability means that a path can be
infer mold properties from the HGVG, early in the desigrconstructed from a point on the roadmap to any point in the
phase, before committing to a particular design. free space.

An example of a roadmap scheme is the Opportunistic
Path Planner (OPP) (Canny and Lin 1993). Rimon adapted
this motion-planning scheme for sensor-based use (Rimon

Roboticmotion planninggenerally determines paththat a and Canny 1994). The sensor-based planner requires active
robot must follow to reach a goal location or configuratioPerception to guarantee connectivity of the roadmap, but it
without penetrating any obstacles (Latombe 1991). This paftpes not describe the active perception procedure nor when
may exist in the robot’s environment or in the robattnfig- to invoke it. Furthermore, the sensor-based approach does
uration spacethe set of all robot locations and postures thafot contain a detailed procedure for constructing the roadmap
do not intersect an obstacle for a particular environment. agments from sensor data, and finally, the robot must contain
motion planner isompletf it can, in finite time, find a path Sensors that can detect “interesting critical points” and “inter-
or determine that no such path exists. esting saddle points,” whose implementation is described only

Classical motion planning assumes that the robot hasfef a handful of special cases.
priori information about the environment, but when the robot Another type of roadmap is thgeneralized Voronoi dia-
does not have any previous information, it must rely on se@am(GVD), the locus of points equidistant to two or more
sor information. Therefore’ the robot must ssmsor-based obstacles. The GVD is an extension of the Voronoi diagram
motion planning. This type of planning has recently receive@/D), the set of points equidistant to two or more points
increased attention, as it is a requirement for the realistic desometimes termed sites) inthe plane. The GVDwasfirstused
ployment of autonomous robots into unstructured and corflmost 20 years ago in robotics for machine vision (Rowat
pletely unknown environments. 1979). Active rese’arch in applying the GVD to motion plan-

Much current work in sensor-based planning applies tding began with O’Dunlaing and Yap 1985), who consid-
two-dimensional scenarios and is heuristic (therefore, néfed motion planning for a disk in the plane. However, their
complete). One class of heuristic algorithms employs @ethod requires full knowledge of the world’s geometry prior
behavioral-based approach, in which the robot is armed witt@ the planning event and its retract methodology may not
simple set of behaviors (e.g., following a wall) (Brooks 1986)extend to nonplanar problems. Later work (Rao, Stolzfus,
A hierarchy of cooperating behaviors then composes mof&d lyengar 1991) introduces an incremental approach to cre-
complicated actions, such as exploration. Sequencing coti€ a GVD-like structure, which is limited to the case of a
stitutes an extension of this approach (Gat and Dorais 199#)ane. Prior work (Avis and Bhattacharya 1983) describes
While strong experimental results suggest the utility of the béhe Voronoi graph(VG), which is the one-dimensional locus
havioral approaches, none of these methods possesses prbfeints inm dimensions equidistant te point sites. Our
of correctness guaranteeing that a path can be found, rﬂﬂproach can be viewed as a blend of the OPP and Voronoi
do they contain well-established thresholds specifying wheRethods.
their heuristic algorithms fail. Finally, these approaches do
not generalize to higher dimensions. 1.2. Contributions

Complete sensor-based planners are typically limited to tidhe HGVG roadmap represents one of the first motion-
plane (Rao et al. 1993). For example, one of the first conplanning techniques that (1) relies only on line-of-sight sensor
plete sensor-based schemes is Lumelsky’s “bug” algorithmformation, (2) functionsin higher dimensions, and (3) offers
(Lumelsky and Stepanov 1987), but it is limited to the planeompleteness guarantees. Since many sensors provide dis-
and does not provide a map of the environment. One of thence information, a motion planner that relies on a distance
first complete sensor-based schemes to map an unknown fmction, one that measures the distance between a point and
vironment is described in Rao, Stolzfus, and lyengar (1991an obstacle, is useful for sensor-based planning. The GVD
This method is based on the generalized Voronoi diagramgadmap is well suited to sensor-based implementation be-
described below, and is also limited to the plane. cause it is defined in terms of just such function.

Our approach adapts the structure of a rigorous motion- Nevertheless, to accommodate free-flying and highly ar-
planning scheme that functions in higher dimensions. Oriulated robots, the challenge is to develop a roadmap for
such method relies on madmap(Canny 1988), a concept multidimensional spaces. The GVD is only a roadmap for
analogousto highway systems having the following propertigdanar environments. Consequently, the first step in this work
of accessibilityconnectivityanddepartability Accessibility produces thgeneralized Voronoi graptiGVG), which is a
means that the planner can construct a path from any pomatural extension of the GVD into higher dimensions; itis the
in the environment onto the roadmap. Connectivity, as itsne-dimensional set of pointsm dimensions equidistant to
name suggests, means that the roadmap is connected, iregbstacles.

1.1. Relation to Prior Work
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However, unlike the GVD, the GVG is not necessarily con  Convex Obstacles that Bound a Subset of Free Space
nected in dimensions greater than two, and thus, in gener
is not a roadmap. Additional structures, terntégher order
generalized Voronoi graphsonnect GVG components, and | Concave Obstacle Modeled
together with the GVG form the HGVG. The HGVG is well Union of
suited to motion planning in multidimensional spaces (such: Convex
configuration spaces) because a motion planner can perfo |
a bulk of its search on the one-dimensional HGVG. Figure
summarizes the evolution of the HGVG.

1.3. Basic Assumptions

Throughout this work, we assume that the robot is modele
as a point operating in a subs®tof anm-dimensional Eu-
clidean space. We terfi¥ to be the work space even though it

could be the robot’s work space or configuration space,whi?plg 2. The robot operates in a bounded subset of the free

is C2-diffeomorphic toR”. The work spacé¥ is populated c bstac] deled as th _ f
by obstacle<”1, ..., C,,, which are closed sets. We assume>Pace. Loncave obstacles are modeied as the union or convex

when necessary, that nonconvex obstacles are locally conVQQ,StaCIeS'

i.e., they are modeled as the union of the convex sets. For

example, in Figure 2, the robot considers the L-shaped obstassumpTION1. Boundedness Assumption: The robot op-
cle as two obstacles when attending to the “interior” of the Lerates in a bounded, connected subset of the free spaice
but as one when focusing on the regions: the left and und@rhis subset is bounded by obstacles.

neath the L. This makes sense from a sensor-based point Of\Nhen Assumption 1 is valids >  + 1. For example, in

view. When the robot is “in” the L, it “sees” two objects that_ 5. o
) . » R2ittakes a minimum four convex obstacles to bound a subset
connect, whereas outside and to the left, the robot “sees” on :
) . or' #S. Also note that when Assumption 1 holds, although the
obstacle. The set of points where the robot is free to move

is called thefree spaceand is defined ags = W\ Ufz’{ C; ;?ebeoiésagggigg% gw];yl)t)(;uggggu%%lr:jected subs@ithe
(see Fig. 2). ’

This work makes two assumptions underlying the place- _
ment of obstacles in the environment. The first is stated b&- Distance Functions

low, and the second is introduced in Section 3.4. Finally, for
x € R™, let nbhdx) be a neighborhood of that is contained The HGVG is defined in terms of a distance function that

in R™. measures distance between a point and an obstacle. This sec-
tion defines two types of distance functions: the X-distance
function and the V-distance function, both of which provide

a geometric foundation for our definition of the roadmap. A
more complete discussion of these functions and their prop-

VD erties can be found in Choset and Burdick (1994).
/ \ 2.1. X-Distance Function
The distance between a pointind a convex sef; is
VG GVD
d¥(x) = min |lx — col, (1)
\‘ / coeC
where| - || is the two-norm inR™. In Clarke (1990), it is
GvVG shown that the gradient @f* (x) is
Vd¥(x) = —9 ¢ 7,R™, @)
] Ilx — col
HGVG wherecy is the point closest ta in C;. That is,cg is the

point wherel|x — co|l = mingec; |x — c||. In later sections,
_ _ we writeco = argmind) (x). The gradienVd (x) is a unit
Fig. 1. Evolution of the HGVG. vector, based at, pointing away fromg along a line defined
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by co andx (see Fig. 3). For convex sets, the closest point .2. The V-Distance Function

always unique and thus, in the interior of the free space, the

single object distance function is smooth (Clarke 1990).  Since mostrobotsensors cannot see through obstacles, we will
Typically, the environment is populated with multiple ob-now develop a distance function that relies solely on line-of-

stacles, and thus we definenaultiobject distance functign sight measurements. First, we consider line of sight between

which is the distance between a painand the closest point two points, and then between a point and an obstacle. A

in the closest obstacle, i.e., point ¢ is within line of sightof a pointx if there exists a

straightline segment that connegetandc without penetrating

any obstacle. That ig; is within line of sight ofx if for all

[0, 1], (x(1 — 1) + ct) liesin FS.

Now consider line of sight between a point and an obstacle.

Ltet C;(x) be the set of points on an object that are within

3ne of sight ofx, i.e.,

D(x) = miin d¥(x). (3)

SometimesD (x) can be stated as the distance between a pofn?
and the environment.

The multiobject distance function is nonsmooth (Chos
1998), and hence its gradient cannot be trivially define
However, using nonsmooth analysis, which is reviewed in
Choset (1998), it can be shown that tfeneralized gradient
of D(x) is

Cix)={ceCi: l—0x+ct e FS, Vt €[0,1]}.

Let ¢ be the nearest point i@; to x, as defined by the X-
ID(x) = Co(VdX (x) : i € I(x)}, (4) distance function, i.eq = argmindX (x). The obstacleC;

is within visible line of sighat a pointx, if the line segment
where (1) Co is the convex hull operation, (s the gener- that connects andx does not penetrate any other obstacle.
alized gradient operator, and (B)x) is defined as the set of |, gther words,C; is within visible line of sight atx if ¢ €
indices such thati € I(x), eachC; is the closest object to C;(x). In Figure 4, the nearest points on obje€tsandCy,
(x may be equidistant to two or more obstacles). Notationallys measured by the X-ray distance function, are within line

if 9 appears in front of a set, as opposed to a function, therg sight of x and henceC; andC; are within visible line of
refers to the boundary of the set. sight ofx.

The definition of the distance function in this section does |t ¢, (x) = ¢, thenc; isfully occludedatx. In other words,
not consider occlusions. Thatis, the distance between a pojRre are no points on the object that are within line of sight
x and an obstacl€; can always be determined, even if thergy . Finally, there is an intermediate notion occlusion:
are other obstacles betweeandC;. Therefore, forthe sake ¢, (y), the obstacle isisibly occludedat x. In Figure 4, the
of terminology, we will term the particular distance functiomearest point on object;, as measured by the X-ray distance
defined in this section as thedistance functiotecause its fnction, isnot within line of sight ofx, and hence it is not
implementation assumes a robot can see through obstaclesy@in visible line of sight ofx, i.e., C; is visibly occluded

if the robot has X-ray vision. atx. With this notion of visible line of sight, we can define
distance as

DerINITION 1. TheV-distance functionmeasures the dis-
tance between a pointand visible line-of-sight obstaclg;,
as the distance betweerand the closest point ofj; to x. If

Fig. 3. Distance betweenandC; is the distance to the closest
point onC;. The gradient is a unit vector pointing away fromFig. 4. Using the V-distance function, the distance(}ois
the nearest point. infinity, i.e., C; is visibly occluded.
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C; is not within visible line of sight at, then the distance is we describe the structures that comprise the GVG and then

infinity, i.e., letc = argminZX (x), and show that the GVG is one-dimensional. To do this, we must
_ _ L introduce a stability assumption requiring that obstacles lie in
4 (x) = { MiNcec; [lx — cll, !f ¢ € Interior(C; (x)), a generic environment. Finally, we will discuss the properties
' 0, if ¢ ¢ interior(C; (x)), of accessibility and connectivity.
®)

where interior means the interior of a set. 3.1. Equidistant Faces

In Figure 4,C; is not within visible line of sight at, and Inthe Voronoi diagram literature \oronoi regioris the set of
1“1l 1 . . .
thus itis occluded at, makingCy the second closest obstacle PoINts closest to a particular site (Aurenhammer 1991). Here,

If an object is not occluded, then the distance function hdgiS definition is extended to trgeneralized Voronoi region,
an associated gradient, i.e., letting: argminiX (x), we have F;, which is the closure of the set of points closest to one
T L particular obstacle. In other words,

va' = | e feeinterionGia), g Fi=clxe FS: di(x) <dp(x) Yh#£i).  (7)
! undefined, ifc ¢ interior(C;(x)).

The basic building block of the GVD and GVG is the set

By definition, D(x) = min; diV(x) = min; dl.x(x). of points equidistant to two set§; andC;, which we term
Throughout this work, we will use the visible distance functhetwo-equidistant surfage
tion, so theV -superscript is omitted.

