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Abstract

We present a motion planner for multiple moving ob-
jects in two dimensions. The search for collision-
free paths i1s performed in the composite configuration
space of all the moving objects to guarantee a solu-
tion, and the efficiency of our planner is demonstrated
with examples. Our motion planner can be charac-
terized with a hierarchical, multi-resolution search of
the configuration space along with a generate-and-test
paradigm for solution paths. Because of the high di-
mensionality of the composite configuration space, our
planner is most useful for cases with a small number
of moving objects. Some of the potential applications
are navigation of several mobile robots, and planning
part motions for a multi-handed assembly operation.

1 Introduction

The multiple movers’ problem is the problem of find-
ing short and collision-free paths for many moving ob-
jects in an environment. Such a problem arises in
path planning of multiple robots in factories or out-
door construction sites, or in assembly planning where
the paths of many parts are needed to assemble them.
Still another application is the path planning of ma-
nipulators working in the same workcell.

The complexity of the multiple movers’ problem
stems from the fact that the dimension of the search
space, called the composite configuration space (com-
posite Cspace or CCspace), is the sum of the degrees
of freedom of all the moving objects. More degrees
of freedom offer the benefit of potentially more solu-
tions. Some sort of heuristic path planner can often be
used to solve this problem. Developing an efficient and
complete algorithm (that guarantees a solution for all
cases), is, however, very difficult, since this involves an
exhaustive search of the high-dimensional CCspace.

In our pursuit for an efficient and complete motion
planner, we have developed an efficient search strat-
egy called Sandros [3] that acts like a heuristic motion
planner initially (solving easy problems quickly), and
makes a graceful transition to an exhaustive search
(guaranteeing a solution even for a hard problem). The
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exhaustive search is performed at a user-specified res-
olution, making our planner resolution complete. This
planner was initially developed for motion planning
of a single manipulator [3], and later extended to a
single rigid object [9]. In this paper we present an
application of the Sandros planner to multiple mov-
ing objects. Due to the general exponential worst-case
nature of search algorithms, our algorithm is most effi-
clent when applied to motion planning of a small num-
ber of robots.

In this paper, we use the term robot to mean objects
whose motions we intend to control. The space of all
poses of robots is referred as the composite configura-
tion space. We define dof to be the total dimension
of the CCspace. The next section reviews the previ-
ous work done on the multiple movers’ problem, and
Section 3 describes our motion planner. The perfor-
mance of our planner is shown in Section 4, and the
conclusions and future work are discussed in Section 5.

2 Previous Work

There has been a lot of work on the multiple movers’
problem during the last 10 years. On the theoreti-
cal side, it has been shown to have a lower bound of
PSPACE completeness and an upper bound that is
exponential in the number of degrees of freedom. In
[6], the planning of coordinated translational motion
of rectangles (with a pattern of extrusions and inden-
tations on their sides) in a rectangular boundary is
shown to be PSPACE-hard by reducing the PSPACE-
hard symbol transposition problem to it. This problem
is later shown to be in PSPACE in [7], thus proving its
PSPACE completeness. The single-exponential upper
bound follows from the upper bound of the generalized
motion planning problem [2].

In engineering applications where a practical solu-
tion is needed, many heuristic planners have been de-
veloped. They can be classified into centralized and
distributed planning. In centralized planning, the mo-
tions of all robots are planned by a single decision
maker. Centralized planning can be further divided
into algorithms with or without priority among the
robots. In certain applications, there are priority re-
lations among the relative importance of the missions
of robots. In other cases, the priority is artificially im-
posed to decompose the multiple movers’ problem into
a sequence of single-mover’s problems. This, however,



introduces the loss of optimality as well as complete-
ness, i.e., the planned motion of a robot with a higher
priority may preclude the motion of another robot with
a lower priority. In [4], the obstacles in the composite
configuration space are constructed to plan paths for
two robots. In case there is a conflict between robots,
the burden of collision avoidance is imposed on the
robot with a lower priority. Motion planning of many
square-shaped robots in the plane is presented in [1].
This algorithm has an application in an assembly cell,
where multiple robots move on the ceiling of the cell,
delivering parts and performing assembly operations.
This algorithm tries to move as many robots as pos-
sible in straight lines, and minimizes the number of
robots that have to make turns. Recently, game the-
ory is used in [10] to plan the paths of multiple robots
while optimizing multiple objectives. The robots are
constrained to move on a roadmap such as the Voronoi
diagram, and the concept of Nash equilibrium is used
to schedule the motion of robots on the roadmap. A
randomized approach is used to plan motions of mul-
tiple manipulators in [12]. This algorithm plans the
motions of manipulators that move an object from
one position to another. The path of the object is
planned first, and the motion of each manipulator that
moves the object along the planned path is computed
by solving inverse kinematics. Note that the manipu-
lators cannot carry the object outside their reachable
space. The planner then assigns specific manipulators
to carry the object at different portions of the path.
Although this algorithm is not complete, it is efficient
and solves many realistic problems.

