

Randomness and Compressibility

Akhil S

When can you say that a sequences is random?

(1) 0101010101010101...

(2) 00101101110111101111...

(3) 0100011011000001010011...

(4) 00100100001111101101...

Overview

- ▶ Randomness = (in)compressibility

Overview

- ▶ Randomness = (in)compressibility
- ▶ Rate of randomness = rate of (in)compressibility

Overview

- ▶ Randomness = (in)compressibility
- ▶ Rate of randomness = rate of (in)compressibility
- ▶ Polynomial-time rates of
Randomness $\stackrel{?}{=}$ (in)compressibility

Overview

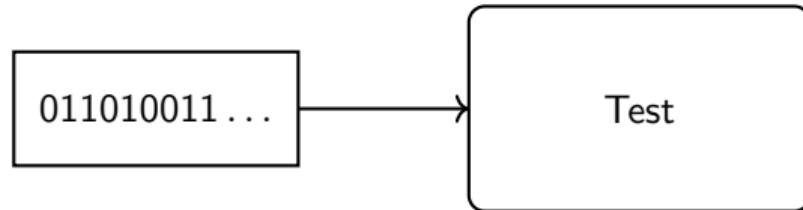
- ▶ Randomness = (in)compressibility
- ▶ Rate of randomness = rate of (in)compressibility
- ▶ Polynomial-time rates of
Randomness $\stackrel{?}{=}$ (in)compressibility
- ▶ One-way functions

Randomness

Philosophy

*Something is random
if it looks random to **you**.*

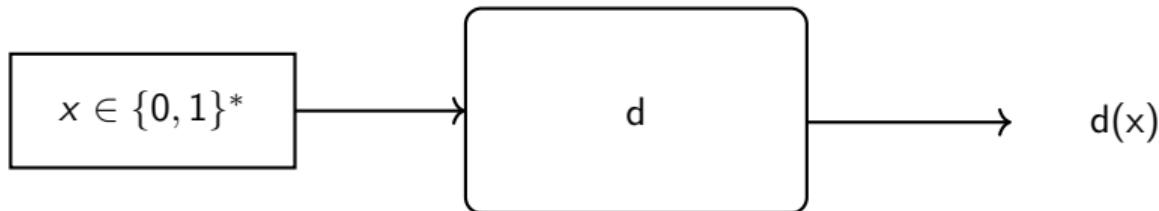
Test of randomness



X is Random $\iff T(X)$ fails.

All "random" strings must fail T

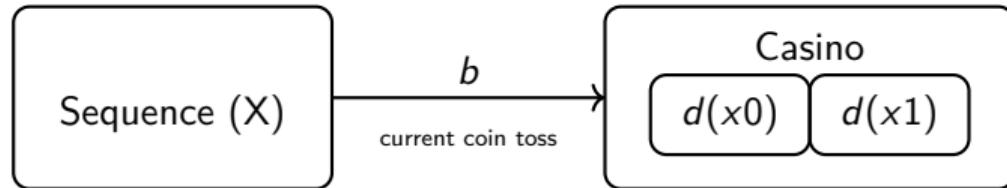
Test of randomness: Martingales



$$\text{Fair betting : } d(x.0) + d(x.1) = 2 \cdot d(x).$$

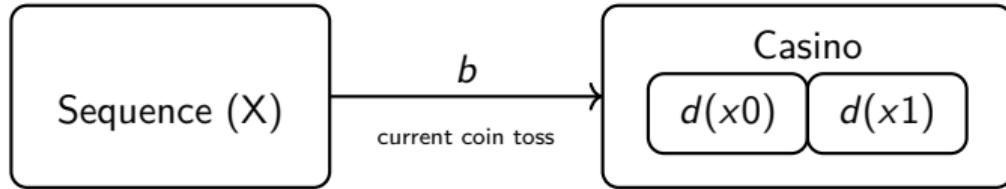
d is "effective".

Martingales as a casino game



$$2.d(x) = d(x0) + d(x1)$$

Martingales as a casino game



X is Martin-Löf Random \iff for all effective d , $\limsup d(X \upharpoonright n) < \infty$.