Since this distance function is based only on line-of-sight ~ 8ij = {x € W\(C; U Cj) :di(x) —dj(x) =0}
information, it is more conducive to implementation with re- ) ) ) ]
alistic sensors than the X-distance function. In fact, an im2€€ Figure 6. Of particular interest is the subse} pfermed
portant characteristic af, (x) andVd; (x) is that they can be thetwo-equidistant surjective surface
computed from sensor data. For example, consider a mobile o L Lua ,
robot with a ring of sonar sensors (Fig. 5). The sonar sensor 881 = clix € §ij : Vdi(x) # Vd;(x)}, ®
measurement approximates the value of the distance furghich is the set of points equidistant to two objects such
tion, and the direction opposite to which the sensor is facin@at Vd; (x) # Vd;(x), i.e., the functionV(d; — d;)(x) is

approximates the distance gradient. surjective for allx € $S;;. Algebraically, this definition sat-
isfies some requirements of the preimage theorem (Abraham,
3. The Generalized Voronoi Graph Marsden, and Ratiu 1988), but in actuality, the definition of

§8;; accommodates nonconvex sets (see Fig. 7)C; land

The distance function provides the basis for the HGVG arfd; are disjoint convex obstacles, théf;; = §;;. We are
related structures such as the GVG and GVD. In this sectidfiferested in yet a further subset#; ;, which is

DEFINITION 2.  Thetwo-equidistant facés the set of points
equidistant to obstacles; andC;, such that each pointin
Fij is closer toC; andC; than to any other obstacle, i.e.,

Fij ={x €cl(88;;) : di(x) =d;(x) <dp(x) Vh #1i,j}
9)

By definition, 7; C cl(¥S). Note that a two-equidistant
¥;; lies on the common boundary of adjacent generalized
Voronoiregionsf; and¥;,i.e.,¥;; = ¥; (| ¥;. SeeFigure8
for an example ofF;;.

The union of all two-equidistant faces forms the general-
ized Voronoi diagram, i.e., GVD %)/} Uj=iy1 Fij (see
Fig. 9). Note that the GVD can be thought of as a complex
that separates a space into generalized Voronoi regions —
regions closest to a particular obstacle.

The GVD reduces the motion-planning problem by one
dimension, but that is not sufficient. Consider a 30-degree-
of-freedom snake robot. IR3C, for example, the GVD is
29-dimensional, which still presents a complicated motion-
Fig. 5. Mobile robot with sonar ring. planning problem. We seek a one-dimensional roadmap.
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Fig. 6. The solid line represenss;, the set of points equidis-
tant to obstacle; andC;. Note thais;; is unbounded and Fig. 8. The solid line with angled ticks is the set of points
contains two components: the left component contains twg~". .

. . e%ldlstant and closest to obstactgsandC;.
linear subcomponents and one parabolic subcomponent, an

the right component is linear. For all points, in the right

componentVd; (x) = Vd;(x). The dotted lines emphasize

that at a point o1$;;, d; (x) = d; (x).

Ci

Fig. 7. The thick solid line with the gentle bend representsig. 9. The ticked solid lines is the set of points equidistant
§8;;, the set of points equidistant to obstaalgsandC; such to obstacles”; and C; from Figure 7, such that each edge
that the two closest points are distinct. Note that it is alsagment is closest to the equidistant obstacles.

unbounded and only has one connected component, unlike

S;;. Again, the dotted lines emphasize that for all points on

88:,di (x) = d;(x) and the two vectors emphasive; (x) #

Vd;(x).
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Therefore, to define the GVG, we continue to define lower di-
mensional subsets 6¥. Thethree-equidistant surface; ;y,
is the set of points equidistant to three objeCs C;, andCy,
i.e., Sijk = Sij [ Sjx ) Sik. Similarly, thethree-equidistant
surjective surfaceSs; ;x, a subset o8; j, is the set of points
equidistant to three objects;, C;, andCy, such that for each
pointinss;;i, the gradients of the individual single object dis-
tance functions are distinct, i.&8;;x = $S;; () Sk () $Sik-
Thethree-equidistant facef;;, a subset 088, , is the set
of points equidistant t@’;, C;, andCy, such that each point
is closer toC;, C;, andCy than any other obstacle, i.e.,

Fijk =clfx e W:0=<d;(x) =d;(x) = di(x) < dp(x)

such that Vd; (x), Vd;(x), and Vd;(x)

are linearly independent.
= Fij () Fix () Fjk-

(10)

Continuing in this vein, after taking the approprigte— 2)
intersections, one can definekaquidistant surfaceS;; ;.
and &-equidistant surjective surfacés;, ;. We rely onthe

Top

Right
Le

-,

Front Bottom
Sttop /right

Boundary Edge dtop(x) = dright(‘”) for all =

Boundedness Assumption (Assumption 1) to guarantee g 10 an example of a two-equidistant face that contains

there exist “enough” obstacles such that ;, andss;, ;, are
not empty (i.e., they exist). A subset &$;, ; of particular
interest is the&k-equidistant face#;, ;,, which is the set of
points equidistant to objec, . . ., C;, such that each point
is closer to objectg’;,, ..., C;, than to any other object.

a

Fipiy =x€eW:0=dy(x) =--- =d;(x) < dp(x) and
forall p.g € {L,....k}, Vd;, (x) # d;, (x)},

= %11'20?1'11'3“'““%1%

To be consistent with the Voronoi diagram literature, in
R™, m-equidistant faces an@: + 1)-equidistant faces would
be termedjeneralized Voronoi edgesidgeneralized Voronoi
vertices respectively. However, in this work, we term the
equidistant faces &8VG edgesand(m + 1)-equidistant faces
asmeet pointbecause GVG edges meetatt-1)-equidistant
faces. The solid lines in Figures 10 and 11 represent GV
edges inR3.

(11)

3.2. Boundary Face and Floating Boundary Face

To determine the dimension of the equidistant faces, and her

the GVG edges, we must first identify the structures that IiE
in the boundary of equidistant faces. Observe in Figure
that a three-equidistant face lies in the boundary of a twi
equidistant face, i.ef;;x C a%;;. This can be rigorously

shown via the following relationship (Choset 1996):

AA()B) Cc @A[clB) | JOB(clA). (12)

g

boundary edge as a portion of its boundary. The boundary

edge is represented by light dotted lines, whereas the GVG
edges are represented by dark solid lines.

Meet Point

ig. 11. The generalized Voronoi graph in a rectangular en-
osure. The solid lines represent the GVG edges, which meet

%t vertices that are termed meet points.
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LetA = {x : di(x) = d;(x)}, B = {x : di(x) > 0}, and The proof of the above proposition is a simple application
C = {x : Vd;(x) # Vd;(x)}. With these definitions, of Equation 12 to the definition oflaequidistant face, which

is defined as
Fij =C'(AﬂBmC) =cl{x:0<di(x)
) s =llr e W0 < dy() = = dy ()
<dp(x) Vh

andVd,(x) # Vd,(x) Vp,q € {i1, ..., ix}}.

= d;(x) < dy(x) Vh andVd; (x) # Vd;(x)}.

Equation 12 implies thaF;;, C 3F;;; however, this equa-
tion also implies there are two other structures in the bound-

ary: a two-boundary face and a floating two-boundary face, However, this proof can intuitively be derived by inspec-

both defined below. These structures rarely occur and a6 of Fi,..;,'s definition. Starting from the left-hand side of

not part of the GVG, but they are required in determining thg,e jefinition, the portion of the boundary associated with the

appropriate dimension count for the GVG. firstinequality, O< dj, (x) = - - - = dj, (x), is the set of points
The set of points on the boundary of the free space Whevr\ﬁwere O= d;, (x) = - - - = dy, (x); this is ak-boundary face
— Y - — Y ’ ’

k obstacles intersect is tlteboundary faceand is defined as Ci,.... The portion of the boundary associated with the next
Ciy..iy = {x € Fi,.;, such that D(x) = O}. (14) inequality,d;, (x) = --- = dj; (x) < dp(x), isthe set of points
equidistant td + 1 obstacles, i.e., & + 1)-equidistant face.

In m dimensions, arim — 1)-boundary face is termed a g5y the set of points on the boundary associated with the
boundary edgand is illustrated in Figure 1Boundary frag- final inequality,Vd, (x) # Vd, (x), is a floatingk-boundary
mentsare connected subsets of the boundary edges and e Fe.. P 4

’ 1.0

denoted;; (c;; C Cyj). Finally, inR™, anm-boundary face,
i.e. aboundary pointis where the GVG edge and boundary, ) _ -
edge meet. Boundary points are also nodes in the GVG. 5-3- Geéneralized Voronoi Graph Definition
A floatingk-boundary faceF C;, . ;, isthe setof pointsina with the equidistant faces and other structures, we can now
k-equidistant face where at least two gradient vectors becomgfine the GVG as follows:

collinear, i.e., . . .
DerFINITION 3. Thegeneralized Voronoi grapfiGVG) is a

FCiy iy = {x € Fiy iy 0 Vdjy(x) = Vdj, (x) graph embedded R™ whose edges are-equidistant faces
where j1, jo € {i1, ..., ix}}. (15) and whose node_s are + 1 equidistar_n facesn-boundary
faces, andn-floating boundary faces, i.e.,
Analogous to boundary edgékating boundary edgese
floating(m — 1)-boundary faces iR, andfloating boundary GVG — [(U jrrl.l_”l.m) ,
fragmentsare connected subsets of the boundary edges and (16)
are denoted by'¢;;, wherefc¢;; C FC;;. Just like boundary
edges, in most er{vironmentsj, there are not that many floating (U Fireines U Ciaeins FC”"""”)]
boundary edges (and thus floating boundary fragments) be-
cause these structures are associated with the boundary of thén other words, GVG comprises edges, the GVG edges,
environment: Finally, floating boundary pointare floating and the nodes, which include meet points, boundary points,
m-boundary faces ifR”. See the appendix for an exampleand floating boundary points. Please note the union operator
containing boundary and floating boundary edges. () was loosely used in the above definition to mean the union
The following proposition guarantees that ttle+ 1)- over all possible indices.
equidistant face, thé&-boundary face, and the floating EXAMPLE 1
boundary face are the only structures that can exist in t :
boundary of &-equidistant face.

Figure 11 depicts a generalized Voronoi graph
I‘?gr a rectangular enclosure R3. The GVG edges, delin-
eated by solid lines, constitute the locus points equidistant to
ProPOSITION 1. If a (k + 1)-equidistant facef;, ; ., is three obstacles, and the meet points are where the GVG edges
nonempty, then thé-equidistant faceF;, ; must also be intersect. There are eight GVG edges that look like spokes;
nonempty; however, the converse is not necessarily truese have boundary points, in addition to meet points, as end
Furthermore, points.

8-%1...[1{ = Fi1.igiks1 U Cil...ik U FCil...ik-

1. Note that floating boundary faces can be defined alternatively flaata

ing k-boundary surfaceFs;, ...i, , which is the set of points on the bound- The GVG is the backbone of the HGVG roadmap, and there-
ary of ak-equidistant surjective surface where two gradient vectors bef—ore we must first show that it is truly one-dimensional. To
come collinear, i.e.FS;, i, = {x € 88;, i : Vd; (x) = Vd;,(x), . L . o
where 1. jp € fiy.... Fll. ThenFCilgk i eleSilu.ik . ¥n ¢ determine the generic dimension of the GVG edges, we will

{i1, ..., ik}, dp(x) = diy (x) = -+ = dj, ()} use the preimage theorem below to show that the GVG is

3.4. Dimension of GVG Components
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one-dimensional. To properly invoke the preimage theore
to obtain a correct dimension count, we first introduce an in
portant transversality assumption and discuss its implicatior

ASSUMPTION 2. Equidistant Surface Transversality As-
sumption: If equidistant surjective surfaces are manifold:
then they intersect transversally. Thatss;, ;, jlri_w SSiy.irj
with respect ta8S;, ;. if j1 # Jjo.

In the case thak = 2 and the obstacles are points, this as
sumption is equivalent to the “no four points are co-circular
assumption, which is often made in the Voronoi diagram lit
erature (Aurenhammer 1991). Assumption 2 is the gener:
ization of this statement.

This transversality assumption can also be interpreted as
assumption on the stability of the equidistant surface interse
tion geometry. In Figure 158;;x = 88 = $Siw = $Sij1
because there exists a circle that intersects the four obstac
(a nongeneric case). After a slight perturbation of the ot
stacles, the equidistant surfaces no longer coincide (Fig. 1.
Sincess;jx andsSs;;; are points in this example, they inter-
sect transversally only if they do not intersect at all. As .
result of Assumption 2§8;, i, j; # $8i,..i.j, if and only if

C
O -
®

88?;3'; SS ikl

v

ngkl e @ ngkg

C

C
O @

J1 # Jj2. The condition where two equidistant surjective surFig. 13. Small perturbation in obstacle locations.
faces are equal is an unstable nongeneric one, and thus we do

not consider it because any slight perturbation of the obstacle
locations drastically affects equidistance relationships. With
this assumption in place, we are now ready to determine the

generic dimension of the GVG.

Let the mappings : R™ — R be defined as

(dil - diz)(x)

(dil - dia)(x)
G(x) = :

(diy — di,)(x)

C;
SSijkl O3kt
SS,;jk ®
|
C’J SSij;

Fig. 12. Nongeneric arrangement.

An m-equidistant surjective surface can be defined as preim-
age of zero under that mapping. That is, $S;, ;, =
G~1(0). Assumption 2 ensures that zero is always a regular
value of G for all pointsx in the surjective surfac8s;, ., .
Therefore, the preimage theorem (also known as the submer-
sion theorem) (Abraham, Marsden, and Ratiu 1988) asserts
that$s;, ;,, is one-dimensional.

