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Overview

▶ Polynomial time dimension (cdimP) : quantifies information
density in infinite binary strings.
▶ Measured using betting algorithms called s-gales.

▶ Time-bounded Kolmogorov complexity (Kpoly) measures
compressibility of finite prefixes of sequences.

▶ Long-standing open question: Is cdimP = Kpoly?
[Hitchcock, Vinodchandran CCC 2004]

▶ We show : OWF =⇒ cdimP ̸= Kpoly.
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Meta-Complexity

Minimum Circuit Size
Problem (MCSP)

Given a Boolean function f ,
and an integer s,

Is there a circuit of size ≤ s
that can compute f ?

Poly-time Kolmogorov
Complexity (MKtP)

Given a string x , and an in-
teger s,

Is there a t(n)-time program
p of size ≤ s that outputs x ?
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Our Results
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cdimP

▶ Defined using s-gales: betting algorithms.
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cdimP

▶ Defined using s-gales: betting algorithms.
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cdimP

▶ Defined using s-gales: betting algorithms.

cdimP(X ) = inf
s
{∃ poly-time s−gale d s.t lim sup

n
d(X ↾ n) = ∞}.



Time-Bounded Kolmogorov Complexity (Kt)

▶ Compressibility rate of finite prefixes of a sequence.

Kt(x) = min
p
{|p| : Ut(|x |)(p) = x .}

Kpoly = inf
t∈poly(n)

lim inf
n

Kt(X ↾ n)
n

.



Unbounded Time Setting

▶ Mayordomo and Lutz (2002): Unbounded time notions of
information density are equivalent.

▶ Similar equivalences at PSPACE, finite-state levels.

Question [Hitchcock, Vinodchandran 2005]

∀X ∈ Σ∞, cdimP(X ) = Kpoly(X ) ??



OWF, cdimP and Kpoly

Theorem [Akhil, Nandakumar, Pulari, Sharma 2025]

OWF exist =⇒ ∃X ∈ Σ∞, cdimP(X ) ̸= Kpoly(X ).



Proof Outline

▶ OWFs ↔ PRGs [HILL 99] Gn : sn → n, s < 1.

▶ PRG outputs have low Kt by design. Kt(Gn(x)) ≤ |x | = sn.

▶ cdimP = Kpoly =⇒ PTIME s-gale d that win on
concatenation of PRG outputs.



Proof Outline 2

▶ cdimP = Kpoly =⇒ PTIME s-gale d that
lim sup d(g(X ) ↾ n) = ∞.

0..0

▶ Use distinguishers A derived from s-gale d to break G .



Tools used

▶ Standard s-gale techniques.

▶ Pr [A(PRG ) = 1] is high : Borel-Cantelli Lemma.

▶ Pr [A(Random) = 1] is low : Kolmogorov Inequality.



Conclusion

▶ A characterisation of existence of OWFs using Information
theoretic formulation.

▶ cdimP and Kpoly are distinct under the assumption of OWFs.

▶ Hope to inspire new connections between meta-complexity,
cryptographic theory and information theory.
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