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Abstract

We study the motion-planning problem for pairs and triples of robots operating in a
shared workspace containing n obstacles. A standard way to solve such problems is to view
the collection of robots as one composite robot, whose number of degrees of freedom is d,
the sum of the numbers of degrees of freedom of the individual robots. We show that it is
su�cient to consider a constant number of robot systems whose number of degrees of freedom
is at most d� 1 for pairs of robots, and d� 2 for triples. (The result for a pair assumes that
the sum of the number of degrees of freedom of the robots constituting the pair reduces by
at least one if the robots are required to stay in contact; for triples a similar assumption is
made. Moreover, for triples we need to assume that a solution with positive clearance exists.)

We use this to obtain an O(nd) time algorithm to solve the motion-planning problem
for a pair of robots; this is one order of magnitude faster than what the standard method
would give. For a triple of robots the running time becomes O(nd�1), which is two orders
of magnitude faster than the standard method. We also apply our method to the case of a
collection of bounded-reach robots moving in a low-density environment. Here the running
time of our algorithm becomes O(n log n) both for pairs and triples.

1 Introduction

One of the ultimate goals of robotics research is to create robots that are capable of autonomous
action, and accept and execute high-level task descriptions while requiring little or no human
supervision. A fundamental task for an autonomous robot is to plan its own motion: it should be
able to �gure out how to get from one position (for instance, where it has picked up some object)
to another position (where the object is to be delivered). In general there will be obstacles in
the workspace of the robot, which it has to avoid. In many applications the situation is further
complicated by the fact that the robot has to share its workspace with other robots. Examples
of this are the transportation systems found at modern airports, ports, and factories. This is
the setting of the motion-planning problem we study: given a collection R1; : : : ; Rm of robots
with d1; : : : ; dm degrees of freedom, respectively, and operating in a shared workspace W with
n obstacles, �nd a collection of paths bringing each robot from a speci�ed start position to a
speci�ed goal position without colliding with the obstacles or the other robots, or report that the
problem is not solvable. We assume m is a small constant; we will mainly study the cases m = 2
and m = 3. The problem becomes PSPACE-complete if the number of robots is not constant [13].

Two established approaches to this problem are decoupled planning and centralized planning.
The decoupled planning approach [1, 8, 15, 23] �rst plans the motion of each robot individually

while ignoring the existence of the other robots, then tries to combine the resulting paths by
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resolving possible collisions between the paths. Algorithms following this approach are usually
incomplete in the sense that they are not guaranteed to �nd a solution if one exists.

In centralized planning [17, 19] the m robots are regarded as one multi-robot, that is, one
robot with several independent body parts that are not necessarily connected to each other. Col-
lisions between the robots Ri turn into collisions between di�erent body parts|in other words,
self-collisions|of the multi-robot. The con�guration space of the multi-robot is CS1 � � � � �
CSm, where CSi is the con�guration space of robot Ri. The dimension of this con�guration
space is d1 + � � � + dm, the sum of the dimensions of the individual con�guration spaces. Us-
ing an algorithm of Basu et al. [2] for constructing roadmaps, one can thus solve the motion-
planning problem in O(nd1+���+dm+1) time. Under certain general-position assumptions on the
con�guration-space obstacles one can use Canny's roadmap algorithm [4] to improve the time
bound to O(nd1+���+dm logn). (In a later paper [5] Canny showed how to eliminate the general-
position assumption, but unfortunately the adapted version cannot report an actual path, it can
only decide on the existence of a path.) Since we wish to keep our results as general as possible,
we stick to using the roadmap algorithm of Basu et al. from this point on.

Centralized approaches have the advantage that they allow for complete planners, which are
guaranteed to �nd a solution whenever one exists. Their main drawback is that the dimension of
the con�guration space of the multi-robot is much higher than that of the individual robots. This
increases both the combinatorial and the algebraic complexity of the problem.

Sharir and Sifrony [19] present a general centralized-planning method that is sometimes more
e�cient than applying the method of Basu et al. to the multi-robot. Their method requires a
cell decomposition for the free portion of each individual con�guration space, such that each cell
has constant complexity and is adjacent to at most a constant number of other cells. The cell
decompositions are then combined into a representation of the free space of the multi-robot. The
complexity of this representation is the product of the complexities of the individual con�guration
spaces. This approach can take advantage of the fact that sometimes the complexity of (the cell
decomposition of) the free space of a robot Ri is signi�cantly smaller than �(ndi). For instance,
it is well known that the complexity of the free space of a polygon translating amidst n polygonal
obstacles in the plane is only O(n) [12]. Thus the method of Sharir and Sifrony can plan the
motion of two polygons in such a workspace in O(n2) time. Applying the method of Basu et al.
to the multi-robot would lead to an O(n5) algorithm, because the number of degrees of freedom
of the multi-robot is four.

We present a re�nement of the centralized-planning approach for pairs and triples of robots.
Our technique is quite general: it works for any type of robots, and it can be combined with
roadmap methods and with cell-decomposition methods. The technique reduces the dimension of
the con�guration space one has to consider for the multi-robot. For pairs of robots it does so by
stipulating that at all times either one of the robots should be at its start or goal position, or
the robots should touch each other; for triples of robots the con�gurations of the multi-robot are
constrained in a similar fashion. (Throughout the paper we make the assumption that the sum of
the number of degrees of freedom of two robots reduces by at least one if the robots are required to
stay in contact; for triples a similar assumption is made. Moreover, for triples we need to assume
that a solution with positive clearance exists.)

The approach of reducing the dimension of the con�guration space to be searched was also used
by Hopcroft and Wilfong [11, 10] and Fortune et al. [9]. Hopcroft and Wilfong [11] showed that if
the robots form a single connected component at their start and goal con�gurations and if there
exists a collision-free motion of the multi-robot in which the robots need not touch, then there
exists a path such that the robots form a connected component throughout the entire motion. This
implies that the search in the con�guration space can be limited to a lower-dimensional subspace.
However, their result only holds when the con�guration space is contractible to a point. In a later
paper Fortune et al. [9] considered the case of two planar robot arms, each having one extendible
and rotatable link. For this case, where the con�guration space is not contractible to a point, they
gave a proof (tailored to this special case) that it is su�cient to consider only motions in contact;
in addition, they developed an algorithm to �nd such motions. In their second paper [10], Hopcroft
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and Wilfong applied the result from their �rst paper to translating axis-parallel polygons in R2 .
In particular, they showed that planning the motions of n rectangles in a rectangular workspace
is in PSPACE.