By a similar argument;: + 1-equidistant surjective sur-
faces,m-boundary faces, and floating-boundary surfaces
are zero-dimensional.

Since the GVG edges are subsetaeéquidistant surjec-
tive surfaces, they could have a dimension as high as one, but
not necessarily one. First, we need to establish that the inte-
rior of the GVG edges are one. We do this via the following
lemma:

LEMMA 1. The interior of thek-equidistant face, interior
(¥i,...ir), has the same dimension as thequidistant surjec-
tive surfacesSs;, .

Proof. The interior of the-equidistant face, interiof;, . ;, ),
has the property that for alt e ¥8, dj,(x) = --- =
diy(x) < dp(x) Vh &€li1,..., ). Letx e interior(¥;,. ;).
Therefore,x < §S;,.;. At a pointx whered; (x) =
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<o = dj (x) < dp(x), there exists an nblid) in SS;, ;.
Let Y = nbhdx) () S8S;,..i,. To show that interiat#;,. ;)

has the same dimension &S, ,,, it suffices to show that dD(x) = Co{Vd;(x) : Vi € I(x)}. (7)
Y Cinteriorn(#;, ;). L )

Sincex € interion(%, _;,), there exists ah & {i1. ..., ix} . Furt.hermore, it is shown (Ch_oset anq I_3urd|ck 1994) that
such thatd;, (x) = - - = d;, (x) < dj,(x). By continuity of if0 e mtenor(aD.(x)), where O'IS the origin of thg tangent
the single object distance function, fersufficiently small, SPace ak, thenx is a local maxima o). Using this result
dif(x +€) = - =dy (x +€) < dy(x +¢). Thereforey and the fqllowmg two Iemmas,_we can co_n_clude thati$ a
is an open subset of interid¥;, ., ), and thus the dimensions local maxima ofD, then the poink is equidistant ton + 1
of 88;,..;, and interiot %, ;,) are the same. ) Obstacles.

Now, we can show the following: LEMMA 2. Given a set of: arbitrary vectors ifR™, then

0 € interior(Cofv; € R™ : i = 1,...,n}) if and only if
PROPOSITION2.  The GVG edges are one-dimensional withy; e R” : i = 1, ..., n} positively sparR™.

zero dimensional boundary. . -
y LEMMA 3. Goldman and Tucker. It requires a minimum of

Proof. Sincess;,. ;... IS a zero-dimensional manifold, it (m + 1) vectors to positively spaR”™.

consists of isolated points i\ | J;,_, C;. Each of these
ints is an n in th I e, | ) in- . )
points is an open set in the topology the, Uy, Ci tended to show that the generalized gradienbadnly van-
duces or$S;,. ;,,.,. Furthermore, nonempty subsets of a col- o
mt ishes at a local minima. Assume the robot does not start at a

lection of points are points, and thus all nonempty SUbseI(')Scal minima (this assumption is reasonable because we are
of 88;,..i,,., are open sets in the subspace topology. Since P

%, . isanonempty subset 88, ; F. . iszero- performing a gradient ascent operation and the local minima
1---lm+1 1---lm+1? 1---lm+1

| L e are generically isolated unstable extrema points that occur
dimensional. By a similar argume@t,_ ;, andFC;, ;, are .
. . on a set of measure zero). Therefore, gradient ascent of the
zero-dimensional.

By Proposition 1% ; can be defined as multiobject distance function will bring the robot to a local
y Frop Tt maxima ofD, which is a point equidistant te + 1 obstacles,

The results of Scheimberg and Oliveira (1992) can be ex-

interi - y o . hich is a point on the GVG. (Note that whém is a set, the
interion(Fip.i )| ) Fipoinks | ) Cigoi | ) FCiyi w _ NOLE U

et LBJ e ﬂU e U . vector with the smallest norm D is chosen as the gradient
(Scheimberg and Oliveira 1992). O

Sincevg, Fiy..iwks U Ciy..i,, U FCiy..i,, is zero-dimensional
and interiot#;, ;,) is one-dimensional, the GVG edge,
Fi,..i,,» is a one-dimensional manifold with a zero-
dimensional boundary. O

The explicit numerical implementation of the gradient as-
cent operation is described in the companion paper (Choset
and Burdick 2000).

The procedure described in the above paragraph can §>_%_ Departability
repeated to show that akyequidistant face igm — k + 1)-

dimensional. Departability is the property of a roadmap that ensures all
points are accessible from at least one point in the roadmap
3.5. Accessibility (Rimon and Canny 1994). In the case where full knowledge

of the world’s geometry is available, departability is simply
As stated in the previous section, the GVG is the backbone gécessibility, but in reverse. The “on-line” case is considered
the HGVG roadmap. Therefore, if the GVG has the accessi the companion paper (Choset and Burdick 2000).
bility property, so does the HGVG. In this section, we give an
argument that a path exists from any point in the free spa o
to a GVG edge, i.e., the GVG has the roadmap accessibili%'ye')?' Connectivity of the GVG
property. When the GVG is connected, it is a roadmap in its own right,
nd thus sufficient for motion planning. The GVD is con-
ected (O’Dunlaing and Yap 1985; Choset 1996), and thus
or planar environmentsi{ = 2), the GVG is connected.
Yap demonstrates a condition in Schwartz and Yap (1987)
Proof. We demonstrate that a robot can access the GVG lilyat ensures connectivity of the GVG in any dimension, as
following a path that is constructed using gradient ascent dallows. The generalized Voronoi regions and equidistant
the multiobject distance functiaR (x), which is the distance faces may be viewed as a cellular decompositiowafito k-
to the nearest object from Although D(x) is not smooth, dimensional sets, wheke=0, ..., m. If eachk-dimensional
the multiobject distance function does possegsreeralized cell is homeomorphic to A-dimensional disk, then the one-
gradient which is denoted dimensional cells of such a decomposition form a roadmap

PrROPOSITION3. Given the Boundedness Assumption and
the Equidistant Surface Transversality Assumption, the GV
has the property of accessibility.
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structure of W (Schwartz and Yap 1987). The GVG is suf- « GVG edges are three-equidistant faces formed by the
ficient for motion planning in any dimensioned configura- intersection othreetwo-equidistant faces.
tion spaces if all equidistant faces satisfy this condition. For

_ The underlying philosophy of the HGVG is to exploit the
e_xample, the eqmdlstant_faces in Figure 11 satisfy this Condclonnectlvny property of the GVD, the union of the two-
tion and hence the GVG is connected.

equidistant faces. By definition, GVG edges lie on the

boundaries of two-equidistant faces, and thus adjacent two-
4. The Hierarchical Generalized Voronoi Graph equidistant faces share a common GVG edge. If the GVG

edges associated with each two-equidistant face were con-
The GVG is a great strategy for motion planning in all planagected (i.e., the boundary of each two-equidistant face is con-
environments, and some multidimensional ones under Cel’tai@cted according to Yap's assumption), then the entire GVG
conditions. In environments where these conditions are n@tconnected because the GVD is connected.
upheld, the GVG is not sufficient for general purpose motion \When the GVG is disconnected, a two-equidistant face
planning because the GVG is not connected. These envirais a disconnected boundary. However, the HGVG connects
ments are realistic and are not mathematical nongeneric casfi§connected boundary components on each two-equidistant
Forexample, Figure 14 contains an example of a disconnectgde, and thus the HGVG is connected because the GVD is
GVG with two connected components: (1) an outer GVG@onnected. Now, our goal is to use the second-order GVG,
network similar to the one described in Example 1 and (Zenoted with a superscript G\A 3o connect the boundaries
an inner GVG network that forms a halolike structure aroungf two-equidistant faces with disconnected boundary com-
the inner box. Solving this connectivity problem is a majoponents, thereby connecting all disconnected GVG compo-
contribution of this work. nents. In this section, we explicitly define the HGVGRA

The tWO-eCIUidiStant face defined by the floor and the CEihnd Supp|y a Connectivity proof that makes an assumption_

ing in Figure 14 violates Yap's condition because the face fhe ensuing sections relax this assumption, while maintain-
not homeomorphic to a two-dimensional disk, i.e., the halgng connectivity of the HGVG. Finally, Assumption 1 has to

like boundary structure forms a hole in the middle of the face modified to make sure there are “enough” obstacles for the
In this section, we define additional structures, terimgtier  following.

order generalized Voronoi graphand use them to connect

the disconnected boundaries of two-equidistant faces, Whlahl GVQ Equidistant Edges

inturn connectthe GVG. Essentially, higher order generalized

Voronoi graphs are like GVGs that are recursively defined ohhe construction of the GV&parallels that of the GVG. The

lower dimensional equidistant faces. The HGVG is the GV®asic building block of the GV&is called thesecond-order

and all higher order generalized Voronoi graphs. two-equidistant surfacend is defined asy|g; = {x €
For the rest of this paper, we will focus attention on devel#;; : (d; — di)(x) = 0}. Of particular interest |s a subset of

oping a roadmap foR3, even though many of the following Sul g, termed thewo-equidistant surjective surfacehich

results are general tB”. Since we are only considering is defined assulg;, = clix € Sulg, : Vdi(x) # Vdi(x)}.

W C R® then We define thesecond-order two- eqwdistant fatebe
« the only higher order generalized Voronoi graph is a Fulg, = {x € cl(SSulg;,) : Vh, din(x) = di(x)
second-order generalized Voronoi graph, (18)

« two-equidistant faces are two-dimensional, and = &) 2 di(x) = dj ()}

The second-order two-equidistant fa@”%j, is the set of

points on the facef;;, that are equidistant to two obstacles
Cr andC; such thatC;, andC; are theseconctlosest equidis-

Room tant objects and’; andC; are the closest equidistant obsta-
Exterior Interior Box cles. In Figure 15, the lower-left dotted edge is the set of
] points whoseclosestequidistant obstacles are the floor and
Z / ceiling and whose second closest obstacles are the left and
ave frgnt walls2 This edge is a second-order two-equidistant
edge.

2. Note that we are counting first and second closest differently than one
would rank winners of a car race. In a race, if two cars tie for first, then
the next car is considered to be “third.” In our counting of first, second,
etc., we would consider the next car to be “second.” Also, we presume that

. . Assumption 1 ensures there are enough obstacles to define the second-order
Fig. 14. An example of a disconnected GVG. equidistant faces.
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Analogous to the GVG, we continue our construction witl

lower dimensional subsets &f;. Thesecond-order three- BaCk‘ﬁ
equidistant face Celiling
Second- Y GVG Cycle ey

Fuplg; = Fualg, N Firlg, N Fipl ;- Order ,\‘- ------ "‘/-Z 7
is the set of points wher€y, C;, andC,, aresecondclosest Perio 0 ,:' Right
eq_U|d|stant objects an@d; andC; are the closest equidistant Lefi / @ ,,' GVaG
objects. ; ¢

Continuing in this vein, we can define second-order A . - Second-Order

equidistant faces, but since we are limiting the discussic fre” M GVG
to R3, the second-order two-equidistant faces are the &V(
edges, and the second-order three-equidistant faces are
second-order meet points. Front Floo

The dotted lines in Figure 15 are G¥@dges. Note that
there is a “cycle” in the second-order GVG, which implies th
existence of the GVG cycle inside of it. With this information,
the robot makes a link from the second-order cycle t0 theqq \ioronoj regions constitute the second-order generalized

GVG, thereby connecting the roadmap in this example. Thig qnoi graph, i.e., GV& & =, Fil+ .
linking strategy is defined in a later section. o Fij k Fij

gig. 15. Box in a room.

