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Kucera—Gacs Theorem

For every X € {0,1}°°, there exists a Martin-Lof random R such that

X <t R.
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Overview

@ Proof of Classical Kuéera—Gacs.
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Overview

@ Proof of Classical Kuéera—Gacs.

@ (Quasi) Polynomial-time Kucera—Gécs.

e Optimisation: Number of Oracle queries used.
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Quasi-Polynomial Kucera—Gacs

For any X € ¥, and t € w(poly), there exits a polynomial-time random
R € ¥ such that X <y R, where t'(n) = O(n - t(n+ +/nlog n)).

Poly-time
Randoms

Quasi-Polytime
Reductions

Moreover, X[1...n] can be computed using R[1...n+ /nlogn]. ]
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@ Proof of Classical Kuéera—Gacs.

o (Quasi) Polynomial-time Kucera—Gécs.

e Optimisation: Number of Oracle queries used.

@ Polytime Dimension and (quasi) Polytime Kuéera—Gacs Reductions.
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Poly-time Dimension and Reductions

For all X € £°°, there exists a Polynomial-time Random R € L°° such that
X <¢n) R via M with oracle use u, such that

Koty (X) = lim inf%.

where t(n) = (n- t'(n+ \/nlogn)) and t'(n) € w(poly).
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Proof of Classical Ku€era—Gacs.

(Quasi) Polynomial-time Kucera—Gacs.

e Optimisation: Number of Oracle queries used.

Polytime Dimension and (quasi) Polytime Ku€era—Gacs Reductions.

Finite-state Analogue of Kucera—Gacs.
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Kucera—Gacs Theorem

Theorem (Kucera—Gacs)

For every X € {0,1}“, there exists a Martin-L6f random R such that

X <1t R.
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Kucera—Gacs Theorem

Theorem (Kucera—Gacs)

For every X € {0,1}“, there exists a Martin-L6f random R such that

X <1t R.
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Martingales and Martin-L6f Randomness

Definition

A function d : ¥* — [0, 00) is called a martingale if for all w € ¥,

d(w0) + d(wl) =2 d(w).
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Martingales and Martin-L6f Randomness

Definition

A function d : ¥* — [0, 00) is called a martingale if for all w € ¥,

d(w0) + d(wl) =2 d(w).

A function d : £* — [0, 00) is c.e or lower-semi computable if there exists a
computable d : ¥* x N — [0, 00) N Q such that
o Vt d(w,t) <=d(w,t+1)

o limyd(w,t) = d(w).

.
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Martingales and Martin-L6f Randomness

A sequence R € ¥°° is Martin-Lf random iff for the universal c.e
martingale d : ¥* — [0, 00),

limsup(d(R | n)) < oc.!
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Martingales and Martin-L6f Randomness

A sequence R € ¥°° is Martin-Lf random iff for the universal c.e
martingale d : ¥* — [0, 00),

limsup(d(R | n)) < oc.!

@) liminf,(d(R | n)) < oo also works.
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Proof Strategy

[Merkle Mihalovic 2004] Given X € X°°,
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Proof Strategy

[Merkle Mihalovic 2004] Given X € X°°,

O Take the universal c.e Martingale d : ©* — [0, 00).
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Proof Strategy

[Merkle Mihalovic 2004] Given X € X°°,

O Take the universal c.e Martingale d : ©* — [0, 00).

@ Construct a ML-random sequence R by encoding X.

e Randomness: Diagonalizing against d.
e Recoverability: Use bits of X to choose among possibilities for R.

Akhil, Nandakuar, Tiwari (IIT Kanpur) Kucera—Gacs Theorem June 17, 2025



Proof Strategy

[Merkle Mihalovic 2004] Given X € X°°,

O Take the universal c.e Martingale d : ©* — [0, 00).

@ Construct a ML-random sequence R by encoding X.

e Randomness: Diagonalizing against d.
e Recoverability: Use bits of X to choose among possibilities for R.

© Decode X from R via a computable function.
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Proof Strategy

Given X € ¥°°, Diagonalize against d.

o Stage i : Extend R;_; to R; using X]i].
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Proof Strategy

Given X € ¥°°, Diagonalize against d.
o Stage i : Extend R;_; to R; using X]i].

@ Choose an R; such that

d(Ri) < d(Ri—1)(1+6;).
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Proof Strategy

Given X € ¥°°, Diagonalize against d.
o Stage i : Extend R;_; to R; using X]i].