We use essentially the same approach, that is, we also show that the search of the con�guration
space can be limited to lower-dimensional subspaces, corresponding to con�gurations with speci�c
properties. However, we do not require the con�guration space to be contractible, thus generalizing
the results of Hopcroft and Wilfong to arbitrary robots. For instance, our result is directly
applicable to the case of two planar robot arms studied by Fortune et al. Furthermore, we not
only prove the existence of a certain restricted type of multi-path, we also present a general
algorithm for �nding such a path e�ciently. Unfortunately, we can only prove our result for two
and three robots, so in this respect our results are less general than those of Hopcroft and Wilfong.
More precisely, our results are as follows.

In Section 3 we prove that in order to plan the motions of two robots R1 and R2, one does
not have to consider the entire (d1+ d2)-dimensional con�guration space CS1�CS2. Instead, it is
su�cient to consider a collection of �ve suitably linked con�guration-space slices (corresponding to
the constrained type of con�gurations mentioned above) whose dimensions are at most d1+d2�1.
Combining this with the method of Basu et al. we obtain a general method to solve the motion-
planning problem for a pair of robots in O(nd1+d2) time.

In Section 4 we extend our ideas to triples of robots. Here we show that it is su�cient to
consider a constant number of con�guration-space slices of maximum dimension d1 + d2 + d3 � 2,
which leads to an O(nd1+d2+d3�1) time algorithm. Note that one can view a collection of four
or more robots as a collection of three robots, one of which is a multi-robot consisting of m � 2
robots. Hence, the improvement (as compared to the standard method of viewing the collection
of robots as one multi-robot) of two orders of magnitude that we obtain for three robots carries
over to the case of four or more robots.

Our approach becomes especially e�ective when the robots under consideration have bounded
reach and the workspace has low density [22], as we show in Section 5. Bounded-reach robots
are robots that are not too large compared to the obstacles, and a workspace has low density if
any region is intersected by only a constant number of obstacles that are larger than that region.
These notions were introduced to exclude unrealistic inputs|contrived workspaces and robots
that induce very high free-space complexities. It is expected that in most practical situations the
robots have bounded reach and the workspace they operate in has low density. Van der Stappen et
al. [22] demonstrate that the complexity of the free space of a single bounded-reach robot in a
low-density workspace is O(n), irrespective of the number of degrees of freedom of the robot and
of the dimension of its workspace. Van der Stappen et al. also give an algorithm to compute a
linear-size cell decomposition of the free space, leading to an O(n logn) time algorithm to plan the
motion of a single robot. Unfortunately, if we consider a pair or triple of bounded-reach robots
operating in a low-density workspace, then the free-space complexity of the corresponding multi-
robot can be as high as �(n2) for a pair and �(n3) for a triple. Nevertheless, we show how to
apply our method to this case to obtain the following surprising result: for bounded-reach robots
in low-density workspaces one can solve the motion-planning problem for pairs or triples of robots
in the same time as for a single robot, namely in O(n logn) time. Note that the method of Sharir
and Sifrony [19] can be used in this case, because a cell decomposition of the free space of the
individual robots is available. This, however, leads to algorithms with considerably higher running
times, namely O(n2) for a pair of robots and O(n3) for a triple.

2 Preliminaries

Although we assume some familiarity with the basic concepts in motion planning, we brie
y
introduce the terminology and notation used throughout the paper. A general introduction to
motion planning can be found in Latombe's book [13].

Let R = fR1; : : : ; Rmg denote a collection of m robots. All robots operate in the same
workspace W , which contains a set C = fC1; : : : ; Cng of obstacles. We assume that each robot
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Figure 1: A feasible multi-path using permissible multi-con�gurations.

and each obstacle has constant complexity, and that they are semi-algebraically de�ned, that is,
bounded by surfaces of low algebraic degree. We also assume they are open sets; this means that
the robot is allowed to `slide along' an obstacle.

The con�guration space of robot Ri is denoted by CS i. The dimension of CSi equals di, the
number of degrees of freedom of Ri. We assume that di > 0 for every i. Points in CSi|or,
con�gurations|correspond to placements of Ri in the workspace; we denote the portion of the
workspace occupied by Ri at con�guration p 2 CSi by Ri[p]. The points in CS i representing the
start and goal con�guration of Ri are denoted by si and gi respectively. A path for Ri from its start
con�guration to its goal con�guration corresponds to a curve in CSi from si to gi. We parameterize
the curve by a time parameter t, with t 2 [0; 1], so a path from start to goal con�guration is a
continuous mapping �i : [0; 1]! CSi with �i(0) = si and �i(1) = gi.

Each obstacle de�nes a subset|its con�guration-space obstacle|in a con�guration space con-
sisting of all con�gurations in which the robot intersects that obstacle. The portion of the con-
�guration space covered by the con�guration-space obstacles is called the forbidden space, and its
complement is called the free space. We call a path �i for Ri feasible if Ri does not intersect any
obstacle during its motion or, in other words, if the curve �i lies entirely in the free space.

As stated in the introduction, we can view the collection of robots as one composite robot, or
multi-robot, with d :=

Pm

i=1 di degrees of freedom. We refer to con�gurations of the multi-robot
as multi-con�gurations, and we call a path for the multi-robot (which is in fact a collection of
paths for the individual robots) a multi-path. We want to �nd a feasible multi-path for the robots
R1; : : : ; Rm and their given start and goal con�gurations, that is, a collection of paths that brings
each robot from its start con�guration to its goal con�guration without colliding with either the
obstacles or the other robots.

3 Pairs of robots

To explain the idea of our method, we start by studying the case of a pair of robots. One way of
planning the motion of a pair of robots is to view the pair as one robot with d := d1 + d2 degrees
of freedom. Thus the problem can be solved in the d-dimensional con�guration space CS1 � CS2.
Our goal is to reduce the dimension of the space we have to consider. To this end we limit the
possible multi-con�gurations|combinations of con�gurations for the two robots|that we allow.
Of course, we have to guarantee that a feasible multi-path continues to exist.

The multi-con�gurations that we allow|we call them permissible multi-con�gurations|are as
follows.

� When R1 is at its start or goal con�guration, we allow any con�guration of R2.

� When R2 is at its start or goal con�guration, we allow any con�guration of R1.

� When neither R1 nor R2 is at its start or goal con�guration, we only allow con�gurations
where R1 and R2 touch each other.