Ifthe boundaries of each second-order generalized Voronoi
) ) ) region are connected (or can be connected with a link), then
4.2. Second-Order Generalized Voronoi Region the boundaries of the two-equidistant faces, i.e., the GVG

Recall from Section 3.1 that the GVD forms a complex thanges,_are connected through the second_—order generalized
separates the robot's work space into generalized Voron#"onoi graph. Therefore, our goal now is to ensure the
regions, each of which is the set of points closest to Roundaries of the second-order gengrahzed \oronoi regions
particular obstacle. Likewise, the GV¥Gonstrained to a &€ connected or can be connected via a well-defined link.
two-equidistant face, denoted G¥(G- , separates the two- However, before we can c_iiscuss conr_1ecti_ngthe bounda_ries
equidistant face#;; into second-ordeur generalized VoronoiOfthe second-order generalized Voronoi regions, we must first

regions each of which has a particulaecond closest obsta- identify all of the structures in their boundaries. Unlike the

cle(butC; andC; are the closest obstacles). The second-ord&fs€ N F'gu_:_i 15, thj dgc_—:‘conld—order GVG m:;y cogtaln o(;[her
generalized Voronoi regions are formally defined as structures. ese additional structures are boundary edges,

floating boundary edges, amatcluding edges Since there

Frlg =clix € Fij :Vh #£1, j, k, are many types of GVéedges,_ the structures defined in Sec-
Y tion 4.1 are terme@GVG equidistant edgesThese edges
0 <di(x) =d;j(x) < dp(x) < dp(x) are similar to GVG edges because they are defined in terms

andVd;(x) # Vd;(x)}. (19) of equidistant relationships. The boundary edges defined in
Section 3.2 have their name because they exist on the bound-
EXAMPLE 2. Let GVGZ|Tﬂom/Cemng be the second-order GVG g1y of the environment; i3, they are the set of points where
for the two-equidistant fac&oor,ceiling, defined by the floor the distance to two obstacles is zero. Floating boundary edges
and ceiling of the rectangular enclosure in Figure 15. Thare similar to boundary edges, but “float” in space. The final
solid lines in Figure 15 represent the GVG, and the dottestiges—occluding edges—are defined in the next section.
lines represent GV& Frooncatng' 1NE GV@&| Frooncaiing I

videsFioor/ceiling INto five regions whose closest obstacles arg. 3. Occluding Edges
the floor and ceiling; furthermore, each region has a unique ) ) )
second closest obstacle: the front face, the right face, the badk€ following example motivates the need for an occluding

face, the left face, and the interior box. These regions are tRE9€-
second-order generalized Voronoi regions. ExamPLE 3. Hole on top of a box: Figure 16 depicts a flat

Just as the boundaries of the generalized Voronoi regiofRPM With @ box in the middle of the room. The box in the

define the GVD, the boundaries of the second-order genergflddle of the room_contams an opening that can elther be
a through-hole, a dimple, or an entrance to another internal

3. Itis worth noting that to define the G\A&dges, Assumption 1 must be environment.

upgraded to ensure there are “enough” obstacles to form one-dimensional-l—he GVG structure associated with the box and the hole
structures. Hence, the GVG and G¥Y@ higher dimensions require a clut-

tered environment with at least + 1 obstacles, where is the dimension (Se? Fig. 1_7) contains two co_n_nected componentg: one as-
of the space. sociated with the hole and ceiling, and one associated with
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Connected subsets of an occluding edge are teooeldding

Hole on top of inner box : !
) *oP fragmentsand are denoted;. The following example gives

Room / an intuitive description of the occluding edges.
Exterior ExamPLE 4. Occluding Edge: Recall the rectangular en-
/:‘ /A closure with a box in its interior in Figure 15. Consider the
// ) . Z ) two-equidistant face defined by the box and the ceiling of Fig-
L/ f/ - I ure 15. This two-equidistant face is shaped like an upside-
L S nner . - . .
e o Box down bowl, as depicted in Figure 18. Figure 19 contains a
O x side view of Figure 18.

Consider a robot in Figure 19 that moves from left to right
while maintaining double equidistance between the inner box
and ceiling (i.e., while it remains on a two-equidistant face).
Assume the robot starts at a point where the second closest
Fig. 16. Room with a box in the middle. The box, outlinedbstacle is the floor. While moving from left to right on the
with dotted lines, has an opening on top of it, delineated wittwo-equidistant face, the inner box begins to occlude the floor
solid lines. as the robot begins to pass over the box. (Recall that we are
using the visible distance function.) When the floor becomes
occluded, there is a discontinuous jump in the value of the
distance to the second closest obstacle. The point where the
floor becomes occluded is a point in an occluding edge.

The dashed lines in Figure 18 represent the occluding edge
in the two-equidistant face defined by floor and ceiling. The
occluding edge encloses a region where points in its exterior
are within line of sight of the floor. (See Fig. 20.)

4.4. Structures of the Second-Order Generalized Voronoi
Graph (Boundary Elements of the Second-Order
Generalized Voronoi Regions)

Fig. 17. The GVG edges in the vicinity of the interior box.Since the boundaries of the second-order generalized Voronoi

This halo-shaped GVG edge is defined by the ceiling, floof€gions constitute the second-order generalized Voronoi
and box. The two parallel arrowlike structures connected t§raph, we now consider them carefully. The following propo-
a segment is the GVG structure defined by the four sides of
the hole and the ceiling.

Two-Equidistant Face Defined

Part of Ceiling by the Ceiling and the Box

the box, the floor, and the ceiling. Unfortunately, the twc
connected components are not within line of sight of eac
other. Hence, even if the robot possessed a magical “GVv
sensor,” depending on the robot’s initial conditions, it ma
“miss” one of these connected components while increme
tally constructing the HGVG. Therefore, there is aneed to di
fine an additional structure to link the disconnected connecti
components.

Occluding Edge

Top

DEFINITION 4.  Thetwo-occluding faceVy; |J¢i/, , is the set of 7 Face
points on the shared boundary of two adjacent second-orc %f Inner

OX

generalized Voronoi regi0n§k|5g’,j and }‘1|}vij, where for

x € Vulg, s € Filg, andr € Filg,, iMs—rdi(s) # £y 18 Two-equidistant face between the box and the ceiling

lim;— x dy (). (from Fig. 14) is outlined with thin solid lines. All of the en-

The occluding faces make the bridge between disconnecté@sure and box from Figure 14 is removed with the exception
GVG components that are not within line of sight of eacl®f the top of the box and the ceiling of the enclosure. Dashed
other. InR3, atwo-occluding face is called ascluding edge. lines delineate an occluding edge.
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Ceiling common boundary of two adjacent second-order generalized
Voronoi regions. When the distance to the second closest ob-
stacle continuously changes as arobot crosses from one region

Two-Equidistant Face

\{ to another (i.e.d; (x) = dj(x) < di(x) = dj(x) < dp(x)),
the corresponding structure is @QVG* equidistant edge
Inner Negated When the distance to the second closest obstacle nioes
Box Gradient continuously change, the corresponding structure i®s@n
cluding boundary edgeThe final boundary structure occurs
Point on GVG Edge Vector when two gradients become collinedfd; (x) = Vd;(x));

Floor this structure is dloating boundary edge.

Fig. 19. The thick solid line represents a side view of th
equidistant face defined by the box and the ceiling. The thic
arrows that are distributed along the face point toward thehe GVGZ|¢U, edgesinclude boundary edges, floating bound-

floor, which is the second closest obstacle. There are no gy edges, GV@ ¢ equidistant edges, and occluding edges.
rows on the portion of the face above the box because the bex, ,odes are béundary points, floating boundary points,

occludes the floor in that region. second-order meet points, and occluding meet points. The
GVG2|3¢~” is these collection of edges and nodes, i.e.,

.5. Hierarchical Generalized Voronoi Graph Definition

Two-Equidistant Face Defined Occluding Edge
by Inner Box and Ceiling GVG2|3‘:,, =
GVG Edge Y
Defined
/ by the [(CUUFCUU< (#uls, Uvmg,))),
CoT T ' Floor, k l
Ceiling,

and Box <Ci ik FCiji ij <L1J (ij (f‘*kzplj’?,-,- U szplf’,-,))))] :

\/ ..................... (20)

/ 5. Roadmap Properties of the Hierarchical
Floor is Second Closest Floor is not Second Closest ~ Generalized VVoronoi Graph

Fig. 20. Two-equidistant face between the box and the ceilin§p now that we have defined the HGVG, we need to show
as viewed from above, is drawn with an occluding edge. that it is a roadmap, a one-dimensional structure that has
three properties: accessibility, departability, and connectiv-
ity. Since the GVG possesses the property of accessibility
sition enumerates the boundary structures of a second-orded is part of the HGVG, the HGVG also has the property
generalized Voronoi region: of accessibility. Loosely speaking, departability is a conse-
m guence of the fact that each obstacle is within line of sight of
PROPOSITION4. In R™, the boundary of a second-orderat least one point on the HGVG. Assume the goal is a point

generallzgd \Voronoi region may contain the fonowmgobstacle and create a new HGVG, termedvinial HGVG
structures:  two-equidistant faces, second-order tw

o ; Fhere exists a set of pointg in the virtual HGVG, whose
equidistant faces, two-boundary faces, floating two-bounda%. ithin I f sight of th it be sh that
faces, and two-occluding faces, ints are within line of sight of the goal; it can be shown tha

atleast one pointiy is in the HGVG (in fact, “most ot/” is

The proof of the above propositionRi"” is an application in the original HGVG). Therefore, there exists a point in the
of eg. (12) through eq. (19); inspection of eq. (12) yields thelGVG that is within line of sight of the goal. See Figures 21
boundary components of a second-order generalized Vororzid 22.
region inR3. Starting from the left, consider the firstinequal- The rest of this section demonstrates that the HGVG is
ity, 0 < d;(x) = d;(x). The boundary associated with thisconnected.
inequality is the set of points where0d; (x) = d;(x); this The proof of connectivity of the HGVG relies on the fact
corresponds toloundary edgeConsider the nextinequality, that the boundaries of individual second-order generalized
d;(x) = d;(x) < di(x), whose associated boundary is the seéforonoi regions are connected, or can be readily connected
of points,d; (x) = d;j(x) = di(x); this corresponds to@VG  with a well-defined link. For the sake of explanation, assume
edge.The nextinequalityyy (x) < dp(x), is associated with a this to be true.
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Generalized Voronoi Graph
Osbtacle

il -4

® Goal N

Generalized Voronoi Vertex
(Meet Point)

Fig. 21. The HGVG is a GVG in the plane.

-4

\
Star-Shap ed Virtual Generalized Voronoi Graph

Fig. 22. The virtual GVG.

PrROPOSITIONS. The HGVG (with its links) is connected.

Proof. The proof of HGVG’s connectivity is done in two
steps: (1) show that the HGVG restricted to a two-equidista
face is connected, and then (2) demonstrate that all of t
HGVGs restricted to all of the two-equidistant faces form i
connected roadmap.

First by definition, the second-order generalized Voronc
regions, restricted to a two-equidistant face, form an exa
cellular decomposition on that face. That is,

. interior(f“k|3_~,_j)ﬂinterior(m}vij) =0 Vk,I,

» d(Fl 5 Nl Fly;) # 9 <= 0Filg, NoFAlg,
# 0.

Let g; andg, be two points on the boundary of second:
order generalized Voronoi regions. Consider an arbitrary pa
c:[0,1] — #;;, wherec(0) = ¢g; andc(1) = qé,.

Now, we want to identify segments of this path with partic:
ular second-order generalized Voronoi regions. &bt the
index of the second-order generalized Voronoi regﬁ;r};;j .
Let the mappingf, : F;; — {1, ..., n} determine in which
second-order generalized Voronoi region a point may lie, i.€
the index of the second-order generalized Voronoi regiol
This function will be piecewise constant.

The entire path is broken down into segments where ea

second-order generalized Voronoi region index un@eirhe
end points of each segment lie on the boundary of its associ-
ated second-order generalized Voronoi region.

By construction, the concatenation of segments forms a
path from start to goal. For each segment, there exists a
connected path along the boundary of its associated region
between the end points of the segment. Therefore, a new
path can be constructed from the concatenations of these new
boundary-connected path segments that conrgcasid g,
while remaining entirely on the boundaries of the second-
order generalized Voronoi regions (see Figs. 23 and 24).

Since the selection af; andqé was arbitrary, the union
of the boundaries of the second-order generalized Voronoi
regions is connected. That is, G‘&Qw is connected. The
second part of this proof uses this to show that the HGVG is
connected iR,

The GVD s connected (O’Dunlaing and Yap 1985; Choset
1996); that is, the union of the two-equidistant faces is con-
nected. Also, by definition adjacent two-equidistant faces
share a common GVG edge. Therefore, the HGVG restricted
to adjacent faces is connected. Since the union of the two-
equidistant faces is connected, all of the HGVGs restricted to
two-equidistant faces form a connected network. That is, the
HGVG is connected. O

ExampLE 5. A connected HGVG: Figure 25 depicts the

Fig. 23. Path in two-equidistant face.

v

segment is a connected component of the preimage ofFi. 24. Deformed path.
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Boundary Edge
\

—

GVG Edge

~ Ceﬂing\Half-height Fig. 26. GVG edges, drawn as thick solid lines, are on the
boundary of the two-equidistant face between the wall and
the ceiling of Figure 25 in Example 10. The GVG structure
. in the middle of the face is associated with the hole; in
Fig. 25. A room with a hole in its side wall. The thick dottedactuality, it “pinches up” out of the face.

lines represent the GVG and the thin dotted line marks the

half-height of the room. The thick solid lines are drawn to

emphasize the GVG edges associated with the two-equidist:i Boundary Edgdccluding Edg6VG? Edge

face defined by the right wall and ceiling. I \

\
disconnected GVG for the environment shown in Figure 4° ST - """""

- Floor

from Example 10. K Fommmme-
The geometry of the hole with respect to the room causi 3 GVG Edge
the boundary of the two-equidistant face, defined by the wall
LY ) ) . 27. The second-order GVG edges, boundary edges, and
and the ceiling in Figure 25, to be disconnected (Fig. 26 9 9 . y ecg

_ . . ccluding edges are drawn in the two-equidistant face be-
this results in a disconnected GVG. The second-order th eenthe wall and the ceiling of Figure 25 in Example 10. The

prescribes a well-defined path on the two-equidistant face ﬂ}ﬁfck solid lines are GVG edges, the dotted lines are GVG

connects the disconljected GVG fragments. Therefore, int@ages, the thin solid line is a b(;undary edge, and the thick

example the HGVG is connected (see Fig. 27). dashed lines are the occluding edges. Here, the GirR&s
Now, the HGVG connectivity proof hinges on the con-up disconnected GVG edge fragments on the two-equidistant

nectivity of the boundaries of the second-order generalizdace.

Voronoi regions, so the rest of this paper is devoted to this

topic.

Figure 14, the GVG cycle is the locus of points equidistant
. to the floor, ceiling, and interior box, which is the halolike
6. Cycles and Periods structure that surrounds the box.