A distributed planning approach is taken in [16] to
plan paths for circular robots. Each robot plans its
own path using the visibility graph, and when conflicts
among the robots arise, it is reported to the central co-
ordinator called the blackboard, which issues priorities
based on the tasks and current state. Another decen-
tralized approach for circular robots of different sizes
is presented in [11]. Quadtree representation is used
for path planning along with a Petri net formulation
to resolve the conflicts among robots.

This paper presents a motion planner for multiple
polygonal robots, each with 3 degrees of freedom, in a
polygonal environment. Our algorithm plans the mo-
tion in the composite configuration space to guarantee
a solution if one exists, and does not decompose the
problem into a sequence of single-mover’s problems.
It has an important application in assembly planning,
especially when an assembly requires multi-handed op-
erations, i.e., those requiring coordinated movements
of multiple parts. Our algorithm can also be used for
multiple mobile robots working in a common environ-
ment such as in a construction site. We show the ca-
pability and efficiency of our algorithm with examples.
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3 Algorithm

The best motion planning algorithm so far is expo-
nential in the number of degrees of freedom [2]. If
the number of degrees of freedom is low, a brute-force
search algorithm is often sufficient. For problems with
5 dof or higher such as the multiple movers’ problem,
a brute-force search takes hours of computation time.
The main feature of our algorithm is to find a solution
path in a practical amount of time while maintaining
the resolution completeness, i.e., guaranteeing a so-
lution if it exists. This is exactly the motivation for
the development of the Sandros search strategy, whose
typical running time is in the range of a few minutes
both for a manipulator [3] and for a rigid body [9]. In
this paper we describe the extension of the Sandros
methodology to the motion planning of multiple rigid
bodies. The Sandros search method itself will only be
sketched here; the details and the proof of resolution
completeness can be found in [3, 9].

3.1 Overview of Sandros

The Sandros search strategy is basically a subgoal net-
work approach [8], wherein a network of intermediate
subgoals of the robot is maintained in a graph struc-
ture during the search. The network spans the free
portions of the Cspace, implicitly generating the ob-
stacles in the Cspace. The search for a collision-free
path is done using the generate-and-test paradigm. A
promising sequence of subgoals is generated and the
existence of a collision-free path between successive
subgoals is verified. Sandros uses a two-level planning
hierarchy. The global planner maintains the subgoal
network and produces sequences of subgoals. The lo-
cal planner verifies the sequences until a solution is
found. The global planner initially divides the Cspace
into a small number of big cells, i.e., subgoals. If a so-
lution is not found along any sequence of subgoals in
the current network, some of the subgoals are refined
into several smaller subgoals, expanding the subgoal
network.

The success of the Sandros planner hinges on the
subgoal generation and refinement process. For a ma-
nipulator, a subgoal takes the form of an affine space,
i.e., the set generated by specifying the values of the
first n joints and letting the rest of the joints unre-
stricted. (An affine space is a linear subspace trans-
lated from the origin by a finite vector.) Subgoals are
selected by configuring the first n joint values so that
the first n links are maximally away from obstacles.
The refinement of a subgoal of this form is done by
specifying the value of the next unspecified joint. Fig-
ure 1 shows the subgoals at various refinement stages
for a 3-dimensional Cspace. A refinement increases the
number of subgoals and consequently the number of
possible sequences to verify. To minimize the explosion
of the subgoals, refinement is done only at promising
portions of the Cspace. Figure 2 illustrates the San-



dros search strategy applied to manipulator motion
planning. Figure 2a shows a 2-link planar manipula-
tor in a polygonal environment along with a collision-
free motion between the start and goal configurations.
Figure 2b shows the subgoals generated to solve this
problem. The vertical-bar subgoals represent the good
positions (positions maximally away from the obsta-
cles) of the first link while ignoring the second link.
They are generated when the whole Cspace (the ini-
tial subgoal) is refined. When a vertical-bar subgoal is
refined, small-square subgoals are generated by select-
ing good positions of the second link while keeping the
first joint at the vertical bar. The curves in Figure 2b
show the traces of the local planner verifying various
subgoal sequences. Figure 2¢ shows the solution path
found and the Cspace obstacles.