We give an example. Consider the situation depicted in Fig. 1, where we have two disk-shaped
robots moving amidst polygonal obstacles in the plane. The start and goal con�gurations of the
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robots are indicated in Fig. 1(a); start con�gurations are solid and goal con�gurations are dotted.
A feasible multi-path for this problem that uses permissible multi-con�gurations is indicated in
Fig. 1(b){(d): �rst R2 moves towards R1 until it touches it, then R2 and R1 together move until
R2 is at its end con�guration, and �nally R1 breaks o� its contact with R2 and moves to its own
goal con�guration.

At �rst sight, it seems quite severe to restrict oneself to permissible multi-con�gurations.
Nevertheless, it turns out that solutions using only permissible multi-con�gurations always exist,
provided a solution exists at all.

Lemma 1 Let R1 and R2 be two robots operating in the same workspace. If there is a feasible
multi-path for given start and goal con�gurations, there is also a feasible multi-path for those start
and goal con�gurations that only uses permissible multi-con�gurations.

Proof: Let � = f�1; �2g be a feasible multi-path. We de�ne the coordination diagram for � as
follows. Let U be the unit square. We call the edges of U incident to the origin the axes of U .
The horizontal axis, or t1-axis, of U represents the con�guration of R1 along �1; the vertical axis,
or t2-axis, represents the con�guration of R2 along �2. Thus a point (t1; t2) 2 U corresponds to
placing R1 and R2 at con�gurations �1(t1) and �2(t2) respectively. Observe that the left edge of
U corresponds to multi-con�gurations where R1 is at its start con�guration, the top edge of U
corresponds to con�gurations where R2 is at its goal con�guration, and so on. A point (t1; t2) 2 U

is called forbidden if R1[�1(t1)] intersects R2[�2(t2)]; otherwise it is called free|see Fig. 2. The
coordination diagram for � is the subdivision of U into free and forbidden regions.

t1

t2

0
0

1

1

feasible multi-path
using only permissible
multi-con�gurations

Figure 2: The coordination diagram; forbidden regions are shaded.

De�ne 0 := (0; 0) and 1 := (1; 1) to be the lower left and top right vertex of U , respectively.
We call a path in U from 0 to 1 a 0-1 path. Since f�1; �2g is a feasible multi-path, R1 does
not intersect any obstacle along �1 and R1 does not intersect any obstacle along �2. Hence, a
0-1 path that lies in the free region corresponds to a feasible multi-path; we call this a feasible
0-1 path. Notice that the diagonal from 0 to 1 is by de�nition a feasible 0-1 path. This means
that 0 and 1 lie in the same component of the free region. Since they both lie on the boundary of
U , they must lie in the same component of the boundary of the free region as well. Hence, there
is a feasible 0-1 path along the boundary of the free region, as illustrated in Fig. 2. Any point
on such a 0-1 path corresponds to a permissible multi-con�guration: the point either lies on the
boundary of U , in which case one of the robots is at its start or goal con�guration, or it lies on
the boundary of a forbidden region, in which case the robots touch each other. �

Before we continue we make two remarks about the proof. First, the 0-1 path that we �nd is not
necessarily monotone in either t1 or t2. This may seem like a problem, because it appears to mean
that we move back in time. But what it really means it that we move back along the path �1
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or �2, which is allowed. Second, it is important to realize that we do not have a feasible multi-
path available at the start of the algorithm|otherwise we would already be done|so we cannot
compute the coordination diagram used in the proof. But we can use it to prove the correctness
of our approach.

We now know that we can solve the motion-planning problem by looking at only a subspace
of the composite con�guration space CS1�CS2. This subspace consists of �ve con�guration-space
slices, or slices for short.

� In the �rst slice, R2 is free to move and R1 is stationary at its start con�guration; here we
can simply consider R1 as an additional obstacle. We denote this con�guration-space slice
by CS1;s; its dimension is d2, the number of degrees of freedom of R2.

� In CS1;g, the second slice, R2 is again free to move and R1 is stationary, but this time R1 is
at its goal con�guration. Again, R1 is an additional obstacle, and the dimension of the slice
is d2.

� The third slice, CS2;s, is de�ned analogously to CS1;s, with the roles of R1 and R2 reversed.
Its dimension is d1.

� The fourth slice, CS2;g , is de�ned analogously to CS1;g , with the roles of R1 and R2 reversed.
Its dimension is d1.

� The �fth slice, CScontact, is a con�guration space for the contact robot hR1R2i, which is the
robot composed of R1 and R2 where R1 and R2 are required to touch each other.

In the sequel we make the following assumption:

DOF-Reduction Assumption (for pairs of robots): The number of degrees of freedom of
the contact robot hR1R2i is at most d1+d2�1, where d1 and d2 are the numbers of degrees
of freedom of the robots R1 and R2, respectively.

There are certain degenerate situations where this condition is not ful�lled. For instance, when
two blocks are con�ned to move on parallel tracks whose distance is such that the blocks touch
when they pass each other, then requiring them to touch will not reduce the total number of
degrees of freedom.

Linking the con�guration-space slices. Of course we cannot treat the �ve slices completely
separately; a feasible multi-path using only permissible multi-con�gurations will in general switch
between slices a number of times. In the example of Fig. 1, for instance, the �rst part of the
path lies in CS1;s, then (when R2 reaches R1) a switch is made to CScontact, and �nally a switch
is made to CS2;g. We have to connect the slices to make such switches possible. We do this by
identifying certain transition points in each slice. These points correspond to con�gurations that
are represented by a point in one of the other slices as well. For a given transition point in a slice,
we call the point in another slice that corresponds to the same con�guration its twin in the other
slice. Thus if we travel along a curve in one slice and reach a transition point, we may continue
in the other slice from its twin. Next we explain which transition points we use.

First we observe that no switches can occur between CS1;s and CS1;g, because R1 cannot go
from its start to its goal con�guration instantaneously. (If s1 = g1 then CS1;s = CS1;g , so we can
discard one of these con�guration-space slices.) Similarly, no switches can occur between CS2;s
and CS2;g .

There is only one point in CS1;s where we can step to CS2;s, namely at s2. Its twin in CS2;s
is s1. This transition is not needed, however, because there is no reason to ever come back to the
initial con�guration and make a switch there. Similarly, we need not add transition points to step
from CS1;g to CS2;g, because when we arrive at that point we have solved the problem.

We do need to add transition points from CS1;s to CS2;g, namely the point g2 2 CS1;s and its
twin s1 2 CS2;g . Similarly, we need to add s2 2 CS1;g and its twin g1 2 CS2;s to the collection of
transition points.
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The di�culty lies in de�ning transition points to step from CScontact to one of the other slices.
The problem is that in general there is a continuum of con�gurations common to CScontact and,
say, CS1;s. We want to add only a limited number of transition points, while at the same time
ensuring that no essential connectivity is lost. To achieve this we add the following transition
points.