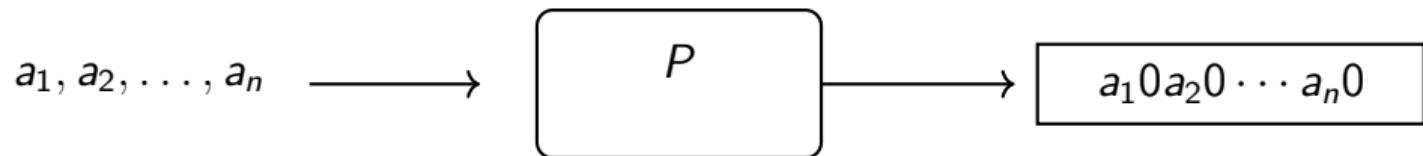
Philosophy

*Something is random
if it is **incompressible** to **you**.*

Kolmogorov complexity

$x := a_1.0.a_2.0 \dots a_n.0$

Kolmogorov complexity

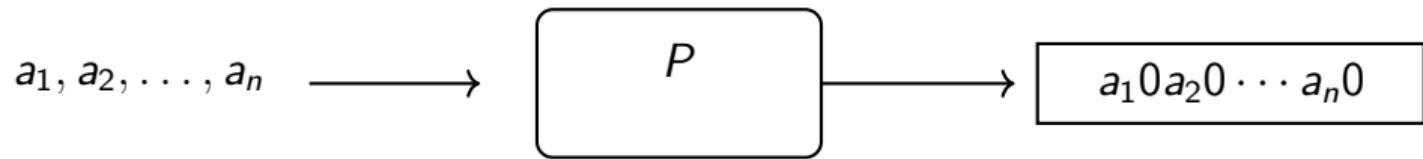


Kolmogorov complexity

$$K(x) = \min\{ |p| : U(p) = x \}$$

length of the shortest program producing x

Kolmogorov complexity



$$K(a_1.0.a_2.0, \dots, a_n.0) \leq n + O(1)$$

Randomness = incompressibility

Theorem : X is MLR $\iff \forall n K(X|n) \geq n - O(1)$

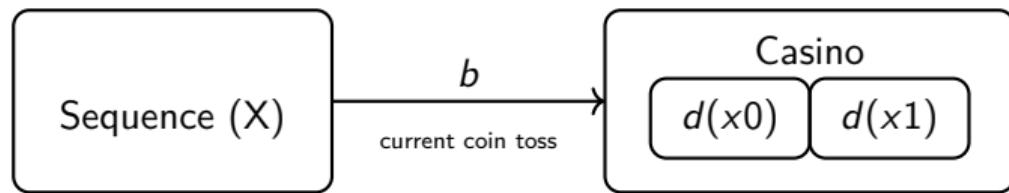
Example

$$X := a_1.0.a_2.0 \dots a_n.0 \dots$$

$$\forall n, \quad K(X \upharpoonright n) \leq n/2 + O(1)$$

Example

$$X := a_1.0.a_2.0 \dots a_n.0 \dots$$



$$2.d(x) = d(x0) + d(x1)$$

Example

$$X := a_1.0.a_2.0 \dots a_n.0 \dots \quad d(\lambda) = 1$$

If $|x|$ is even: $d(x_0) = 2 d(x)$
 $d(x_1) = 0 d(x)$

Example

$$X := a_1.0.a_2.0 \dots a_n.0 \dots \quad d(\lambda) = 1$$

If $|x|$ is even: $d(x0) = 2 d(x)$
 $d(x1) = 0 d(x)$

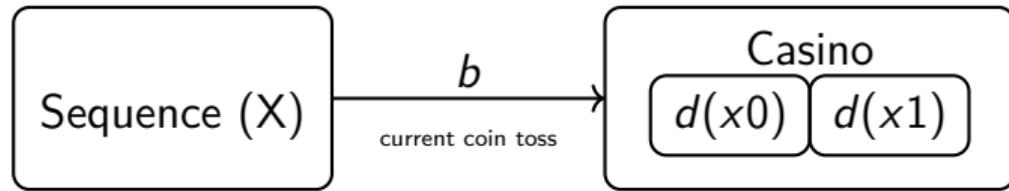
If $|x|$ is odd: $d(xb) = d(x)$

Bet the entire amount only on the even 0's

Rate of Randomness

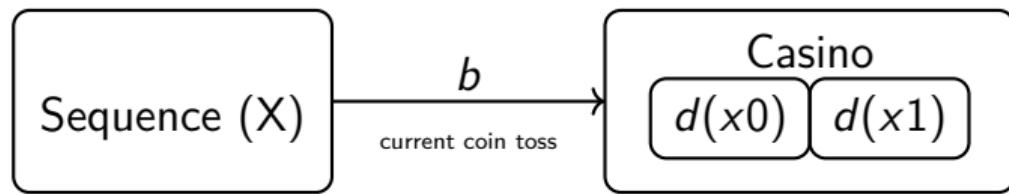
Stingy Casino : *s*-gale

$$X := a_1.0.a_2.0 \dots a_n.0 \dots$$



Stingy Casino : s -gale

$$X := a_1.0.a_2.0 \dots a_n.0 \dots$$



$$2^s d(x) = d(x0) + d(x1) \quad s \in (0, 1]$$

Example

$$X := a_1.0.a_2.0 \dots a_n.0 \dots \quad s = 0.5$$

If $|x|$ is even: $d(x0) = \sqrt{2} d(x)$
 $d(x1) = 0 d(x)$

If $|x|$ is odd: $d(xb) = \frac{1}{\sqrt{2}} d(x)$