Motion planning of a rigid body requires a different
form of subgoals. While each joint value of a manip-
ulator specifies the configurations of a subset of links,
a rigid body has all of its degrees of freedom concen-
trated on a single body. For a manipulator, the good-
ness of a subgoal (which is typically a non-point set)
can be measured by computing the distance to obsta-
cles from the manipulator links whose positions are
specified by the first n joints. If we insist on having
the affine-space form of subgoals for a rigid body, we
could compute the volume swept by the robot while
the configuration is varied in the subgoal, and get some
sort of measure of the intersection volume between the
swept volume and the obstacles. This has many draw-
backs including the difficulty of computing the swept
volume, numerical sensitivity of volume intersection,
and large swept volumes of elongated objects giving
poor measure of subgoal goodness.

A point subgoal with all the configuration variables
specified allows direct measurement of subgoal good-
ness, namely, by computing the distance between the
rigid body at that configuration and obstacles. How-
ever, we need to place point subgoals in a structured
manner so as to facilitate the eventual exhaustive
search if necessary. Due to these reasons, we have
chosen as the form of subgoals for a rigid object a
rectangloid cell and an associated point configuration
contained in the cell. This representative point is then
used by the local planner to verify the existence of a
collision-free path between two subgoals. The point
configuration is chosen using a random sampling in
the cell until a collision-free configuration is found. If
no collision-free point is found in a subgoal, it is not
considered in computing a subgoal sequence for verifi-
cation. It is kept, however, for later refinement. The
refinement of a rectangloid subgoal is done by dividing
it along its longest dimension into two rectangloids of
an equal size. See Figure 3 for a snapshot of subgoals
during planning.

If all subgoals are refined into small cells at a pre-
set resolution, Sandros is equivalent to a brute-force
search. at that resolution. For most problems, how-
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ever, a solution is found long before small subgoals are
generated. In fact, easy problems with wide free space
are often solved with a handful of subgoals. Note in
Figure 2b that the majority of the Cspace is unex-
plored when the solution is found, and the subgoal re-
finement is done non-uniformly to minimize the num-
ber of subgoals. The local planner we have used is a
potential-field based planner, which moves the robot
toward a subgoal while maximizing the distance be-
tween the robot and the obstacles. The local planner
declares success when the robot reaches any point of
the target subgoal.

3.2 Extension to multiple rigid robots

We now describe the extension of the Sandros search
strategy developed for a rigid body to multiple rigid
bodies. Basically, this extension is done by forming
the composite Cspace, i.e., by defining the configura-
tion variables to be the concatenation of the configu-
rations of all robots. Three things need to be deter-
mined to apply the Sandros search method: the form
of subgoals, measuring goodness of subgoals, and the
method of subgoal refinement.

We have considered three forms of subgoals for mul-
tiple rigid robots. One form of subgoals is to specify
the configurations of some robots, while leaving the
configurations of the rest of the robots unspecified.
This 1s an affine-space form, although somewhat dif-
ferent from the subgoal form used for a manipulator.
The goodness of a subgoal is then measured by the dis-
tances between the configuration-specified robots and
obstacles. This method introduces a bias by ordering
the robots for configuration specification, which im-
plicitly assign priorities to robots.

The second form of subgoals is a rectangloid cell rep-
resented by a point in it, as done with a single rigid
robot. The main advantage of this is that one can
verify a sequence of subgoals in parallel. This is be-
cause the local planner cannot verify the existence of
a collision-free path between two non-point subgoals.
It needs at least one point subgoal, otherwise, the lo-
cal planner does not have a specific configuration to
initiate the path verification.. The drawback of this
form 1s that a point subgoal is harder to reach than a
subgoal with a finite volume. If the clearances among
robots are large, this increases the computation time
only marginally. This is because if a point in a rect-
angloid subgoal is not reached, then the subgoal will
be divided into smaller cells, each represented by a
point. The local planner is likely to find a collision-free
path reaching one of the points if there is a collision-
free path to the original subgoal. Therefore, having
a point target in a subgoal might increase the refine-
ment depth by 1 or 2. The speed up from a parallel
computation is, however, much greater than the addi-
tional computation introduced by the increase in the
refinement depth. If the spacing among robots are
small, however, it is very hard to find collision-free



robot configurations by random sampling.