When environments such as the one in Figure 15 have char- . .
acteristics that give rise to cycles in the HGVG, the HGVC?ROPOSITIONG. In a bounded subset of a three-dimensional

by itself is not necessarily connected. This section presersclidéan space, a GVG edge is a cycle if and only(i%f‘ it is
a strategy to resolve this issue. After defining the GVG Cﬁlsconnected from all other edges in the GVG and the &VG

cle, we show that cycles cause the HGVG to be disconnectestoof. This proof is a consequence of the following lemmas

because they give rise to second-order generalized Voronoi{ghose proofs appear in the appendix (Section B).
gions whose boundaries are not connected. Next, we demon-

strate a duality between cycles in the second-order GVG ah§VMA 4. When equidistant faces intersect transversally
those in the GVG, which can give rise to a linking proce(AgsumptlonZB upheld), a GVG cycle cannot contain a meet

dure to connect them. We also introduce an assumption Nt
precludes the existence of cycles; this assumption is trueliEmma 5. A GVG cycle cannot contain any boundary or
highly cluttered environments. floating boundary points.

LEMMA 6. InR3, a three-equidistant surfacgs$; i, is ei-
6.1. GVG Cycle ther C2-diffeomorphic to $ (i.e., it is a GVG cycle) or it is
DEFINITION 5. GVG Cycle: AGVG cycleis a GVG edge ynbounded.

that isC2-diffeomorphic tos?, the unit circle. . .
P LEMMA 7. A GVG? equidistant edge can only intersect the

Henceforth, the term “cycle” refers to a GVG cycle. InGVG at a meet point.
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If a GVG edge is a cycle, then it does not contain meaeneralized Voronoi regions do not contain any cycles and
points (Lemma 4), boundary points (Lemma 5), or floatinghus their boundaries are connected.
boundary points (Lemma 5), and thus it cannot intersect other
GVG edges and GVéedgeS (Lemma 7) That iS, the GVG 6.2. Second-Order Cyc|es and Periods
cycle is disconnected.

Assume there exists a disconnected GVG edge that is nbtSt as there are cycles in the GVG, there are also cycles in
a cycle. By Lemma 6, the GVG edge must be unboundeHe GV@. A second-order cyclis a GVE equidistant edge

However, this contradicts our Boundedness Assumption (Athat isC?-diffeomorphic tos*, the unit circle. However, we
sumption 1), and thus the GVG edge is a cycle. 7 are interested in another structure, termedsbeond-order

" . \}Jeriod, defined below.
Whereas Proposition 6 states that the existence of GVG

cycle implies that the HGVG is not connected, the next prop@EFINITION 6. GVG? Period: AGVG periodis a connected
sition demonstrates how cycles give rise to second-order geicond-order generalized Voronoi region boundary compo-
eralized Voronoi regions whose boundaries are not connect&gnt that does not contain any GVG edges.

PROPOSITION7.  In a bounded subset of a three-dimensional BY g\e}ﬁGrzwition,.dg GVszperiod s the uniorl; of éero for
Euclidean space, a GVG edge is a disconnected compong?ﬂre equidistant edges, zero or more boundary frag-

of a boundary of a second-order generalized Voronoi regiéﬂents' Z€ro or more floating houndary iragments, and Zero
if and only if it is a cycle. or more occluding fragments. Note that second-order periods

are homeomorphic t61 and that GVG cycles are GV&
Proof. This proof is based on the following lemmas, whosgeriods.

results are general iR™ and whose proofs appear in the A GVG? period that only has GV&equidistant edges is
appendix. denoted J; Ful ;- A GVG? period that has GV&equidis-

tant edges, boundary fragments, floating boundary fragments,

LEMMA 8. If the three-equidistant facg;;; is not empty, and occluding fragments is denoted by

then the second-order generalized Voronoi regfpln;ij must
not be empty. Furthermore, ;. # @, then¥;; C Fil 7, Cij U FCij U (}vk”?__ U szlgr..) )
ij ij
1

LEMMA 9. The boundary of a second-order generalized
Voronoi region contains at mosine three-equidistant face. For example, if a GV period is composed of three GG
Thatis,#pqr  Filg;, forall{p,q,r} # {i, j. k}. equidistant edges and one boundary edge, the M@iod

By Lemma 8, the GVG edgé;;x must be a subset of is Finl 7, Uf“k,2|3_~ij U$k13|37,-, UCGij.
the boundary of a second-order generalized Voronoi region, The second-order generalized Voronoi region, depicted in
Filg;- In fact, by Lemma 9 it is the only GVG edge Figure 28, lies on the two-equidistant face defined by the
that can be in the boundary @[’k|3_-ij_ GVG2 equidistant floor and ceiling in Figure 15. This second-order generalized
edges, boundary edges, floating boundary edges, and occlMaronoi region has as its closest obstacles the floor and ceiling
ing edges (Proposition 4) are the other structures iy and has as its second closest obstacle the inner box. The
exist on the boundary of a second-order generalized Vororfétted lines onthe outer boundary represent G¥@uidistant
region. edges, which compose a G¥@eriod.

If %« is a cycle, then by Proposition 6 none of the abov

listed structures can intersect it, and ti#jg, must lie on a ‘8,3_ Inner and Outer Cycles and Periods

disconnected component of the boundary of the second-or%’?re’ we describe the notions of an inner and ou.ter cycle.
ecall the corollary to the Jordan curve lemma, which states

generalized Voronoi region. t anv closed curve in the plane (or surf diffieomorphi
If %« is adisconnected boundarycomponentofasecontcﬁla any closed curve € plane (or surface diffeomorphic

order generalized Voronoi region, it does not intersect ar{?oa plane) divides the plane into two regions: one termed the

GVG edge, or any GV&edge. By Proposition &F; ; is a undedsection and one termed theboundedection.
cycle 9 y g y position &Fijx 1 0 Leta,-f“k|3:~,_j be a boundary component of the second-order

generalized VoronoiregiotF | £, and letit serve as a Jordan
Recall Example 2, which consists of a room with a bo¥,rve onss;;. If Fil & lies on the bounded region &6;;,
in its interior. Figure 15 shows the two-equidistant face dep, ., it is anouterbouﬁdary component. Otherwise, it is an

fined by the _floor and ceiling. Solid lines _represent the_ GVGnner boundary component. From these two definitions, the
and dotted lines represent the G¥/GThe inner box defines notion of aninner cycle outer cycleinner GV period, and

a second-order generalized Voronoi reg'mox|?f|oor/ceinng' outer GV@ periodnaturally follow.

This region contains a cycle on its boundary and thus has_a

boundary that is not connected. All of the othersecond-ordE%AMPLE 6. . Fig_ure 28 c_ontair_ls the second-order general-
ized Voronoi region that is defined by the box on the two-
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ack o
back/box
K / THoor/ceiling
T T
/ \I’ ‘\
T l II ‘\ 9:’ 7 ht b I
left /bo: , ‘ right /box .
fbox ?ﬂoor/,ceili - \ Tfloor /ceiling
Inner Bounda;y \\‘ h ",' ' /
Outer Boundafy “\ —_,' ?box|§ﬂ -
"‘*/—-"' oor/ceiling
7.
front box‘
/ Tfioor /ceiling

Fig. 28. The second order period is drawn with dotted lines. It is the union of second order GVG edges that forms a connected
boundary component of a second order generalized Voronoi region.

equidistant face, defined by the floor and ceiling from Exessarily true, the following proves to be useful.
ample 2. The <_jotted lines in Figure 28 represer_1t the éVq'DROPOS|T|or\9. Ifthe outer boundary of a second-order gen-
period that furnishes the outer boundary. The solid line repre. . lized Voronoi region is a G\&eriod, and there is GVG
sents the GVG cycle, which is an inner boundary componen[ 9 '

. . -~ “edge associated with the same region, then the GVG edge is
of 5"box|5,~ﬂoor/cemng. Figures 29 and 30 illustrate, respectlvely,an inner GVG cycle.

how the definitions of inner and outer boundaries work. In
Figure 29, when the GVG cycle is a Jordan curve, its a§roof. Recall that a GV period cannot intersect with a
sociated second-order generalized Voronoi region lies in t/&VG edge. By hypothesis, the G¥Geriod is an outer
unbounded region (shaded). Similarly, in Figure 30, wheboundary. Also, by hypothesis, there exists a GVG edge,
the GV@ period is a Jordan curve, its associated secondfji, inside the second-order period.
order generalized Voronoi region lies in the bounded region Assume that the edg#;;x is not a cycle. IfF;;x # ¥,
(shaded). thens§s;;r # ¥ and by Lemma 6 it is unbounded. Therefore,
From Figures 15 and 28, it appears that there exists a dualffijx must intersect the outer GVi@eriod. In particular,
between the existence of the GVG cycles and Gyériods. Say $Sijx intersectsy|g . For allx € $8ix () Ful g,
The following proposition establishes this duality: for one offs(x) > d;(x) = d;(x) = dx(x) = di(x), for all k. This
them to exist, the other must exist. Hence, the existence isfthe definition of a meet point, and thus by Proposition 1,
one s a clue to the robot that another cycle or period is neartsyGVG edge intersectsy | ¢ . This contradicts our original

This information is needed for a “linking” strategy to connechypothesis thaf; ;; is a GV@ period. Thereforef;j is a
disconnected HGVG components, such as those in Figure E§cle. H

PROPOSITION8. In R, if a GVG cycle F;; is an inner  Linking from an outer second-order period to an inner
boundary in a two-equidistant facg;, then there exists an GVG cycle is achieved via gradient descent of the distance to
outer GV@ period in the two-equidistant face;. the second closest obstacle, constrained to a two-equidistant
face. Letx be a point on a second-order period. gtand

C; be the two closest obstacles, &t andC; be the second
closest obstacle, and I&};; be the inner GVG cycle. At,

di(xr) > di(x) = d; ().

Proof. By Lemma 8, if#;;x # @, then the second-order gen-
eralized Voronoi region$k|}~ij # ¢. Furthermore, Lemma
8 asserts thaf; is in the boundary oﬂ?k|}~l_j. By Lemma

9, ./“l'jkAls the qnly C;VG edg_e ||1Fk|3:,.j. By th(;; Bgundzd;j LetﬂTXJf:"_dek(x) be the projection of the gradieW. (x)
ness ssumptpn (Assumption 1f;| g, must be bounde onto 7, %;;. This is the direction that increases distance to
and thus contains an outer boundary component. Accorgs \yhile maintaining double equidistance betwe@nand
ing to Proposition 7, this outer boundary component does npl. - continuity of the distance function guarantees that a path
contain¥; ;. Such a boundary component is a G¥/griod traced out byé(r) = —m; ¢ Vdi(c(t)), wherec(0) = x
iti c()yJij
because itis free of GVG edges. encounters the inner GVG cyjcle if and onlwitly (c(¢)) does
Although the converse of the above statement is not negetvanish. Thatis, the distancedpdecreases as the distance
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Second-Order ;
Generalized I
Voronoi :

Region } Quter Boundary
]
SSbox’ ": - e - Bounded
THoor/ceiling \ ' Region
\ N

Fig. 29. Inner boundary.

Second-Order

Generalized

Voronoi

Region Outer Boundary
~ Bounded

Srﬂoor/ce“ili:x:i e :533 Region

Fig. 30. Outer boundary.

to C; andC; increases, or the distance @ decreases at a Back
rate faster than the distancedp andC; decrease. In either N i 7

case, a link is made from the outer second-order period to Ceiling
'\ GVG Cycle P g 7
BTl ; "
e X Right

inner GVG cycle. See Figure 31 to see the linking procedu; ~ Second-

for the example originall_y found i_n Figure 14. _ 8;%‘13;
Finally, we must consider the situation when the gradient|

the second closest obstacle constrained to a two-equidist

face vanishes. If the robot is performing gradient desce Left

constrained to a two-equidistant face (i.eVdx| %) from Lo g /___Second-Order
a GVG equidistant edgé?k,|5rij and the gradient vanishes, / % GVG
then there is no GVG edge (i.€%,r = ¥). In such a case,
the robot simply returns to the outer boundary period. t\ j
Although the above linking procedure has been demol Front Floor ~

strated in simulation, we are currently deriving a rigorougig. 31. Linking to and from cycles.
proof for it. However, we can introduce a well-stated as-
sumption, which precludes the existence of cycles, thereby

bypassing the need for the above linking procedure. Thig.cles can result. Also, when this assumption is upheld, all

assumption is described in the following section. second-order generalized Voronoi regions contain one and
only one GVG edge, which is useful for ensuring connec-
6.4. Extended Boundedness Assumption tivity of the boundaries of second-order generalized Voronoi

Now, we introduce an assumption that restricts the relativ&9'oNs:
placement of obstacles in an environment such that no GV&SsSuUMPTION 3. Extended Boundedness: Rf*, eachp-
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order k-equidistant face has at least opeorder (k + 1)- since the second-order generalized Voronoi reg?“@ry:ij #*
equidistant face on its boundary. @, it must be true thad, (y) < djy(y) forall y € $k|fr~l_i. By