The free part of the slice CS1;s consists of a number of cells (d2-dimensional features), which
are bounded by parts of constraint hypersurfaces. We call the (d2 � 1)-dimensional features of
a cell the patches of the cell. A patch is a part of the boundary of some con�guration-space
obstacle (recall that R1 is now regarded as an additional obstacle); patches are by de�nition path-
connected. Each patch corresponds to a maximal path-connected set of con�gurations where R2,
the robot which is free to move in the slice we are considering, either touches a speci�c obstacle or
R1. For each patch on the boundary of a cell in the free space that corresponds to con�gurations
where R1 and R2 touch, we take an arbitrary point on the patch as a transition point (together
with its twin in CScontact).

The following lemma shows that the transition points we de�ned are su�cient to capture the
connectivity between the slices.

Lemma 2 If there is a feasible multi-path for given start and goal con�gurations for R1 and R2,
then there is a feasible multi-path whose corresponding curve in the con�guration space CS1�CS2
lies entirely in the union of the �ve slices de�ned above and switches between slices at transition
points.

Proof: Let s1, g1, s2, and g2 be start and goal con�gurations such that there is a feasible multi-
path for R1 and R2. Lemma 1 states that there is a feasible multi-path that uses permissible
multi-con�gurations only, that is, lies in the union of the �ve slices. Consider such a multi-path
� = f�1; �2g. It is possible that � switches between con�guration-space slices at points other
than transition points. We modify � so that it only switches between slices at transition points.

Switches that are not at transition points can only occur between CScontact and one of the
other four con�guration-space slices. Assume without loss of generality that � switches to CS1;s.
By de�nition, the switch must occur at a con�guration where R1 and R2 touch and, moreover,
R1 is at its start con�guration. Hence, this con�guration is represented by a point p on a patch
of some free-space cell in CS1;s. Let q be the transition point chosen for that patch. Furthermore,
let p0 and q0 be the twins in CScontact of p and q. Because p and q are on the same patch, there is
a curve on that patch connecting them. Such a curve corresponds to a motion of R2 that keeps
it in contact with R1. Hence, this motion is also represented by some curve connecting p0 to q0 in
CScontact. This means that instead of stepping from CScontact to CS1;s at the point p

0, we can �rst
follow the curve from p0 to q0 in CScontact, then follow the link between q0 and q, and �nally move
back from q to p. This proves that the transition points provide all the necessary connectivity. �

The algorithm. We combine the ideas above with an algorithm of Basu et al. [2]. This algorithm
computes a roadmap of a given semi-algebraic set|of the free con�guration space in a motion-
planning problem, for instance. A roadmap is a one-dimensional subspace|a graph embedded in
CS|that captures the connectivity of the free con�guration space. If the number of obstacles is
n and the dimension of the con�guration space is d, then the algorithm constructs the roadmap
in O(nd+1) time. The algorithm by Basu et al. allows to connect a given point in the free space to
the part of the roadmap that lies in the same connected component of the free space in O(n) time.
We will use this feature of the algorithm to include the transition points in the roadmap. In both
time bounds, the constant of proportionality depends on the algebraic degree of the constraints.

Now consider the setting where we have two robots, R1 and R2. We use the method of Basu
et al. to construct a roadmap in each of the �ve con�guration-space slices de�ned above. Since
the �ve con�guration-space slices have dimensions at most d1 + d2 � 1, we can compute these
roadmaps in time O(nd1+d2). It remains to link the roadmaps in the �ve con�guration-space
slices. To this end, we �rst include in the roadmap of each con�guration-space slice the set of
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transition points de�ned for that slice, taking O(n) time per point. (We explain below how to
�nd the transition points.) This gives us �ve graphs, each capturing the connectivity of one of the
free spaces. Finally, we add links between transition points and their twins. We thus obtain one
graph, which captures the connectivity of the free space in CS1 � CS2.

The computation of the transition points is only interesting for transition points between
CScontact and the other con�guration-space slices. We focus on the the transition points between
CScontact and CS1;s. Consider the surface of the con�guration-space obstacle in CS1;s correspond-
ing to R2 touching R1. This surface is an algebraic variety of dimension d2 � 1. Consider the
arrangement induced on it by all the con�guration-space obstacles in CS1;s. We place a transi-
tion point in those faces of this arrangement that correspond to free con�gurations of the contact
robot. This is done by invoking the algorithm of Basu et al. [3], which yields in O(nd2) time a
representative point in each face (of any dimension) of the arrangement. For each of the resulting
O(nd2�1) representative points we determine in a brute-force manner whether the point is in the
free space; the points that are in the free space are added to the set of transition points. The
time needed for this is O(nd2). Hence, the total time to compute the transition points between
CScontact and CS1;s is O(n

d2).
It follows from the above discussion that the total time to compute all the transition points is

O(nmax(d1;d2)). The connection of all these O(nmax(d1;d2)�1) transition points to their respective
roadmaps takes O(nmax(d1;d2)) time. As a result, the computation of the �nal graph, capturing
the connectivity of the free space in CS1 � CS2, takes O(n

d1+d2) time. The graph search needed
to �nally solve the motion-planning problem takes linear time in the size of the roadmap. As a
result, the motion planning problem for a pair of robots can be solved in O(nd1+d2) time. This
leads to the following theorem.

Theorem 3 Let R1 and R2 be two robots, with d1 and d2 degrees of freedom respectively, that
satisfy the DOF-Reduction Assumption, operating in a workspace with n obstacles. Then we can
compute a feasible multi-path for a given pair of start and goal con�gurations for R1 and R2 in
O(nd1+d2) time, if it exists, and otherwise report failure.

4 Three robots

To extend the results of the previous section to the case of three robots, we have to �nd a suitable
de�nition of permissible multi-con�gurations. We �rst generalize the notion of a coordination
diagram, a concept from the proof of Lemma 1. We then prove the existence of a certain type of
0-1 path in the coordination diagram|such a curve represents a feasible motion|from which the
de�nition of permissible multi-con�gurations follows. As in the previous section, the permissible
multi-con�gurations induce a constant number of slices of the con�guration space for the multi-
robot; the motion-planning problem can then be solved in the union of these slices, suitably linked.

Let R = fR1; R2; R3g denote a collection of three robots operating in a workspace W , which
contains a set C = fC1; : : : ; Cng of obstacles. As in Section 3, we assume that robots are open
and semi-algebraically de�ned. Suppose that a feasible multi-path exists between the given start
and goal con�gurations of the robots. In addition, we make a stronger assumption:

Positive-Clearance Assumption: There is a feasible 0-1 path that stays in the interior of the
free con�guration space of the multi-robot, except at the endpoints.