@ Choose an R; such that

d(Ri) < d(Ri—1)(1+6;).

o Take §; = i~2, then [[;(1 + &) < .
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Proof Strategy

Given X € ¥°°, Diagonalize against d.
o Stage i : Extend R;_; to R; using X]i].

@ Choose an R; such that

d(Ri) < d(Ri—1)(1+6;).

o Take §; = i~2, then [[;(1 + &) < .

o liminf,d(R [ n) < oo = R is MLR.
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Proof Strategy

Encoding X into R.

@ At stage /, extend R;_; by enough bits (¢;) so that there are atleast 2
candidates for R;.
e /; can be computed from §;.
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Proof Strategy

Encoding X into R.

@ At stage /, extend R;_; by enough bits (¢;) so that there are atleast 2
candidates for R;.

e /; can be computed from §;.

e If X; =0, pick leftmost feasible R;.
e If X; =1, pick the rightmost feasible R;.
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Picking R;

d(R,) < d(R,',l)(]. + (5,)
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Proof Strategy

Decoding X from R.
o At stage /, calculate R;_; and R; from R.

@ Run two processes parallely. Check among x € R;_1.X%.
o Check if forall x 5 R;, d(x) < d(Ri—1)(1+ 0;). X[i] = 0.
o Check if forall R; < x d(X) < d(R,',l)(]. + (5,) X[/] =1.
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Kucera—Gacs Theorem

Theorem (Kucera—Gacs)

For every X € {0,1}“, there exists a Martin-L6f random R such that X is
Turing reducible to R, i.e.
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© Quasi-Polynomial Kucera-Gacs
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Polynomial-time Martingale

Definition
A function d : ¥* — [0, 00) is called a martingale iff for all w € ¥*,

d(w0) + d(wl) =2 d(w).

Definition

A function d : ¥* — [0,00) N Q is poly-time computable if
there is a turing machine that on input x € " outputs d(x) in time O(n*).
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Polynomial-time Randoms

Definition

A sequence R € ¥*° is polytime random iff for all poly-time computable
martingale d : ©* — [0, 00),

Iim:up(d(R ['n)) < oo.
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Quasi-Polynomial Kucera—Gacs

For any X € ¥, and t € w(poly), there exits a polynomial-time random
R € ¥ such that X <y R, where t'(n) = O(n - t(n+ +/nlog n)).

Poly-time
Randoms

Quasi-Polytime
Reductions

Moreover, X[1...n] can be computed using R[1...n+ /nlogn]. ]
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Proof Strategy

© Take the universal poly-time Martingale d : ¥* — [0, ).

@ Construct a polytime-random sequence R by ensuring

o Randomness: Diagonalizing against d.
e Recoverability: Use bits of X to choose among possibilities for R.

© Decode X from R via a quasi poly-time computable function.
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Universal poly-time Martingale

For any t € w(poly), there exits a t(n) - n - log n-time Martingale that is
universal over all polynomial-time martingales.

dy | dy | d3 | dy | ds | ds | dr

X[0] | dy

X[1] | dy | da

X[2] | dy | dy | ds

X[2] | dy | dy | ds | da
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d(Ri) < d(Ri—1)(1+ ;).
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New Encoding

o At stage i, /i =2+42-logi.
e Encoding n bits of X requires Q(nlog n) bits of R !

e Modify: n bits of X requires only n+ O(y/nlog n) bits of R.
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Block Encoding

@ At stage i, encode next i bits of X into R.

(35—

7| | | |

x HEER
<«l><«—2

A
w
A
>~

o Taking 6; =i =2, ¢;=i+2logi.
@ Only need n+ y/nlog n bits of R to get X[1...n].
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n(w0) + n(wl) = n(w)

. 2? d(R,',l.W) i2
"(W)_zlwl<1_ d(Ri_1) '1+i2>'

n(w.0) n(w.1)

n(w) < #{x e T gd(R_1.wx) < d(Ri_1) - (1+i72).}
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n(w.0) n(w.1)
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Decoding

n(w.0) n(w.1)
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Quasi-Polynomial Kucera—Gacs

For any X € ¥, and t € w(poly), there exits a polynomial-time random
R € ¥ such that X <y R, where t'(n) = O(n - t(n+ +/nlog n)).