Bet the entire amount only on the even 0's

s-gales : Fast winning Martingales

$$d(x) \text{ is a martingale} \iff \tilde{d}(x) = 2^{(s-1)|x|} d(x) \text{ is an } s\text{-gale}$$

$$\tilde{d}(x) > 1 \iff d(x) > 2^{(1-s)|x|}$$

Constructive dimension

$\dim(X) = \inf\{s : \exists \text{ effective } s\text{-gale } d \text{ that succeeds on } X\}$

d succeeds on X iff $\limsup_n d(X \upharpoonright n) = \infty$

Constructive dimension

$$\dim(X) = \liminf_{n \rightarrow \infty} \frac{K(X \upharpoonright n)}{n}$$

rate of algorithmic randomness

Example

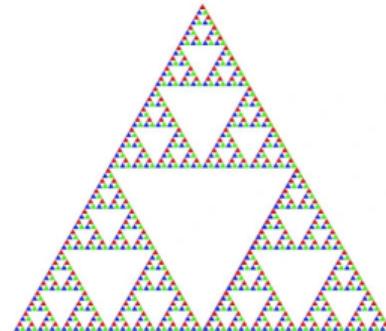
$$X := a_1.0.a_2.0 \dots a_n.0 \dots$$

$$K(X \upharpoonright n) \leq n/2 + O(1)$$

$$\dim(X) \leq 1/2$$

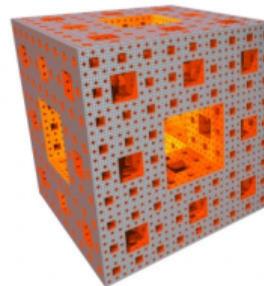
Hausdorff dimension

Sierpinski Gasket



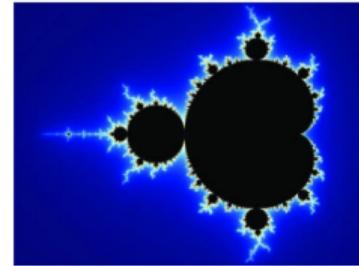
$$D_H = \frac{\ln(3)}{\ln(2)} = 1.5850$$

Menger Sponge



$$D_H = \frac{\ln(20)}{\ln(3)} = 2.7268$$

Mandelbrot Set



$$D_H = 2.0000$$

Image source: <https://galileo-unbound.blog/wp-content/uploads/2020/12/fractals.jpg>

Point-to-Set Principle

$$\dim_H(E) = \min_A \sup_{x \in E} \dim^A(x)$$

fractal dimension via algorithmic randomness of points

Applications : Information theoretic proofs of Kakeya Conjecture, Mastrand's Projection theorems, Distance sets, **Faithfulness**.

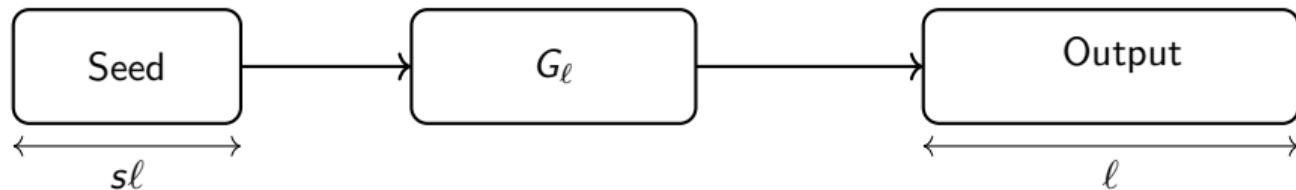
Summary

- ▶ Randomness = (in)compressibility
 - ▶ Martingale fail \iff Maximal K.C
- ▶ Rates of randomness = rate of (in)compressibility
 - ▶ $s-gale$ fail \iff Rate of K.C $> s$