We suspect that this assumption is not necessary, but we face some technical di�culties if we drop
it.

Let � = f�1; �2; �3g denote a feasible multi-path guaranteed by the positive-clearance assump-
tion. As it lies in the interior of the free con�guration space, which is a semi-algebraic set, we can
assume � is semi-algebraic; connected semi-algebraic sets are semi-algebraically connected (see
for example Schwartz and Sharir [16]). The coordination diagram for � is de�ned as follows. Let
U denote the three-dimensional unit cube [0; 1]3. The edges of U incident to the origin are called
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the axes of U . Each axis represents the con�guration of one of the robots; the t1-axis represents
the con�guration of R1 along �1, the t2-axis represents the con�guration of R2 along �2, and the
t3-axis represents the con�guration of R3 along �3. Thus a point (t1; t2; t3) 2 U corresponds to
placing Ri at �i(ti) for every 1 6 i 6 3.

A pair of values (�; �) 2 [0; 1]2 is called ij-forbidden, for some i 6= j, if Ri[�i(�)] intersects
Rj [�j(�)]. For indices i; j; k with fi; j; kg = f1; 2; 3g, de�ne Uij := f(t1; t2; t3)jti; tj 2 [0; 1]; tk 2
Rg. De�ne Bij to be the set of all points (t1; t2; t3) 2 Uij so that (ti; tj) is ij-forbidden. We call
Bij a coordination-diagram obstacle, or cd-obstacle for short. (We do not constrain the remaining
coordinate to lie in the interval [0; 1] for technical reasons.) Since the robots and workspace
obstacles are open and the robot position is a continuous function of t, cd-obstacles are open.
Each obstacle is a cylinder that is the Cartesian product of the forbidden region on some titj-face
of U with the remaining axis. (The titj-face of U is the 2-dimensional face of U spanned by the ti-
and tj-axes.) Note that cd-obstacles have nothing to do with the obstacles in the workspace; they
are de�ned using �, the positive-clearance feasible multi-path, and re
ect possible interferences
between robots if they follow the paths of � independently.

A point (t1; t2; t3) 2 U is called forbidden if there is a pair i; j of distinct indices such that
(ti; tj) is ij-forbidden; otherwise it is called free. In other words, a free point corresponds to a
placement of each robot at some point along its path so that the robots do not overlap. The
coordination diagram for � is the subdivision of U into free and forbidden regions. Fig. 3 shows
schematically a coordination diagram for three disk-shaped robots in the plane. By de�nition, the

t1

t2

t3

0

1

R1

R3

R2

Figure 3: The coordination diagram for three robots.

forbidden region is the union of the cd-obstacles truncated to within U .
De�ne 0 := (0; 0; 0) and 1 := (1; 1; 1) to be the lexicographically smallest and largest vertex of

U , respectively, and let � be the diagonal connecting 0 to 1.
We will now slightly modify the notion of a cd-obstacle and free point. Namely, positive

clearance implies that � in fact does not meet the closure of the cd-obstacles, except at its
endpoints. Consider a speci�c cd-obstacle Bij . Take its closure Cl(Bij). If Cl(Bij) is not simply
connected, � cannot meet any of its holes, because � avoids Cl(Bij) except at its endpoints.
(There is one case in which this is not true, namely if Cl(Bij) has a hole containing �. This can
only happen if Cl(Bij) touches � at 0 and at 1; we then consider Cl(Bij) to be two seperate
obstacles|one `above' and one `below' �|that meet along the two edges of the cube incident
to 0 and 1, respectively, and perpendicular to the titj-facet. The volume in between these two
obstacles is not considered a hole. It is easy to verify that this does not cause any problems in
the remainder of the proof.) So we can safely \�ll in" the holes if there are any. The resulting
set �Bij is a closed cd-obstacle and its interior Bij := Int( �Bij) relative to Uij is a (modi�ed open)
cd-obstacle. In the sequel, we refer to it simply as a cd-obstacle.

We write @ �Bij for the boundary of �Bij relative to Uij . Note that each connected component of
�Bij is contractible by construction, since we removed all holes from it. Put B := f �B12; �B13; �B23g.
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The free region FR is de�ned as

FR := U r
[
i6=j

Bij :

A 0-1 path is a curve in U from 0 to 1. We call a 0-1 path feasible if it lies in FR. By construction,
� is feasible.

We want to prove the existence of a feasible 0-1 path along @FR, because this will restrict the
con�gurations for the collection of robots. In fact, we want to �nd a 0-1 path along the so-called
skeleton of FR, which intuitively is a graph-like structure embedded in @FR. We give a formal
de�nition below.

In the remainder of this section we will assume that all subsets of the con�guration diagram
that we consider are semi-algebraic. Indeed, since the robots and obstacles are semi-algebraically
de�ned, and � is semi-algebraic, Bij , �Bij , @ �Bij are semi-algebraic.

Let h1; : : : ; h6 be the six planes supporting facets of U . For 1 6 i 6 6, let Hi be the open
halfspace bounded by hi and not containing U . Put H := fH1; : : : ; H6g.

Let G be the following set of \surfaces": hi, for 1 6 i 6 6, and for each connected component of
each �Bij 2 B, its boundary relative to Uij . Note that the latter \surfaces" need not be manifolds;
for instance, their cross section can look like a �gure eight. We de�ne the 1-skeleton (or simply
skeleton) S of FR as follows:

S := FR \
[
f� \ �0 : �; �0 2 Gg :

If the surfaces of G are manifolds and intersect among themselves transversally, then @FR is a
manifold bounded by 2-faces (\facets")|connected portions of boundary of sets from B [ H|,
1-faces (\edges")|portions of pairwise intersections of these surfaces|, and 0-faces (\vertices")|
points of triple intersections. In this case S is the traditional 1-skeleton of @FR|the union of
edges and vertices of FR. In more general situations, @FR need not be a manifold. Moreover, S
need not be a variety of dimension 1, since it may contain 2-dimensional portions.

We want to prove that there is a 0-1 path along the skeleton S or, in other words, that 0 and
1 are connected by a path in S.

Proposition 4 Let B be a �nite set of closed simply-connected cylinders as above in the three-
dimensional unit cube U such that the 0-1 diagonal � lies in the complement U r

S
B of the

cylinders. Then there is a 0-1 path along the skeleton S of FR.

