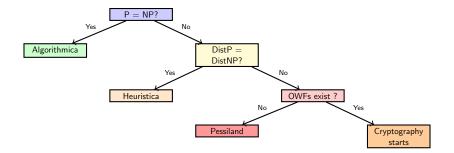
One-Way functions and Polynomial Time Dimension

Satyadev Nandakumar, Subin Pulari, Akhil S, Suronjona Sarma

January 21, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ


Overview

- Polynomial time dimension (cdim_P) : quantifies information density in infinite binary strings.
 - Measured using betting algorithms called s-gales.
- Time-bounded Kolmogorov complexity (*K*_{poly}) measures compressibility of finite prefixes of sequences.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Long-standing open question: Is cdim_P = K_{poly}? [Hitchcock, Vinodchandran CCC 2004]
 - We show : OWF \implies cdim_P $\neq \mathcal{K}_{poly}$.

Impagliazzo's Five Worlds

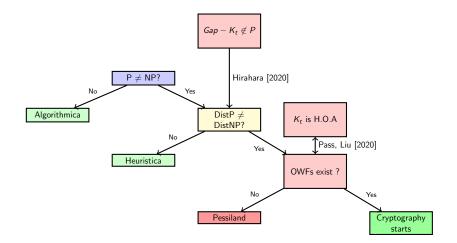
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Meta-Complexity

Minimum Circuit Size Problem (MCSP)

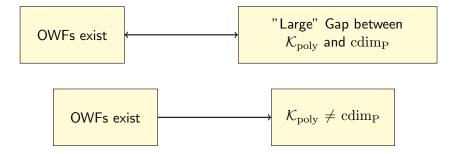
Given a Boolean function f, and an integer s,

Is there a circuit of size $\leq s$ that can compute f ?

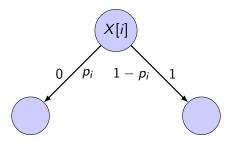

Poly-time Kolmogorov Complexity (MK_tP)

Given a string x, and an integer s,

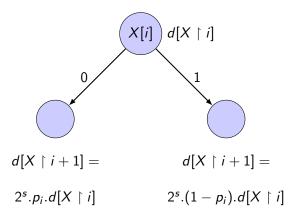
Is there a t(n)-time program p of size $\leq s$ that outputs x ?


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Meta-Complexity : Some results


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Our Results



▶ Defined using **s-gales**: betting algorithms.

cdim_{P}

Defined using s-gales: betting algorithms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Defined using **s-gales**: betting algorithms.

$$\operatorname{cdim}_{\mathrm{P}}(X) = \inf_{s} \{ \exists \text{ poly-time } s - gale \ d \text{ s.t } \limsup_{n} d(X \upharpoonright n) = \infty \}.$$

Time-Bounded Kolmogorov Complexity (K_t)

• *Compressibility* rate of finite prefixes of a sequence.

$$\mathcal{K}_{t}(x) = \min_{p} \{ |p| : U_{t(|x|)}(p) = x. \}$$
$$\mathcal{K}_{poly} = \inf_{t \in poly(n)} \liminf_{n} \frac{\mathcal{K}_{t}(X \upharpoonright n)}{n}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Unbounded Time Setting

- Mayordomo and Lutz (2002): Unbounded time notions of information density are equivalent.
- Similar equivalences at PSPACE, finite-state levels.

Question [Hitchcock, Vinodchandran 2005]

$$\forall X \in \Sigma^{\infty}, \operatorname{cdim}_{\operatorname{P}}(X) = \mathcal{K}_{\operatorname{poly}}(X) ??$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

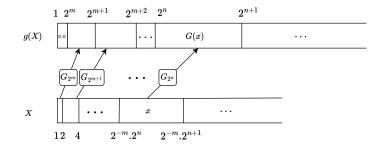
OWF, cdim_P and \mathcal{K}_{poly}

Theorem [Akhil, Nandakumar, Pulari, Sharma 2025]

 $\mathsf{OWF} \text{ exist } \implies \exists X \in \Sigma^{\infty} \text{, } \operatorname{cdim}_{\operatorname{P}}(X) \neq \mathcal{K}_{\operatorname{poly}}(X).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Proof Outline


- ► OWFs \leftrightarrow PRGs [HILL 99] $G_n : sn \rightarrow n, s < 1.$
- ▶ PRG outputs have **low** K_t by design. $K_t(G_n(x)) \le |x| = sn$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ cdim_P = K_{poly} ⇒ PTIME s-gale d that win on concatenation of PRG outputs.

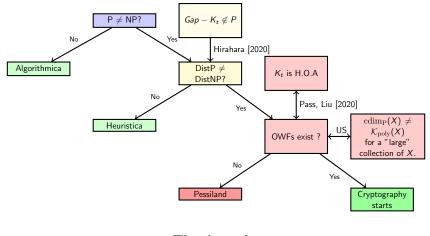
Proof Outline 2

• $\operatorname{cdim}_{\mathrm{P}} = \mathcal{K}_{\operatorname{poly}} \implies \operatorname{PTIME} \operatorname{s-gale} d$ that $\operatorname{lim} \sup d(g(X) \upharpoonright n) = \infty.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Use distinguishers A derived from s-gale d to break G.

Tools used


- Standard *s*-gale techniques.
- ▶ Pr[A(PRG) = 1] is high : **Borel-Cantelli Lemma**.
- ▶ Pr [A(Random) = 1] is low : Kolmogorov Inequality.

Conclusion

- A characterisation of existence of OWFs using Information theoretic formulation.
- cdimP and Kpoly are distinct under the assumption of OWFs.
- Hope to inspire new connections between meta-complexity, cryptographic theory and information theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Meta-Complexity : Some results

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