InR3 (m = 3), this assumption implies that all GVG eo|gescontinuity of the single object distance functiafy;, must
(k = 3, p = 1) contain at least one meet point. That is, fof!SC be a nonempty subset 8t| ¢, (Lemma 8). This is a
alli, j, k, there exists € F;,; and there exists dnsuch that contradiction of Lemma 9, where only one three-equidistant
di(x) = dy(x). By the Equidistant Surface Transversalitface may be a subset 6|, . Therefore/’ = k, and %
Assumption (Assumption 2), this point is isolated. is always a subset cﬂ’k|f~ij. ' O

AssumpFlon 3is _not satisfied in the enV|ror_1m_en'F n Flg-LEMMA 11. If Assumptions 2 and 3 hold, then there will be
ure 15, which consists of a room with a box in its |nter|or.no GVG cycles, no GV&cycles, and no outer GVAberiods
There is a GVG edge that contains no meet points. However, ' ' '
when an additional box is placed into this environment, thEroof. Let ¥, be a GVG edge iR3. By the Extended
HGVG becomes connectddee Fig. 32). The environment Boundedness Assumption (Assumption 3), there exists a point
in Figure 32 satisfies the assumption because all GVG edges ¥;;i such that there is an obstadg that is positioned
have meet points. such thaw/;(x) = di(x). Therefore %y = Fiji () Fijk #

Now, we will show that when the Extended Boundednesé. Sincef;;, is not disconnected from all other GVG edges,
Assumption is upheld ifR3, all second-order generalizedwhen the Equidistant Surface Transversality Assumption (As-
Voronoi regions posses a GVG edge, as shown by the faumption 2) is in effect, Proposition 6 asserts g is not
lowing lemma. This result is used in demonstrating that er& cycle.
vironments that do not uphold the Extended Boundedness By Proposition 9, if there exist (1) an outer second-order
Assumption cannot have cycles. period, which is a component of the boundaryitkf%, and

LEMMA 10. Let the Extended Boundedness Assumptioff) @ 9eneralized Voronoi edge, which is a subsefiz,
(Assumption 3) and the visible distance function be in eftwhose existence is guaranteed by Lemma 11), then there
fect. In this case, all second-order generalized Voronoi r€Xists afirst-order cycle. The contrapositive of this statement
gions must contain a three-equidistant face. isalsotrue. IfaGVG cycle does not exist, then an outer VG

o _ period cannot exigir the Extended Boundedness Assumption
Proof. Recall the definition of the second-order generalizeg@ not valid.

Voronoi region, The Extended Boundedness Assumption implies that a

GVG cycle cannot exist. This implies that an outer GVG
period cannot exisbr the Extended Boundedness Assump-

Given the Extended Boundedness Assumption (AssumBQ” is not in effect. However, since the Extended Bounded-
tion 3), there exists a’ ¢ (i, j} and anx such that ness Assumption is in effect, there cannot be any outer GVG

Filg;, = (x € Fij : Vh ¢ {i, j, k} dn(x) = di(x) = di (x)}.

di(x) = dj(x) = dy(x). If i’ =k, thenF;j; # ¢, and Periods. -
by Lemma 8 and Lemma 9, it is the only three-equidistant Note that this assumption requires use of the visible dis-
face ind Fi| g . tance function. That is, the robot is only aware of obstacles

If n" # k, then that impliesF;;,» must exist (i.e., there that are within line of sight of it. Recall that all structures
exists anx such thatd; (x) = d;(x) = dy(x)). However, are defined in terms of the visible distance function. Also
note that when this assumption is upheld, all second-order
generalized Voronoi edgeg & 2, p = 2) have at least one
second-order meet point.

Also note that the Extended Boundedness Assumption is

= aweak one. IR whenm > 2, the Extended Boundedness
-7 7 Assumption is true for most “cluttered” work spaces. Robots

whose configuration spaces are high dimensional tend to be

CCiﬁl"l g

Right : : . .
& highly articulated and are thus better suited for cluttered envi-
—GVG ronments. Such environments do not contain cycles and thus
. Second-Order may contain a connected HGVG.

GVG

6.5. Inner-Boundary Periods
Even when the Extended Boundedness Assumption is up-
" Front Floor — held, there are environments that contain an arrangement of
obstacles that give rise to a disconnected HGVG. These peri-
Flg 32. Room with two boxes in its interior. The solid "neSOdS are a|WayS inner periods on at least one two-equidistant
are GVG edges, and the dotted lines are G\éGges. sheet. This subsection introduces one of these periods termed
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inner-boundary periods and describes a linking procedure tt
connects them. - T R e Y

| : ')

! |

! I

! I

! |

! |

|

A

ExAMPLE 7. Inner Period: Figure 33 contains a room witr
four boxes floating in its interior. Two of the boxes, object:
B1andBo, are above boxX 1. BoxesB; andB; have the same
depth as box .

Figure 34 depicts a cross-section of a three-dimensior | F
world depicted in Figure 33. The cross-sections of the tw¢ ™ ~ 7 - ' s
equidistant faces are drawn as solid lines and arc segmet
The cross-sections of the GVG edges are points where thi
edges intersect and have circles drawn around them. Figu
35 and 36 display a top view of Figure 33. In these figuregig. 35. GVG and GV& edges (Top View).
the solid lines are the GVG edges and the dotted lines are the
GVG?edges. InFigure 36, itcan be seenthatthe second-order
generalized Voronoi region has an outer and inner boundary.

Lemma 12 allows for a link to be made between the tw

boundaries. . T \
LEMMA 12. Inner Boundary Link: If an inner GV&yeriod C/ B 3
with GVG? edges exists on the boundary of the second-ord
generalized Voronoi region, then a link exists from the oute
boundary to it.

Proof. By the Extended Boundedness Assumption (Assum|

tion 3), if an inner GVG period contains a GV&edge, then If For ‘\
\\ Fq lc ( g-tu )
Back —
Y - K * /( N Feea1
Ceiling/ Box B, BO)‘( B, /‘ Floor
/ \ /
/

Fig. 36. Inner Period.

// //[ Y/ R Box, As / /
Lef// I///‘ J/ V/—(4 4 / A //

A/( / }ﬁ—’ 1/ [ l//
7 V - / i A
{]/ Box Ay ) {/ it must contain a second-order meet poifily,, | F0 such
L e that (1) at this point, obstacl&s andC; are the closest ob-
- Front Right Floor” stacles and obstaclés, C;,, andCy, are the second closest,

Fig. 33. A room with four boxes floating in its interior. Boxes@nd (2) there exists a point, on the outer boundary where

B1 andB; are floating above box; and have the same depthdi (X) = di, (x). Alink can be formed by tracing$i,,| #; .
as boxA;. second-order two-equidistant surjective surface constrained

to a two-equidistant face, past a second-order meet point,
qulﬂﬂ}j_,-- By the Boundedness Assumption (Assumption
1) and Lemma 68811 g, is guaranteed to be unbounded
and therefore must intersect another boundary component of
Fil ;- O

Ceiling

This section demonstrated how arrangements of GVG

edges and GV&equidistant edges, by themselves, can yield
Floor a disconnected HGVG. Next, we introduced a procedure that

Fig. 34. Cross-section of the environment in Figure 33. Théither links the disconnected HGVG or states a weak assump-
cross-section is parallel to the front face of the rectangular efion that precludes the possibility a disconnected HGVG could
closure and cuts it through the three floating boxes. The soligist. The following section demonstrates how other GVG
lines are the two-equidistant faces, which meet at generalizggges can give rise to a disconnected HGVG and how to con-
Voronoi edges, which are circled. nect it.
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7. Connectivity with Boundary and Occluding Proof. Let 77,88, be the orthogonal projection operator
Periods onto 7, §S;;. Let! be the shortest distance between two
convex obstacle€’; andC;. Therefore, for allk € §S;;,
Boundary and occluding edges can also form periods thatgiv®x) > [. Assume that there exists a point where
rise to second-order generalized Voronoi regions with diS‘L‘TXSSijaD(x) = 0. By hypothesisD(x) = L > [. By
connected boundary components, and hence a disconneqbegposition 107, g Vdi(x) = 7y gs.. Vd;(x) = 0. That
HGVG. Both periods require the robot to perform gradieng v4;(x) and Vglj (x) are each orthogonal @,55;;. In
descent of the multiobject distance function constrained fgct, by definition of the two-surjective equidistant surface,
a two-equidistant face to achieve linking. In fact, they rely; ;. () = —Vd;(x).
on the property that the multiobject distance function has a | ¢t ¢, (x) and HCj(x) be two supporting hyperplanes
unigue minimum on a two-equidistant face, as described By . ang C;, respectively, such that they are orthogonal to

the following proposition and lemma: Vd; (x) andVd; (x), respectively, and pass through the nearest
o o ) points inC; andC; to x, respectively (see Fig. 37).
PROPOSITIONIO.  The restriction of the multiobject distance  gjnce vg;(x) = —Vd;(x), HCj(x) is orthogonal to

function D to ak-equidistant face is smooth. Thatis, the geny 4, () as well. Therefore HC;(x) and HCj(x) are par-
eralized gradient oD (x) projected ontd; i, ., is €qual to  gjle|, Thus, the distance between convex obstaGjemdc;

Ty g, Vi foralli € {iy...ix}, wheren is the orthogonal can never be less than which is a contradiction. O

rojection operator. . S
pro) P With these two results, we can now develop linking strate-

Let E be a plane irf,R™. Letv, be the uniqgue minimum gies to boundary and occluding periods.
length vector inE (i.e., v, is based at the origin of \R"
and its head is itE). Define Pg to be the subspace GfR" 7 1 Boundary Periods
parallel toE, i.e., P = E — v,. Let PEL be the orthogonal

compliment of Pg. Therefore,7yR" = Pr @ Py and thus  ExampLe 8. In this example, we consider a variation of the
for all vectorsu € 7,R™, u can be written asthe sum +u2  environment in Figure 16. The box in the middle of the room
whereu; € Pg anduz € Pz. The orthogonal projection pas the same height as the room itself. A side view of the two-
mpg(u) isug. We can now define the orthogonal projectionyqyigistant face defined by the box and the ceiling is depicted
operatorrg to berp, . in Figure 38 and a top view in Figure 39.

Proof. Note thatd D(x) is the affine hull of the heads of A Path from the GVG cycle to the boundary period can be
the k gradient vectorsVd;,., ..., Vd;,. So,3dD(x) can be determined byfol!oyvmgthe projection of the negated gradient
viewed as a plane if,R”. Transversality considerations ©Nt0 the two-equidistant face.
imply thatd D(x) andT7, 8S;,. ;, intersect at a point, and thus Lemma 14. Boundary Link: IfR3, if a boundary period ex-
the generalized gradient éf constrained td, §S;, ., is al- ists on the boundary of the second-order generalized Voronoi
ways a point, not a vector. This point, which we denoteegion, then it must be an “inner boundary” and a link exists
by v € T:8Si, i, (19D (x), is the closest point i®D(x)  from the outer boundary to it.
to0e T, R™.

Define P to be a subspace dof R™ given by P =
dD(x) — v (again,dD(x) is viewed as a plane). The or-
thogonal projection of € d D(x) is given by

C.
71,88, - 0D0) = TxSSiyi,. (21) HC . i
SinceD andny, §8, ., are continuous, the restriction of the
generalized gradient dd on §S;, _;, is continuous. There- Vdj
fore, the restriction of the multiobject distance functibrto
ak-equidistant face is smooth O Vdi i

LEmmA 13. The multiobject distance function, restricted tc
a two-equidistant surjective surface of two convex obstacle
has one global minimum and no other extrema on the tw
equidistant surjective surface. In other words, except at tl
global minimum, the generalized gradient of the multiobjec._ .
distance function never projects to zero on any tangent spdéc'@- 37. The supporting planes for convex obstacgsnd

of a two-equidistant surjective surface. J
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gion. Therefore, a link can be made from the outer boundary

Ceiling to the boundary period via gradient descenpofSimilarly,
the Boundedness Assumption (Assumption 1) guarantees that
Two-Equtdistant a link can be made from the boundary period to the outer
Face Inner boundary via gradient ascent bf. O

Box
7.2. Occluding Period

Point on
ExamPLE 9. Hole on top of box (continued): Recall the en-
GVG Edge . C
vironment from Example 3, which is a rectangular enclosure
Floor with a boxinitsinterior. On top of the box, there is an opening

. ) . . . that could be a through-hole, an entrance to a subenvironment
Fig. 38. The thick solid line represents a side view of thg, a dimple. See Figures 16 and 17.

equidistant face defined by the box and the ceiling, and the g;nce in this example we are only interested in the GVG
solid dot delineates a point on the GVG cycle surrounding tr@dges associated with the box, Figure 40 contains only the
box. box, the GVG structures associated with it (thick solid lines),
and an occluding edge (thick dotted lines).

The GVG structure associated with the hole is connected
to the occluding edge using G\@quidistant edges. Using a
linking procedure described later in Section 7, the outer GVG

Two-Equidistant Face Defined

- Boundary Period
by Inner Box and Ceiling

G‘];GfEdﬁe is linked to the occluding edge. The result is that the GVG

e by the is now connected through a link, an occluding edge, and a
; : Floor GVG? equidistant edge (see Fig. 41).
! Ceili
! : and i;lfx LEMMA 15. Occluding Link: InR3, if an occluding period
: : / exists on the boundary of a second-order generalized Voronoi
f

\ i

region, then a link can be made to the period.
The proof of the above lemma is broken down into two
/ / cases: (1) when the global minimum bfconstrained to the
two-equidistant face is inside the occluding period (or on it),

and (2) when the global minimum is outside the occluding
Floor is Second Closest period.