We �rst sketch the line of attack. We argue by contradiction. If there is no 0-1 path along the
skeleton, there must be a collection of curves (in the proof we actually use more general sets) on
@FR that avoids S and separates the surface, so that 0 and 1 lie in di�erent components when
the curves are removed. Then we view FR and its complement as two topological spaces glued
together along the boundary of FR except for these curves. Since the boundary of FR is separated
by the curves, a path connecting the two points outside the cube and another one (namely, �)
connecting them in FR together form a loop that cannot be contracted to a point in the topological
space obtained by removal of these curves from R

3 . We continue by proving that the curves are
not \tangled" in the sense that each of them can be contracted to a point in a cd-obstacle without
meeting the other curves or the loop, and then removed. Thus an incremental process removes all
curves, yielding R3 . We argue that the non-contractibility of the loop we constructed above is not
a�ected by this process|it should remain non-contractible. We then have a contradiction, since
R
3 , being simply connected, admits no non-contractible loops.
We now give a more formal version of this argument. We will need the following topological

facts. Recall that we have assumed that all sets we consider are semi-algebraic|which, for a
compact set, is a stronger assumption than assuming it corresponds to a �nite CW-complex. In
the sequel we will not distinguish between a complex and the corresponding topological space.

Fact 5 Let V and W be �nite CW-complexes with V path-connected and V [W contractible
to a point. Then the number of path-connected components of V \ W equals the number of
path-connected components of W .
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This is easily shown by considering the Mayer-Vietoris sequence. For a complete argument, see
Theorem 3.9 of [11].

Fact 6 Let D be (a topological space homeomorphic to) a closed two-dimensional disk. Let V ,
W be two �nite CW-complexes and x; y 2 @D be distinct points such that:

� V [W = D,

� x; y 2 V \W , and

� x and y divide @D into two curves � and �, with � � V and � �W .

Then x and y are connected by a path in V \W .

Proof: In this proof, we write \component" to mean \path-connected component." By replacing
V with its component containing � and adjoining the rest of V toW , we maintain the assumptions
of the lemma while not increasing V \W . So in the remainder of the proof we assume that V is
path-connected.

Consider a component X of W . In �nite CW-complexes the notion of path-connectedness
coincides with the notion of connectedness, so X , being a connected component of a closed set
must be a closed subset of W and thus of D. If X \ V = ?, then X and V [ (W rX) are two
disjoint closed sets whose union is D, contradicting connectedness of D. Hence X must intersect
V . Thus each component of W meets V \W . Trivially a component of V \W is contained in a
single component of W . By Fact 5 the number of components of V \W is equal to the number
of components of W . Hence each component of W contains exactly one component of V \W . As
x and y lie on �, and thus in the same component of W , and also in V \W , they must lie in the
same component of V \W , completing the proof. �

Given a �nite family F of disjoint, compact, not necessarily connected semi-algebraic sets in
R
3 , we say that a set V 2 F is trivial (with respect to F) if there exists a contractible compact

set W containing V and avoiding the rest of the sets of the family. Intuitively, this means that V
is contractible in the complement of

S
F r fV g.

Fact 7 Consider a family F as above containing, among other sets, a loop C. If all sets besides
C are trivial with respect to F , then C is also trivial.

Proof: We proceed by induction on the size of the family. If it consists of only C the claim
trivially holds.

Now suppose that the claim holds for families of size k > 0, and consider a family F with
k + 1 sets. All sets besides C 2 F are trivial. Let V 2 F be di�erent from C. By inductive
assumption, C is trivial with respect to F r fV g. For a contradiction, suppose that C is not
trivial with respect to F . By assumption, V is trivial, so there is a compact contractible set
W � V avoiding the rest of the sets of F . Consider the collection (F r fV;Cg)[ fWg. Using the
techniques of Milnor [14], one can construct an open neighborhood of each set of this collection
such that the neighborhoods of di�erent sets are disjoint and avoid C and each set is a strong
deformation retract of its neighborhood and of the closure of its neighborhood. Let bF be the
resulting collection of neighborhoods. Non-triviality of C with respect to F implies that it cannot
be contracted to a point in R3 r

S bF , as this set is smaller than R3 r S(F r fCg). Because
the neighborhoods can be made arbitrarily close to the sets they surround, C is contractible in
R
3
r
S
( bFrfcWg), where cW is the neighborhood ofW . Hence H1(R

3
r
S bF) cannot be isomorphic

to H1(R
3
r
S
( bF r fcWg)); here H1 denotes the �rst singular homology group. Using Alexander

Duality this is equivalent to H1(Cl(
S bF)) being non-isomorphic to H1(Cl(

S
( bF rfcWg))). Howev-

er, Cl(
S bF) consists of several connected components, and Cl(

S
( bF r fcWg)) consists of the same

connected components plus the closure of cW , which can be retracted to W , which is contractible
and thus has trivial �rst singular homology group, contradicting the claim and proving the fact. �
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Proof of Proposition 4: Put FR0 := Cl(R3 rFR). Since 0;1 lie on @U , there exists a path �

connecting them in Cl(R3 r U) � FR0. Later it will be convenient to assume that � lies outside
U except at its endpoints. On the other hand, � lies in Int(FR) except at 0 and 1. Let � be the
loop formed by joining � and �.

For a contradiction, suppose that 0;1 do not lie in the same path-connected component of S.
Let S1 be the component of S containing 0 and S2 be the rest of S. Consider the set � of all points
in @FR at equal distance from S1 and S2 in the Euclidean metric. It is compact. In absence of
degeneracies it would be a one-dimensional variety, but in general it may contain two-dimensional
portions.

Suppose we were to continuously deform � to � in R3 ; this is possible since R3 is contractible.
This deformation can be viewed as a continuous function 
 mapping a two-dimensional disk D

into R3 = FR[FR0 and @D onto �. Putting V := 
�1(FR) and W := 
�1(FR0), we notice that
V [W = D, x := 
�1(0) and y := 
�1(1) both lie in V \W , and the paths � and � connecting 0
to 1 correspond to the two portions of @D connecting x to y in V and W , respectively. Applying
Fact 6, we conclude that there is a path � from x to y in V \W , and hence a path 
(�) from
0 = 
(x) to 1 = 
(y) in 
(V \ W ) = FR \ FR0 = @FR. As the di�erence of the Euclidean
distances from a point on this path to S1 and to S2 is a continuous function of position of the
point along the path, and since it is negative at 0 and positive at 1, there is a point z 2 � on
the path. In other words, we have shown that during any continuous deformation of � to � there
is an intermediate path that meets the bisector �.1 In other words, in any family of sets that
includes � and �, � is not trivial.