Pseudo-Randomness

Pseudorandom generators

PRG : $\{G_\ell : \{0, 1\}^{s \cdot \ell} \rightarrow \{0, 1\}^\ell\}_{\ell \in \mathbb{N}}$ $s \in (0, 1)$



Constant-stretch pseudorandom generator

$$G : \{0, 1\}^{sn} \longrightarrow \{0, 1\}^n \quad (0 < s < 1)$$

Definition. G is a cryptographic PRG if for all PPT D:

Constant-stretch pseudorandom generator

$$G : \{0, 1\}^{sn} \longrightarrow \{0, 1\}^n \quad (0 < s < 1)$$

Definition. G is a cryptographic PRG if for all PPT D :

$$\left| \Pr[D(\text{PRG String}) = 1] - \Pr[D(\text{True random string}) = 1] \right| \leq \text{negl}(n)$$

polynomial-time indistinguishable from uniform

Constant-stretch pseudorandom generator

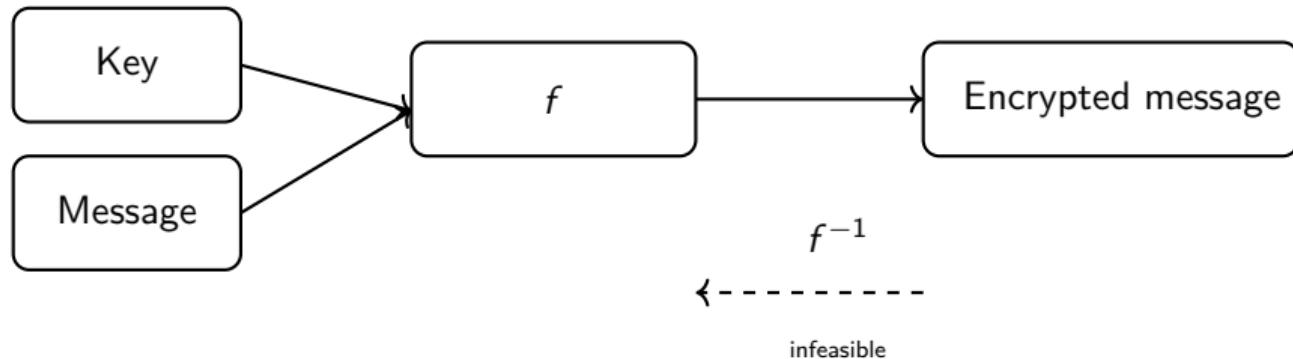
$$G : \{0, 1\}^{sn} \longrightarrow \{0, 1\}^n \quad (0 < s < 1)$$

Definition. G is a cryptographic PRG if for all PPT D:

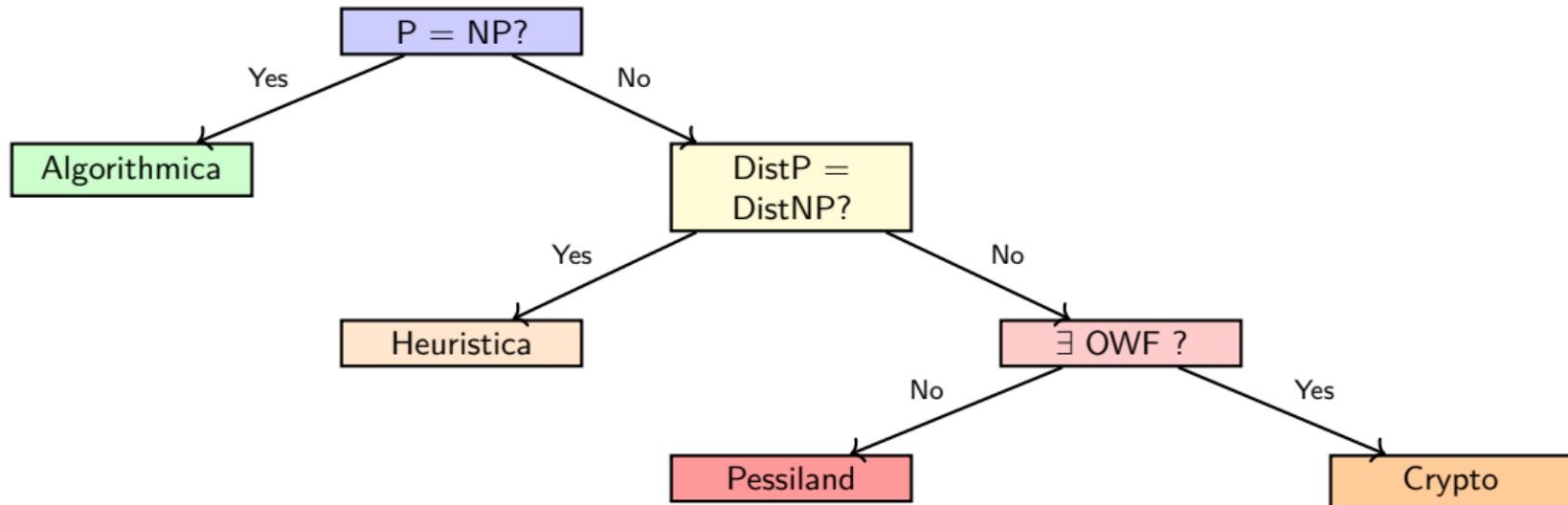
$$\left| \Pr[D(G(U_{sn})) = 1] - \Pr[D(U_n) = 1] \right| \leq \text{negl}(n)$$

One-way functions

f is one-way if $f(x) = y$ is easy to compute, but
 $f^{-1}(y) = x$ is hard to compute



Impagliazzo's Five Worlds



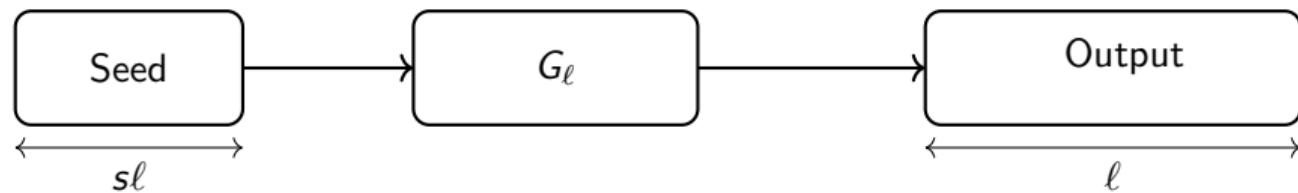
Pseudorandomness and Information

Time-bounded Kolmogorov complexity

$$K^t(x) = \min\{ |p| : U(p) = x \text{ in time } t(|x|) \}$$

Pseudorandom generators

PRG : $\{G_\ell : \{0, 1\}^{s \cdot \ell} \rightarrow \{0, 1\}^\ell\}_{\ell \in \mathbb{N}}$ $s \in (0, 1)$