Fig. 39. Two-equidistant face between the box and the ceilingemMMA 16.  InRR3, if the global minimum ofD is contained

as viewed from above, is drawn with a boundary period. inside of an occluding period, then gradient descenDof
constrained to the two-equidistant face, traces a path that is
guaranteed to link the outer boundary of a second-order gen-

Proof. Proposition 10 states that the multiobject distanceralized Voronoi region to the occluding period.

function, which is nominally not smooth, is smooth when it

is constrained to &-equidistant surjective surface (and thuéDmOf' Lemmg 13 asserts that th.er.e is only one extremum
ak-equidistant face). of D, constrained to the two-equidistant face, and that ex-
Lemma 17 guarantees that a two-equidistant surjective stfgmumis the global minimum d. Therefore, a!l paths that
face, §5;;, is unbounded. By hypothesis, it has only ond'e traced out by gradient descent@f constrained to the
boundargl C... WhenC:: is a Jordan curve. the boundedtwo-equidistantface,wiIIterminate at the global minimum of
Lt ] 1

portion of §§;; is the empty set, and the unbounded portiO[P' Sin_ce the global minimum is inside (or on) th? OCClu.d_
of §5;; is §8;;. Therefore, the generalized Voronoi region'ng period, such a path must traverse the occluding period.

}7('%]_, which hasC;; on its boundary, lies in the unboundedTherefore' gradient descent traces a path that brings the robot

portion of §8;;. ThereforeC;; is an inner boundary. to an occluding period. -

Lemma 17 and Proposition 10 guarantee that in the inte- When the projected gradient disappears, a more active ap-
rior of the second-order generalized Voronoi region that hasoach is required. One option is an exhaustive search of the
a boundary period, the projected generalized gradiem® of two-dimensional second-order generalized Voronoi region in
never vanishes. Sinc(x) > O forallx € interiorfklﬂj WhichnTX}vijaD(x)vanishes. Although this option may seem
and D(x) = 0 on the boundary period, gradient descent afindesirable, it would only have to be invoked in a handful of
D constrained taF;; traces a path to the boundary periodsmall regions where the gradient goes to zero before arriving
from any point in the second-order generalized Voronoi reat an occluding period.
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counterexample does not serve as a proof. Therefore, when
OCCIUdiH Ed e V{(—di(x), v) vanishes, the robot must perform an exhaustive
i g g search of the second-order generalized Voronoi region for the

occluding period.

7.3. Exhaustive Search

In this section, we discuss connectivity when all assumptions
are relaxed. Figure 42 contains a cross-section of a three-
dimensional environment similar to the one found in Figure
15. In Figure 42, the floor is slanted and the inner obstacle
is a sphere. The local minimum @&f on ;; is pointed out,

and the shared region represents the set of points that are
visible from this local minimum. Figure 43 contains the same
environment, but the occluding period is drawn as a dotted
) ) ) line. The gray region is the set of points that a# visible

Fig. 40. The occluding edge, represented by a thick dott%m the occluding period.

line, is defined by the visible-distance function. The GVG pq 0t is guaranteed to travel along the occluding period
is represented by the thick solid lines, and the inner box $hd. if necessary, reach the local minimum. Unfortunately,

drawn in thin dashed lines. the robot is still not guaranteed to become within line of sight
of all structures by simply traveling along the occluding period
//\ and encountering the local minimum. The dark gray area in
e Figures 44 and 45 is the set of points@that cannot be seen

Occluding Edge from both local minimum and the occluding period. The robot

GVG?

Local Minimum

GVG T,

Fig. 41. The GVG surrounding the box is connected to th
GVG associated with the hole through a link from the GVC
surrounding the box to the occluding edge. The box i
removed for clarity.

Fortunately, there exists an alternative method, whose ri
orous proof is the topic of current work. L&%; be the two-
equidistant face fo€; andC;, andCy be the second closest _ ) ] ) )
obstacle. Without loss of generality, assume thaoccludes  F19- 42- Three-dimensional enclosure with a sphere floating
Cy. Letx be the point WhereTxﬁjaD(x) —0. Letvbeany N the middle of it. Local minimum and region visible from

vector that runs along a line that passes thraughdCy and it are denoted.
is tangent taC;.

In this approach, the robot again performs gradient desce
of D. If it reaches the occluding period, then the procedur
terminates with success. However, since the global minimu
of D is outside of the occluding period, the robot did no
reach the occluding period. In this case, starting from tr
global minimum ofD, the robot moves in a path af; in
such away that andVdj (x) converge on each other. In other
words, the robot traces a path determinedvay-dy (x), v).
When the vectors andVd; become collinear, the robot has
arrived at a point on the occluding period.

Note that this method is not guaranteed to work but ot
experiments indicate that it works often. In fact, we have nc.
found a counterexample yet. However, lack of existence offdd. 43. Occluding period and region not visible from it.

GVG edgé o
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G subsets or patches of two-dimensional manifolds. The work

Arca not visible from HGVG . . . . .
presented in this paper identifies these subsets and prescribes

acondition as to when to invoke the exhaustive search process.
It should be noted, however, that for most of the environments
we experimented with, the HGVG approach did not require
exhaustive search of two-dimensional patches.

Figure 46 summarizes the search for occluding periods.

8. Conclusion

This paper introduces a new roadmap structure calleliénre
rchical generalized Voronoi graptHGVG). The robot uses
he HGVG by finding a path onto it (accessibility), traversing
the HGVG to the vicinity of the goal (connectivity), and con-
structing a path from the HGVG to the goal (departability).
Since a bulk of the planning occurs on the one-dimensional
structure of a multidimensional configuration space or work
space, the HGVG dramatically simplifies motion planning for
robots operating in real environments.

To guarantee the appropriate dimension count, we intro-
duce atransversality assumption, which essentially is a stabil-
ity requirement on the placement of obstacles. This transver-
sality assumption is a generalization of the general position
assumptions, such as no four points can be co-circular, that
are often made in Voronoi diagram literature.

To define the HGVG, we introduced a new distance func-
S~ tion that relies solely on line-of-sight information. This is
particularly important for sensor-based construction of the

Fig. 44. Region not visible from occluding period and loca
minimum.

Fig. 45. Close-up of region not visible from occluding period

and local minimum. e
(Robot is on outer )
n

boundary of regio

Gradient ascent
of <dk V>

maysee this region when forming the link for the GVG cycle
to the occluding period, but there is no guarantee. Therefol
inthe general case, the robot needs to search this second-ol
generalized Voronoi region to find all roadmap fragments.
Other works in three-dimensional exploration have note
the problem that at some point, the planner requires sor
sort of exhaustive search. In Rimon and Canny (1994), R
mon points out that the robot requires some sort of acti
perception (i.e., active search) because critical points are t
always guaranteed to be within line of sight of the roadma
fragment. However, there are no well-established threshol
or conditions that direct the robot to enter “active searct
mode to find critical points. Moreover, Rimon’s work does
not identify which regions of space require the active searc
Kutulakos, Dyer, and Lumelsky’s (1994) approach to three
dimensional path planning in unknown environments also ri
quires an exhaustive search of two-dimensional regions tt
correspond to the boundaries of the obstacles betweenthe s : .
and goal. Thisis not to say that three-dimensional exploratic { Robot reaches occluding period J
requires exhaustive search, but the current state-of-the-art ...,
three-dimensional exploration requires exhaustive search fof. 46. Flow Chart.

Gradient descent
of D constrained
to two-equidistant Path

face [ Terminates

Gradient
Vanishes

Gradient

Vanishes Exhaustive

Search
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HGVG, as sensors can only provide line-of-sight informatiorments to be more tractable than error analysis on configuration
This distance-based definition also allows HGVG to harspace distance measurements.
dle concave obstacles, whereas traditional geometric struc-We make no claim that the HGVG has any clear advantage
tures and algorithms are limited to convex obstacles. Esseanver other methods for classical motion planning, but since
tially, the HGVG definitions require a surjectivity conditiondistance functions define the HGVG, a sensor-based planner
from the preimage theorem, which is ensured when obstaclesn easily construct it. Once a robot constructs the HGVG,
are locally convex. Finally, the definition and constructiorit has in essence explored the environment because the robot
procedure of the HGVG do not require the obstacles to lman use the HGVG for future excursions. A companion paper
polyhedra, which is an assumption often made with most corf€hoset and Burdick 2000) describes the sensor-based con-
plete algorithms. struction procedure when the robot has no prior information
Using some results from nonsmooth analysis, we demoabout the environment.
strate that the HGVG roadmap has the property of accessibil-
ity in a bounded subset of mdlmensmne}l Euclidean Space'Appendix A: Boundary Edge and Floating
When full knowledge of the world is available, then departa-
bility reduces to accessibility in reverse and, thus, the HGVZJBOLmd"’lry Edge
has departability. However, when the robot is searching for
the goal, a reverse-accessibility procedure cannot serve agX#MPLE 10. Hole: The room depicted in Figure 47 con-
departability method. Incremental departability is describei@ins a hole or duct in one of its side walls. The bottom and
in the companion paper. front faces of the duct are labelet} and C;, respectively.
A bulk of this paper examined connectivity of the HGVG .Note also that the duct enters the room at a height greater than
First, the GVG (a subset of the HGVG) is shown to be corhalf the distance between the floor and ceiling.
nected when an assumption supplied by Yap is upheld. Un- Consider the two-equidistant face defined by the duct’s
fortunately, this assumption was too restrictive, so it was réront and bottom faces(; and C;. The shaded region in
laxed and connectivity of the HGVG iR3 was considered Figure 48is a portion of a two-equidistant surfage, defined
next. Under a certain set of weak assumptions, the HGVIgy objectsC; andC;. The boundary of the shaded region is
was shown to be connected. These assumptions essentidipjted to emphasize thatitis unbounded (i.e., a sphere of finite
required the environment to be cluttered and are thus reasdadius cannot contain the two-equidistant surface).
able for many applications, such as those that require highly Recall that a two-equidistant surjective surface is the set
articulated robots. of points in a two-equidistant surface such that the gradients
Finally, connectivity was examined when all assumptiont each defining obstacle do not coincide. The shaded region
were relaxed. In this scenario, the robot has to perform an do-Figure 49 is a portion of the two-equidistant surjective sur-
tive search on some subsets of two-dimensional manifoldsfice, §S;;, defined byC; andC;. Note that this region is
ensure connectivity. Other three-dimensional path-planningibounded. Figure 50 illustrates the side view of Figure 49,
techniques in unknown environments also require an activéhere the solid line represents the unbounsigg. The float-
search phase. The HGVG approach supplies conditions of
when to search and localizes where to search, whereas other
methods do not afford these conditions. Future work will cor
sider how to efficiently search these two-dimensional shee 7
without having to exhaustively search them.
Our ultimate goal is to enable highly articulated sensol ’
equipped robots to explore unknown environments by col /i
structing roadmaps. Instead of generalizing the connectivi /V’; 7 L’/
result for a point in ann-dimensional configuration space, ,’ ;
future work will include defining a roadmap for a robot mod- ‘
eled as a line segment, sometimes calleataoperating in a ; i
three-dimensional environment. The roadmap will be bast .
on the distance between a rod and an object. The next ste| ! Coiling T -height
to extend the results of the rod roadmap to that of a conw
set, which in turn will be extended to the development of
roadmap for a chain of convex sets that model a highly arti
ulated robot. We chose this point-rod-blob-snake approagfly. 47. A room with a hole in its side wall. The dotted line
because sensors directly provide work space distance inf@fiarks the half-height of the room.
mation but not configuration space distances. Furthermore,
we believe error analysis on work space distance measure-

Wall

Floor
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SS:;
. 1
CJ

/

\/i

Boundary of SSij
=z

Fig. 50.8S;; (Side view).

Ll

Fig. 48. The shaded region &;. It is bordered by thick
dashed lines to emphasize thf is unbounded. The

thick dotted lines correspond to points whesg intersects
the rectangular enclosures. The thick solid lines on the /ﬂ
rectangular enclosures are drawn to emphasize the features

on the enclosure that are in front&f; in this view.

Boundary Edge /

fi
Floating Boundary Edge

Fig. 51.;;.

for all points on this portion ofF;;. The floating boundary
edge is the set of points ifi;;, where D(x) is greater than
zero butVd; (x) = Vd;(x). The nearest point to all points on
the floating boundary edge is a corner of the duct entrance.

Floating Boundary of SS.[].

Appendix B: Proofs of Lemmas in Section 6

Fig. 49. The shaded regioss;;, which is also unbounded. prgperties of Equidistant Surjective Surfaces
The thick double-arrowed line represents the boundary of

$S;;, which is also unbounded. The dotted line simplyf his section demonstrates two properties of equidistant sur-
represents a path iss;; . jective surfaces: (1) fok intersecting convex obstacles, they

are unbounded, and (2) a two-equidistant fageseparates
FS§ into two connected regions: one whose points are closer
to C; and the other whose points are closeCto

ing boundary surface (solid line, Fig. 49) is the portion o*‘EMMA 7.1t t.he': ObJeCtSCil'f"Cik Intersect, then the
associatedc-equidistant surjective surfacés;, ;, is un-

boundary of the tvyo-eqwdl_stant surjecnve_,- SL_Jrface where trEJeounded. In fact, if objects”;,, ..., C;, intersect, then
two distance function gradient vectors coincide. ; .