Now consider a path-connected component of �. We know that � lies in @FR �
S
G and

avoids S, which is the union of pairwise intersections of surfaces from G. Hence, each component
of � must lie on a single such surface. Partition � into sets according to the surface of G they lie
on. Each consists of a number of connected components of �. Add � to the resulting family F of
compact disjoint sets. We claim that all sets but � are trivial with respect to F . Then, by Fact 7,
so is �. However, we just observed that this is not the case, leading to a contradiction.

It remains to argue the claim that the intersection of � with the boundary of a path-connected
component X of, say, �B12 is trivial in F . It lies in a compact contractible set �Bij \ U , which
avoids all other components of �, as they lie on the other surfaces, outside of �Bij . Moreover, it
avoids � since � lies in the interior of free space and � lies strictly outside U , except for 0 and
1. What if 0 2 X and, as before, X � �B12? (The other cases are handled symmetrically.) Then
the t3-axis of U lies in X and in S. Note that � \ @ �B12 avoids it. We remove a small open
neighborhood of the t3-axis from �B12, possibly splitting X into several components and increasing
the number of path-connected components of �B12. However, each resulting connected component
of X is still contractible and the set �\ @X is not a�ected by this transformation. If the removal
of the neighborhood of the t3-axis from X splits it into several path-connected components, we
intersect the boundary of each component with � and use the resulting sets to replace � \ @X in
F .

Finally, � \ hi is also trivial with respect to F , by similar reasoning. It lies in a facet of U
which is contractible and avoids the remainder of � and �, except possibly for 0 or 1. Suppose
the facet contains 0 (1 is handled similarly). However, observe that 0 avoids � \ hi, hence the
facet can be replaced by a compact contractible set, namely a square with the 0 corner cut o�,

1Technically, we have shown that this occurs for any semi-algebraic deformation, or more generally any transfor-
mation 
 for which 
�1(FR) and 
�1(FR0) are CW-complexes. However, if there were a continuous deformation of
a semi-algebraic path � to a semi-algebraic path � avoiding a semi-algebraic set �, there would be a semi-algebraic
deformation with such properties. Indeed, suppose such a continuous deformation is possible. Then there is a
positive minimum distance that is achieved between the path being moved and �. Using Milnor's perturbation
technique [14] we construct an open neighborhood �+ of � that lies within half that distance from � and such that
� is a strong deformational retract of �+. We are intersted in constructing a semi-algebraic deformation of � to �
in R3 r �+, if we know that a continuous deformation exists. Consider the cylindrical algebraic decomposion [6]
of � and �+ and re�ne it to a triangulation. Contractibility of � can be decided by considering only the incidence
structure of the triangulation. Thus the assertion that � is contractible in R3 r �+ becomes a statement in a
�rst-order theory of reals and therefore the deformation can be carried out semi-algebraically.
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showing triviality of � \ hi with respect to F .
To summarize, we have proven that all sets except for � are trivial in F , with respect to F ,

contradicting Fact 7, as claimed, and completing the proof of Proposition 4. �

The existence of a 0-1 path along the skeleton of the coordination diagram implies the existence
of a multi-path that uses certain types of multi-con�gurations only, as explained next. The skeleton
consists of those features of the modi�ed free region, which are the intersections of 2�k boundaries
of closed cd-obstacles with k facets of U , for some k with 0 6 k 6 2. This means that points on
the skeleton correspond to the following type of permissible multi-con�gurations :

There are k, for some k = 0; 1; 2, robots placed at either their start or goal con�gura-
tion, and 2� k pairs of robots that are in contact.

There are several di�erent ways in which a permissible multi-con�guration can be achieved. We
mention a few of the possibilities. One type of permissible multi-con�guration is that R1 is at
its start con�guration and R2 and R3 form a contact robot. Another type is that R1 is at its
goal con�guration, R2 touches R1, and R3 is unconstrained. Although the number of types of
permissible multi-con�gurations is fairly large, it is a constant. Each type of permissible multi-
con�guration gives rise to a con�guration space slice, as in the previous section. In the sequel we
make the following assumption, similar to the DOF-Reduction Assumption we had for a pair of
robots.

DOF-Reduction Assumption (for triples of robots): Let R1, R2, and R3 be a triple of
robots. Suppose we require k, for some k = 0; 1; 2, robots to be placed at either their
start or goal con�guration, and 2� k pairs of robots to be in contact. Then the number of
degrees of freedom of the resulting robot system is at most d1 + d2 + d3 � 2, where di is the
number of degrees of freedom of Ri.

Generally, every touching pair of robots reduces the number of degrees of freedom of the multi-
robot by one, and every robot �xed at its start or goal reduces this number by at least one (namely,
by the number of its degrees of freedom), so this condition will be ful�lled. As we already noted,
however, there are certain `degenerate' situation where it is not.

We now proceed as in the previous section: each type of permissible multi-con�guration gives a
con�guration-space slice in which we compute a roadmap, we connect the roadmaps at a suitable
collection of transition points (when the number of con�gurations common to two slices is in�nite,
we again choose a representative point from each face of every dimension bounding the free parts
in such slices) and search the resulting graph to �nally �nd a feasible multi-path. We obtain the
following result.

Theorem 8 Let R1; R2; R3 be three robots satisfying the DOF-Reduction Assumption, operating
in a workspace with n obstacles. Then we can compute a feasible multi-path for a given triple of
start and goal con�gurations for R1; R2; R3 in O(nd�1) time, where d is the sum of the degrees of
freedom of the three robots, if a feasible multi-path with positive clearance exists, and otherwise
report failure.

5 Bounded-reach robots in low-density environments

De�ne the size of an object o, denoted by size(o) to be the radius of the smallest ball enclosing it.
We say that the workspaceW with the obstacle set C is a �-low-density environment [7, 18, 20, 22]
if for any ball B, the number of obstacles C 2 C with size(C) > radius(B) that intersect B is at
most �. (Our de�nition is the one used by de Berg et al. [7], and is slightly di�erent from the
earlier de�nition in [20].) If � is a (small) constant, we say that W has low density.

In this section we apply the ideas from the previous sections to obtain e�cient solutions to
the motion-planning problem for the so-called bounded-reach robots [21] moving in low-density
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workspaces. Bounded-reach robots are basically robots that are not too large compared to the
obstacles.