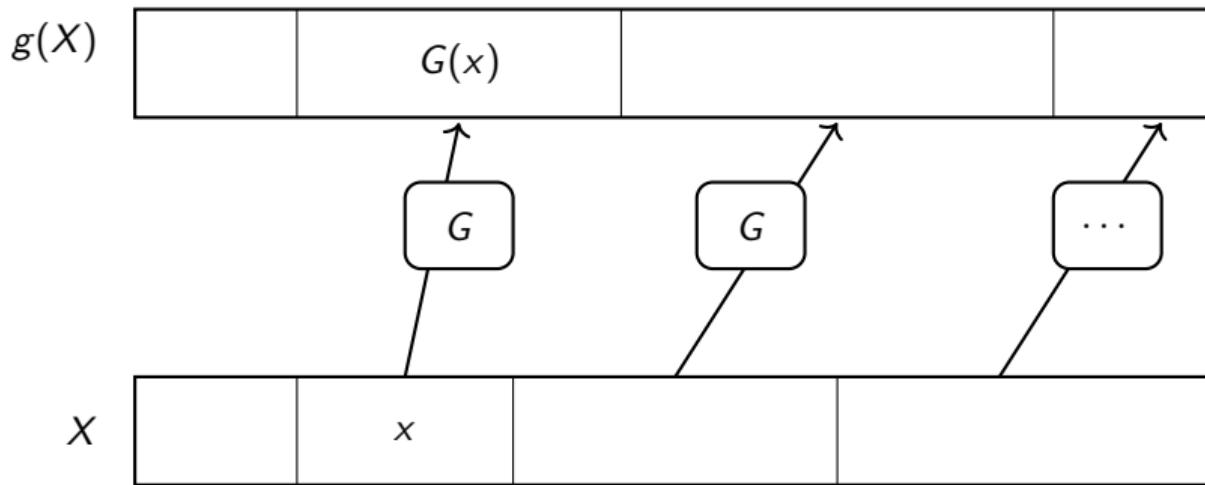


$$K_t(\text{Output}) \leq s\ell + O(1)$$

Time-bounded Kolmogorov complexity rate

$$\mathcal{K}_{poly}(X) = \inf_{t \in poly} \liminf_{n \rightarrow \infty} \frac{K^t(X \upharpoonright n)}{n}.$$

PRG to Infinite strings



$$\mathcal{K}_{poly}(g(X)) \leq s$$

Pseudorandom generators

1. Generated from a short seed

$$K_t(G(x)) \leq sn + O(1) \quad (s < 1)$$

2. Yet indistinguishable from uniform

Pseudorandom generators

1. Generated from a short seed

$$\mathcal{K}_{poly}(g(X)) \leq s \quad (s < 1)$$

2. Yet indistinguishable from uniform

Pseudorandom generators

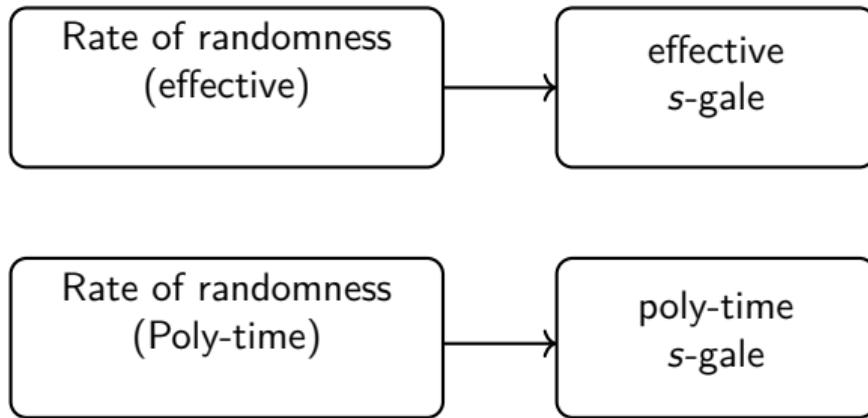
1. Generated from a short seed

$$\mathcal{K}_{poly}(g(X)) \leq s \quad (s < 1)$$

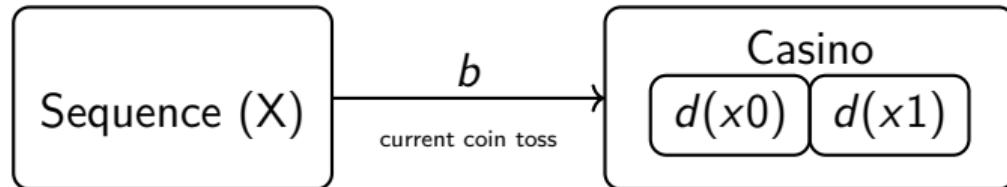
2. Yet indistinguishable from uniform

Question : Poly-time dimension $g(X)$ is high ?

Tests of randomness $\Rightarrow s$ -gales



Impatient Stingy Casino : poly-time s -gale



$$2^s d(x) = d(x0) + d(x1) \quad s \in (0, 1]$$

$d(x)$ runs in time $\text{poly}(|x|)$

Poly-time dimension

$$\dim_P(X) = \inf\{s : \exists \text{ poly-time } s\text{-gale } d \text{ that succeeds on } X\}$$

least bias needed to win "fast" against X

d succeeds on X iff $\limsup_n d(X \upharpoonright n) = \infty$

Equivalence ?

Hitchcock, Vinodchandran, 2005 :

$$\forall X \in \{0, 1\}^\infty, \quad \mathcal{K}_{poly}(X) \leq \dim_P(X).$$

Robustness question of poly-time dimension

$$\forall X \in \{0, 1\}^\infty, \quad \mathcal{K}_{poly}(X) \stackrel{?}{=} \dim_P(X).$$

OWF \implies No Equivalence

Nanadakumar, Pulari, A.S, Sarma [2025] :

\exists OWF $\implies \exists X \in \{0, 1\}^\infty, \mathcal{K}_{poly}(X) \neq \dim_P(X).$

OWF \implies No Equivalence

\exists OWF \implies

\exists “large” collection of $X \in \{0, 1\}^\infty$, $\mathcal{K}_{poly}(X) \neq \dim_P(X)$.