A . - n?ne of the gradientsyd;, (x), ..., Vd; (x), is orthogonal

The shaded region in Figure 51 depicts the two-equidista,
~ S . 07,88, ., forall x € 88;, ;. In other words, there are no

face, #;;, which is bounded. The boundary &f; consists extrema ofD in the interior ofSS..
of three parts: a GVG edge, a boundary edge, and a floating etk
boundary edge. The boundary edge runs along the inters€ecoof. Assume that there exists ane §§;,. ;, for which
tion of the boundaries of obstacl€$ andC;. D(x) is zero Vd;, (x) is orthogonal to7.S8S;, ;. By Proposition 10,
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Vd;; (x) must be orthogonal t6, SS;, . ;, forall j =2,...,k The mappingF; : R x §; — W\C; is a continuous map-

becausévd;, (x) is orthogonal tdl;, SS;, ., - ping. LetQ; = F*l(SS,»j). Q; is closed because it is the
Let HC;, (x) be the hyperplane that is orthogonaMd;, preimage of a closed set under a continuous mapping. Note

and tangent to the nearest poieit, in C;; to x. SinceC;, is that(¢, x) € Q; if and only if Fl? (x) € 88;;. (So,x € 8S;;

a convex setC;, lies entirely on one side aff C;,(x). Let implies that(0, x) € Q;.)

HC;,(x) be the hyperplanes similarly defined as above for Sincess;; is the image of a connected set under a contin-

j=2,...,k. uous mappingF;, S88;; is connected. Therefore; ands;
InR™, let S be an(m — 1)-dimensional sphere centered ashare a common connected bounda$yg;;. This boundary

x with radiusD(x). By Assumption 2, thé closest points on separated¥ into two regions: points closer 6; and points

thek closest obstacles form(a— 1)-dimensional hyperplane closer toC;. Sinces; ands; are both unbounded, so must be

orthogonal toT 8S;, ;, and passing through. Fork > 2, S§§;;.

thesek points define @k — 2)-dimensional sphere, termed a O

subspherés;,;), which is a subset of and has a radius less

than or equal taD(x). When the radius of;,; is equal to

the radius ofS, we say thatS;,,, is amajor subspheref S.  Proof of Lemma 8

Forj =1,...,k HC; is tangent toS and passes through a o _

point on the(k — 2)-dimensional subsphersy,;. LEMMA 8. If the three-equidistant facg;;, is not empty,
Next, it needs to be shown thaC;,, ..., HC;, cannot thenthe second-order generalized Voronoi regi’phy:ij must

intersectata point. We first show this wher= 2. The sphere not be empty. Furthermore, ;i # @, then¥jx C Fi| ;.

S has co-dimension one. Wd;, andVd;, are orthogonal to ) ) ] o

T, SS:,i,, then there are only two points (at opposite poleEr00f. Pick x & interior(Fi;). By definition, d;(x) =

of the sphere) where the separating planes are tangent td (¥) = di(x) < di(x) forall  # i, j, k. For a nbhd), let

In this case, the separating planes are parallel to each otffdr) = nbhdx) (\(interior(F;;)\interior(¥;;,)). By defini-

(Fig. 37). By definition of a convex set, ifthe separating plang®on: di () = d;(y) < di(y) forall y € ¥ (x). By continuity

never intersect, then the obstacles cannot intersect. This i€7athe single object distance function, for all # i, j, k,

contradiction. Therefore, fdr= 2, no gradient vector can be 4 () < d(y) forall y € ¥ (x). Therefore, for aly € ¥ (x),

orthogonal td; §5;, ., , and thus) D (x) has no local maxima. @ (V) = d;(y) < dx(y) < dn(y) forall i #i, j, k.

Sinced D(x) has no local maxima, it has no global maxima 1herefore, there exists a region whete and C; are
and thusss;, _, is unbounded. Fhe closest obstacles ar@ is the'second closest. That
In general, if the gradientSd;, (x). ..., Vd; (x) are or- 1S Fklg;, # . Furthermore ;. is a subset ob 7|z

thogonal to7, 8S;, . i, , thenS;,, andS have the same radius. because

In other words,Ss,; is @ major subsphere. It can be shown

that if k hyperplanes are tangent $aat a point inSs,;, then Fijk = {x :Vhdp(x) = di(x) = dj(x) = di(x)}
they can never intersect ata point. Sift€,,, ..., HC;, can Co{x :Vhd(h) = dr(x) = dj(x) = d; (x)}
never intersect at a point, the obstad®s, . .., C;, cannot = 0Fkl g, di(x) = di(x) = dj(x)}.
intersect at a point either. This is a contradiction, and thus

88i;...ix Is unbounded. L whered is the boundary operator.

LEMMA 18. Atwo-equidistant surjective surface for two dis- Therefore, by definition, i, # #, then itis a nonempty
- . : subset of the boundary &% | & . O
joint convex sets is an unbounded separatdwin i

Proof. Let $S;; be a two-equidistant surface for obstacles
C; andC; in the spaceW\(Uh#iyj Cp). LetS; be the set Proof of Lemma 9
of points in W\(Uh;éi,j Cyp) closer toC; thanC;. Defines§;

similarly. That s, LEMMA 9 The boundary of a second-order generalized
\Voronoi region contains at mosine three-equidistant face.
Si={xreW(|J ) dix) <dj(x) Thatis,Fpr & Filg;, forall {p.q.r} # {i. j, k}.
hei, j

Proof. Assume that#;;; and #;;; are on the boundary of
§j = {x € W\( U Cp) :dj(x) <di(x)}. (22) Fil - By definition, for allx € Fi|g , it must be true that

i, j di(x) > di(x) > d;i(x) = dj(x) forall I # i, j, k. Since
The two-equidistant surjective surfas; ;, is on the bound- Fiji C Filg;, (by assumption), for alk e Fiji, di(x) <
ary of boths; ands;. di(x). Thus, for allx € F;;\¥;x (which is a subset of

Let F{ be the flow ofVd; and letSS; = {x € §; : F/ € Filg;), d(x) = di(x). However, this is a contradiction
88;; for somer}. DefinesSs; similarly. because for alt € %)\ Fijk, di(x) < di(x). O
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Proof of Lemma 4 Proof of Lemma 7

LEMMA 4. When equidistant faces intersect transversallyEMMA 7. A GVG? equidistant edge can only intersect the

(Assumption 2 is upheld), a GVG cycle cannot contain a me&VG at a meet point.

point. . L
Let 7, be the GVG edge equidistant to obstadlesC;, Proof.. Consider the GV& equidistant edgéb‘k1|}vij. For

andCy. Assume there is an objecy positioned such that &l pointsx € Fulg, . di(x) = di(x) = di(x) = d;j(x).

x € Fijrisapointwherd; (x) = d;(x). By Proposition1,the Whend;(x) = dj(x) = di(x) for somex € Fulg,,

GVG edge¥;;; # ¥ and it intersects; j; atx. By definition di(x) = d;(x) = dk(x) = di(x). However,x cannot be

of the surjective equidistant surfacess;;; and §S;;; also in the interior of a generalized Voronoi edgg« because for

intersect ate. The three-equidistant surjective surfe&®;; all y € interion(¥;;1), di(y) = d;(y) = di(y) < dp(y) for

must tangentially interse6t; jx becauseF; jx isacycle. Such all &. O

an intersection is nontransversal, which cannot occur when

Assumption 2 isin effect. Therefore, there cannot be an objeReferences

C; positioned such that there is a poite #;;; such that

d;(x) = dj(x), and hence a GVG cycle cannot contain anj\braham, R., Marsden, J. E., and Ratiu, T. 198®nifolds,

meet points. Tensor Analysis, and Applications2d ed. New York:
Springer-Verlag.

Aurenhammer, F. 1991. Voronoi diagrams—A survey of a
fundamental geometric structurddCM Computing Sur-

LEMMA 5. A GVG cycle cannot contain any boundary or Vveys23:345-405.

Proof of Lemma 5

floating boundary points. Avis, D., and Bhattacharya, B. K. 1983. Algorithms for com-
puting D-dimensional Voronoi diagrams and their duals.

Proof. Let F;x be a GVG edge equidistant to objects C, Advances in Computing Researti59-180.

andCy. Since the GVG edge is a cycle, it is bounded androoks, R. A. 1986. A robust layered control system for a

thus, there exists a point' such thatD(x*) > D(x) for all mobile robot.|IEEE Journal on Robotics and Automation

x € Fijk. At x*, Vd;(x) is orthogonal tal’« F; . RA-2(March).

Now the proof follows by contradiction. Assume there iscanny, J. F. 1988The Complexity of Robot Motion Planning
a point whereD(x) = 0. That is,C;, C;, andCy intersect Cambridge, MA: MIT Press.

to form a boundary point. By Lemma 17, introduced earlieizanny, J. F., and Lin, M. C. 1993. An opportunistic global
there cannot be a point wheve; (x) is orthogonal td’; %; j. path plannerAlgorithmica10:102—120.
ThiS, however, is a Contradiction, and thus there cannot b@]oset’ H. 1998. Nonsmooth ana|ysis' convex ana|ysis’ and
point on a GVG cycle wher®(x) = 0. their applications to motion planning. Special issuénof

A similar argument can be made for floating boundary j Comp. Geom. and App%o appear.
points. U Choset, H., and Burdick, J. 2000. Sensor based exploration:
Incremental construction of the hierarchical generalized
Voronoi graph. International Journal of Robotics Re-
search19:96-118.
LEMMA 6. InR3, a three-equidistant surfacé$; i, is ei- Choset, H., and Burdick, J. W. 1994. Sensor based planning
ther C2-diffeomorphic to $ (i.e., it is a GVG cycle) or it is and nonsmooth analysiBroc. IEEE Int. Conf. on Robotics
unbounded. and AutomationSan Diego, CA, pp. 3034-3041.

. Choset, Howie. 1996. Sensor based motion planning: The

P_ro_of. First, we show the case whef, C;, andCy are hierarchical generalized Voronoi graph. Ph.D. thesis, Cal-
disjoint convex sets and then we show the case when theyifornia Institute of Technology, Pasadena.
overlap. _B_y.Lemma 18, atwo-equidistant surjective Surfac6Iarke, F. H. 1990. Optimization and Nonsmooth Analy-
for two disjoint convex sets is a separatorin , sis Philadelphia, PA: Society of Industrial and Applied

By a similar argument, it can be shown ths;;; is a Mathematics.

separ'ator or8§ij. In.R3, the preimage theorem asserts thaéat, E., and Dorais, G. 1994 (May). Robot Navigation
881k Is one-dimensional. By the Jordan curve lems, by Conditional Sequencing.Proc. IEEE Int. Conf. on

in R3 can either be (1) a manifold?-diffeomorphic tos?* or Robotics and Automatioan Diego, CA. pp. 1293—1299.
(2) an unbounded manifold?-diffeomorphic toR. Kutulakos, K. N., Dyer, C. R., and I'_um’elsky, V. J. 1994

NOW’. we consider the case where Fhe obstacdbs,c_j, (May). Provable strategies for vision-guided exploration
andCy, intersect to form a boundary poid; ., out of which in three dimensiondEEE Int. Conf. on Robotics and Au-
$8;jx emanates. Lemma 17 asserts thét is unbounded. tomation San Diego, CA

O

Proof of Lemma 6



Choset and Burdick / Sensor-Based Exploration: HGVG 125

Latombe, J. C. 1991Robot Motion PlanningBoston, MA: Rimon, E., and Canny, J. F. 1994. Construction of C-space
Kluwer Academic. roadmaps using local sensory data—What should the sen-
Lumelsky, V., and Stepanov, A. 1987. Path planning strate- sors look for?Proc. IEEE Int. Conf. on Robotics and Au-
gies for point mobile automaton moving amidst unknown tomation San Diego, CA, pp. 117-124.
obstacles of arbitrary shapAlgorithmica2:403—-430. Rowat, P. F. 1979. Representing the spatial experience and
O’Dunlaing, C., and Yap, C. K. 1985. A “retraction” method  solving spatial problems in a simulated robot environment.
for planning the motion of a discAlgorithmica6:104— Ph.D. thesis, University of British Columbia.
111. Scheimberg, S., and Oliveira, P. R. 1992. Descent al-
Rao, N.S.V,, Kareti, S., Shi, W., and lyenagar, S. S. 1993. gorithm for a class of convex nondifferentiable func-
Robot navigation in unknown terrains: Introductory sur- tions. Journal of Optimization Theory and Applications
vey of non-heuristic algorithmak Ridge National Lab- 72(February):269-297.
oratory Technical Repo®RNL/TM-12410(July):1-58. Schwartz, J. T., and Yap, C. K., eds. 198Rdvances in
Rao, N.S.V,, Stolzfus, N., and lyengar, S. S. 1991. A retrac- Robotics: Algorithmic and Geometric Aspects of Robotics
tion method for learned navigation in unknown terrains Vol. 1. Hillsdale, NJ: Lawrence Erlbaum.
for a circular robot.IEEE Transactions on Robotics and
Automation7(October):699-707.