More precisely, they are de�ned as follows. Let pR be an arbitrary reference point in a robot R.
Then the reach of R, denoted by reach(R), is de�ned as the radius of the smallest ball centered
at pR that contains R, no matter in which con�guration R is. For instance, if R consists of two
links of length 1 that are both attached to the origin, and the reference point is the tip of one of
the links, then the reach of R is 2. (If the reference point were the origin then the reach would
be 1. For any two reference points in R, however, the two values reach(R) can be at most a factor
of two apart.) A bounded-reach robot is now de�ned as a robot R with

reach(R) 6 c �min
C2C

fsize(C)g;

where c is a (small) constant.
Van der Stappen et al. [22] have shown that the free space of a bounded reach robot moving

in a low-density workspace has O(n) complexity, irrespective of the number of degrees of freedom
of the robot or the dimension of its workspace. They also show how to compute in O(n logn)
time a decomposition of the con�guration space, after which a feasible path between given start
and goal con�gurations can be found in O(n) time. Hence, the total amount of time to solve the
motion-planning problem is O(n logn).

If we have two or more bounded-reach robots then we cannot use the result of van der Stappen
et al. directly, because the multi-robot consisting of these robots does not have bounded reach:
its bodies can be arbitrarily far apart. But when the number of robots is two or three, the multi-
robots we have to consider when we restrict ourselves to permissible multi-con�gurations do have
free con�guration spaces with linear complexity.

Indeed, consider �rst the case of two bounded-reach robots. Clearly, when one robot is �xed at
its start or goal con�guration and the other robot moves, the free-space complexity of the moving
robot is linear, because it has bounded reach. (The moving robot can be very large with respect
to the �xed robot, which we now view as an additional obstacle, but this does not in
uence the
asymptotic bound.) The remaining type of multi-con�guration is where the two robots form a
contact robot. Here the free-space complexity is also linear, because the reach of a contact robot is
bounded by the reach of one of the constituent robots plus twice the reach of the other constituent
robot.

For three robots, a similar argument shows that the free-space complexities of all the con�gu-
ration-space slices we have to consider are linear. The only case which is slightly di�erent from the
cases we have for two robots is when one robot is �xed, another robot moves in contact with the
�xed robot, and the third robot is free. In this case the multi-robot formed by the second and third
robot does not have bounded reach. But it follows from results of van der Stappen [20] that the
robot that moves in contact with the �xed robot has only a constant number of combinatorially
distinct critical con�gurations. Combined with the fact that the third robot had bounded reach
and, hence, a linear number of critical con�gurations, this shows that the multi-robot consisting
of the second and third robot has a free space of linear complexity.

We have argued that in all the con�guration-space slices we have to consider the complexity of
the free space is linear. Moreover, we can use the algorithm of van der Stappen et al. to compute
decompositions of these free spaces. Each cell in the resulting decomposition is bounded by a
constant number of algebraic surfaces, and therefore has constant complexity. For each facet of
such a free-space cell in one of the slices, we determine a transition point; due to the constant
complexity of the cell, this takes constant time. Next, for each transition point thus found we
determine its twins in the other slices as follows. The decomposition algorithm of van der Stappen
et al. constructs a so-called cc-partition of a low-density workspace: a subdivision into constant-
complexity regions such that the robot can intersect at most a constant number of obstacles as
long as its reference point stays within a single region. The decomposition consists of a BSP-
like structure that allows us to determine the work-space cell containing a given transition point
in logarithmic time. Finally, we examine the constant number of con�guration-space cells that
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correspond to this cell to determine which cell contains the transition point. Summed over all
O(n) transition points, this takes O(n logn) time.

To see that this algorithm can also be applied in the exceptional case mentioned above|one
robot R1 is �xed, another robot R2 moves in contact with R1, and the third robot R3 is free|
pretend that R2 does not exist, and compute the work-space decomposition of R3. Each region
in the decomposition corresponds to a region in the con�guration space of R3|and, hence, in
that of R3 combined with R2|that is crossed by only a constant number of constraint surfaces.
(These surfaces are reported by the algorithm of van der Stappen et al.) Now consider what
happens if we place R2 back into the scene. Since R2 is forced to maintain contact with R1,
it de�nes only a constant number of additional constraint surfaces over the entire con�guration
space. When computing the free cells of a con�guration-space cylinder corresponding to a region
in the cc-partition, we determine which (if any) of these surfaces intersect the cylinder, and add
them to the constraint surfaces reported by the algorithm. A similar reasoning shows that the
computation of transition points and their twins can still be done in O(n logn) time.

This leads to the following result. Notice that the time bound of our algorithm is, as in the case
of a single bounded-reach robot, independent of both the numbers of degrees of freedom of the
robots and of the dimension of the workspace. Also note that we do not need the DOF-Reduction
Assumption for the result below to hold.

Theorem 9

(i) Let R1 and R2 be two bounded-reach robots operating in a low-density workspace with
n obstacles. Then we can compute a feasible multi-path for a given pair of start and goal
con�gurations for R1 and R2 in O(n logn) time, or report that no such path exists.

(ii) Let R1, R2, and R3 be three bounded-reach robots operating in a low-density workspace
with n obstacles. Then we can compute a feasible multi-path for a given triple of start
and goal con�gurations for R1, R2, and R3 in O(n logn) time, if a feasible multi-path with
positive clearance exists, or report that no such path exists.

6 Concluding remarks

We presented a general technique to plan the motions of pairs and triples of robots sharing the
same workspace. By combining this with the roadmap algorithm of Basu et al. [2], we obtain an
algorithm with O(nd) running time for a pair of robots and O(nd�1) running time for a triple of
robots, where d is the sum of the degrees of freedom of the individual robots. These bounds are one
and two orders of magnitude, respectively, faster than what the standard method would give. Here
we have assumed that the sum of the number of degrees of freedom of two robots reduces by at least
one if the robots are required to stay in contact; for triples a similar assumption is made. Moreover,
for triples we need to assume that a solution with positive clearance exists. Our approach becomes
especially e�ective for bounded-reach robots operating in low-density workspaces. In this case our
algorithm runs in O(n logn), both for two and for three robots, irrespective of their numbers of
degrees of freedom.

Any collection of m > 3 robots can be viewed as a triple of robots, one of which is a multi-
robot consisting of m � 2 robots. Hence, our result for triples can be applied to four or more
robots. This will reduce the dimension of the con�guration space one has to consider by two.
Greater savings are possible if for any m there would be a 0-1 path along the 1-skeleton of the
m-dimensional coordination diagram. If this is true (which we have been unable to prove or
disprove), the resulting reduction in dimension would be m� 1 and the motion-planning problem
for m robots would be solvable in O(nd�m+2) time.
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