No Equivalence \implies OWF

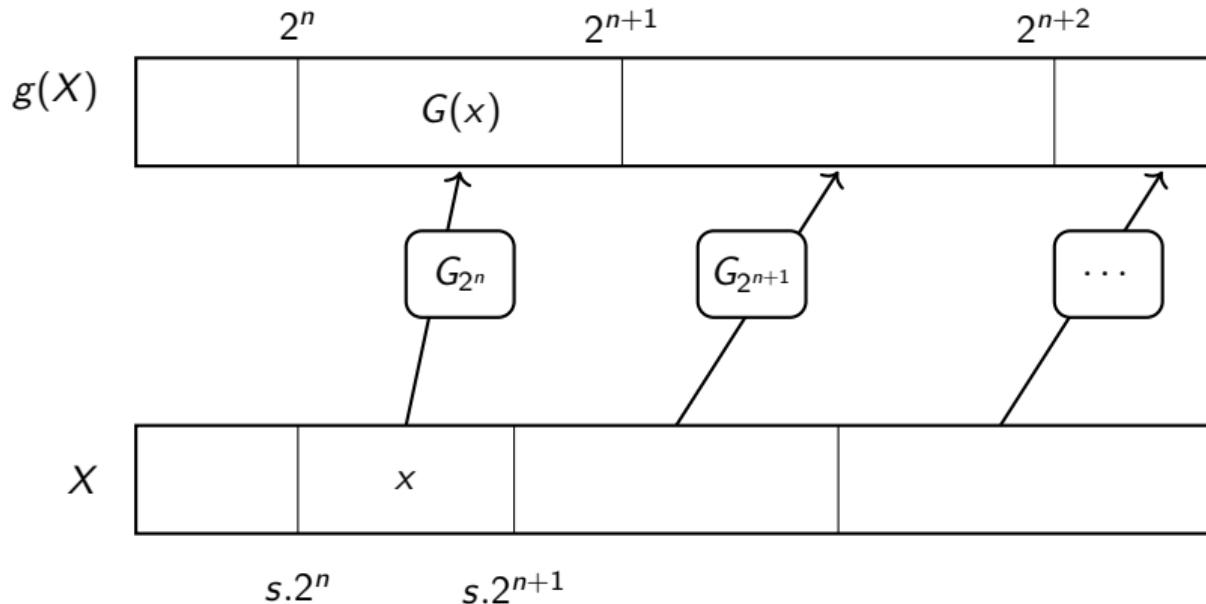
\exists “large collection of ” $X \in \{0, 1\}^\infty$, $\mathcal{K}_{poly}(X) \neq \dim_P(X)$.

$\implies \exists$ i.o-OWF

No Equivalence

$\forall X \in \{0, 1\}^\infty, \mathcal{K}_{poly}(X) = \dim_P(X) \implies \nexists \text{ PRG}$

PRG to Infinite strings



$$\mathcal{K}_{poly}(g(X)) \leq s$$

No Equivalence

$$\forall X \in \{0, 1\}^\infty, \quad \mathcal{K}_{poly}(X) = \dim_P(X)$$

\implies poly-time s -gale that wins on $g(X)$

No Equivalence

$$\forall X \in \{0, 1\}^\infty, \mathcal{K}_{poly}(X) = \dim_P(X)$$

\implies poly-time s -gale that wins on $g(X)$

..... $\implies \exists$ poly-time attacker A that breaks G

No Equivalence

$$\forall X \in \{0, 1\}^\infty, \mathcal{K}_{poly}(X) = \dim_P(X)$$

\implies poly-time s -gale that wins on $g(X)$

..... $\implies \not\exists$ PRG

Randomness and Compressibility

	Gale	K.C
Effective	$\dim(X) = \liminf \frac{K(X \upharpoonright n)}{n}$	
PSpace	$\dim_{PSPACE}(X) = \inf_{s \in PSPACE} \liminf \frac{K^s(X \upharpoonright n)}{n}$	
Polynomial-time	$\dim_P(X) >^1 \inf_{t \in poly} \liminf \frac{K^t(X \upharpoonright n)}{n}$	

¹If One-way-functions exist