Another option is to take rectangloid cells as sub-
goals, and the local planner will declare success when
the robots reach any point in the rectangloid subgoal.
This way, the local planner has a much higher suc-
cess rate than when trying to reach a point. We have
decided in favor of the third option. The refinement
method is then the same as a single robot case, except
the division of the rectangloid subgoal is performed in
the composite Cspace.

4 Examples

We present several examples to show the characteris-
tics of our planner. All computations times are the
running times on a 100-MIPS workstation. Figure 4
shows the top view of two rigid people exchanging their
positions. This problem is relatively easy, and it took
our planner 9 seconds to solve. The local planner is in-
voked 4 times by the global planner. The next example
is taken from [14] which was used to show that there
is an assembly requiring an arbitrarily many hands
to assemble it. Although his example has zero toler-
ance between the baseboard and the spikes, we added
a finite tolerance to make our planner work. Our plan-
ner considers contacts as collisions. Overcoming this
drawback is one of our future goals as discussed in the
conclusion section. This example is solved in 5 sec-
onds.

In Figure 6, we show an 18-dof problem where six
mobile robots are trying to move to new locations in a
room. It took our planner 5 minutes and 43 seconds to
solve this problem. The planned motion is somewhat
erratic since our planner tries to move the robots away
from each other at all times. This problem would have
been solved faster by decomposing it into a sequence
of single mover’s problems. Note, however, you need
to reason about the order of moving robots. In this
example, Robot 4 cannot reach its goal if it tries to
move after Robot 3 and before Robot 6. Finally, Fig-
ure 7 shows a non-monotone assembly, i.e., one cannot
assemble it by moving each part to its final configu-
ration. The rectangular block must be put inside the
U-shaped part before both of them can be put into
the outside container. Qur planner could not solve
this problem in 20 minutes. The main reason is that it
is very hard to generate the crucial configuration of the
rectangular block inside the U-shaped part unless the
contact conditions are used. In assembly-planning re-
search, polyhedral convex cones (PCC) have been used
to reason about local motion constraints [15]. We plan
to use PCC to develop a global planner that generates
extended motion. All the examples above show that
our algorithm, in the current form, is most useful if the
number of robots is small, they require simultaneous
movements, and the space among robots is not small.
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5 Conclusions and Future Work

We have developed a global motion planner for the
multiple movers’ problem in two dimensions. Un-
like many existing planners for mulitiple robots which
transform the problem into a sequence of single-
mover’s problems, we plan the motion in the comnposite
configuration space of all robots. The extension of the
Sandros search strategy has resulted in a motion plan-
ner that maintains the resolution completeness, while
solving most realistic problems in minutes. Our plan-
ner is much more efficient than those planners that
explicitly build the obstacles in the composite config-
uration space. One drawback of our algorithm is that
since the motion is planned in the composite Cspace,
our algorithm performs the best when the number of
robots is small. Our planner has an important appli-
cation in the assembly planning, especially for these
containing multi-handed assembly, i.e., those requiring
the simultaneous movements of more than one part. It
is also useful for motion planning of multiple mobile
robots working in a common environment.

We are currently implementing our planner for poly-
hedral robots, each with 6 degrees of freedom. The
next research goal is to apply Sandros to multiple ma-
nipulators. The form of subgoals as well as the lo-
cal planner need to be designed carefully to optimize
the efficiency. Another research direction is to look
into the motion planning with small tolerances among
parts. In fact, most assemblies have very small or even
negative tolerances. As addressed in the example in
Figure &, our planner needs a step size that is smaller
than the tolerance between parts. Extension of our
motion planning approach to such problems will re-
quire the use of polyhedral convex cones [5] to compute
the feasible motion directions and magnitudes based
on part contacts.
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Figure 1. The affine-space form of subgoals in the
3-dimensional configuration space. It is used by the
Sandros for motion planning of a manipulator.
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Figure 2. (a) A collision-free motion of a 2-link pla-
nar manipulator found by the Sandros planner. (b)
The subgoals generated during the search process. (c)
The solution path in the configuration space and the
configuration-space obstacles (shaded regions).
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Figure 3. (a) Planning the motion of removing a clip
away from two nails. (b) Rectangloid subgoals gener-
ated during the search by the Sandros planner.



Figure 4. Two people exchanging their positions in a small room.

Figure 5. An assembly that requires simultaneous motions of three parts.

light shade: stait config.
dark shade: goal config.

Figure 6. Six mobile robots switching their positions in a room. The motions are
somewhat erratic since our planner tries to move robots away from each other.

Figure 7. A non—monotone assembly.requiring the crucial configuration at right.
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