Poly-time
Randoms

Quasi-Polytime
Reductions

Moreover, X[1...n] can be computed using R[1...n+ /nlogn]. ]
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@ Kucera—Gacs and Dimension
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Constructive Dimension

@ Measures Density of Information in an infinite sequence.

Theorem (Lutz, Mayordomo)
For X € X°°,

cdim(X) = Iimninf @

e K(x) : Algorithmic Information content in a string.

K(x) = 7rrnei7r;{U(7r) = x}.
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Kucera—Gacs and Dimension

Theorem (Doty (2006))

For all X € X°°, there exists a Martin-L6f Random R € ¥°° such that
X <7 R via M with oracle use u, such that

cdim(X) = lim inf 27
n

- s.p—> s = cdim(X)
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Poly-time Dimension

@ Density of Information in an infinite sequence measured using
Polynomial-time algorithms.

Definition
For X € X°°,

Kpoly(X) = inf Iiminfw.

tepoly n n

o Ki(x) : t-time bounded Algorithmic Information content in a string.

Ki(x) = Trpeig{ufﬂxl)(w) = x}.
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Poly-time Dimension and Reductions

For two sequences X, Y € ¥°°, we say

X <p Y <= 3 poly-time TMst YnMY(1") =X | n.
. .. Unp .
Kpory(X) = _in {l.mmf7 ’ X <p Y via M},

€x>®
MeOTM

A\

up : Oracle use of Y by M to produce X[1...n].
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Poly-time Dimension and Reductions

A\ 4

A
V)

n

Poly-time Mw s = ’Cpoly (X )

\4

A
S

Akhil, Nandakuar, Tiwari (IIT Kanpur) Kucera—Gacs Theorem June 17, 2025



Proof Outline

. .. Unp .
Kpary(X) < _inf {Ilmmf7 ’ X <p Y via M} (%) J
MeOTM

@ 5> *via
o Machine M (t(n) time), Oracle Y, Indices {n;}.

o Ki(X | ni) < |un(Y)| < snj.
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Proof Outline

Kpoly(X) > YianOO

{liminfﬁ ’ X <p Y via M} (%)
MeOTM n

s> /Cpoly

o For indices {n;}, Ke(X | nj) <s- nj, say via ;.
o Take nj = o(m +...ni_1).

o Attempt 1 : Y =m.m...7m...
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Proof Outline

2

T

<
<
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Proof Outline

T

w;

Uy

fur] = ol w

w;

A
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Poly-time Dimension and Reductions

Kpary(X) = _inf {Iiminf% ’ X <p Y via M}.
MeOTM

up : Oracle use of Y by M to produce X[1...n].
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Putting things together

P LI [ PR >
R
A 4
Y
P s 5 = Ko (X)
X

n;
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Poly-time Dimension and Reductions

For all X € £°°, there exists a Polynomial-time Random R € L°° such that
X <¢n) R via M with oracle use u, such that

Koty (X) = lim inf%.

where t(n) = (n- t'(n+ \/nlogn)) and t'(n) € w(poly).
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© Finite-state Kucera—Gacs
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Finite-state Kucera—Gacs

@ Finite-State Randoms and Finite-State Reductions.

Theorem (Schnorr, Stimm 1972)

For any sequence X € ¥

X is Finite-State Random <= X is Normal
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Finite-state Kucera—Gacs

@ Finite-State Randoms and Finite-State Reductions.

Theorem (Schnorr, Stimm 1972)

For any sequence X € ¥

X is Finite-State Random <= X is Normal

4 N

Normal Finite-State
Sequences Reductions
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No Kucera—Gacs for Normality

There exists an X € X°° such that for all Normal N € X°° and finite state
reductions T : X° — ¥ °°,

T(N) # X.
(
Normal Finite-State
Sequences Reductions
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Proof overview

o If N € X is normal, N induces a stationary distribution on the
transitions of G.

Theorem (Schnorr, Stimm)

For any normal N € £°° and finite state transducer G = (Q, X, qo,0,T),
there exists a probaility distribution P : Q@ x ¥ — [0, 1] such that

i #(@,2),X 1 n)

n n

= P(q,a)
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Proof overview
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Proof overview

Therefore P(0) and P(1) in T(X) must converge !
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Proof overview

e Consider any X € {0,1} such that P(0) and P(1) in X does not
converge.

There does not exist a Normal N € X°° and finite state reduction
T : X — ¥ such that

T(N) = X.
(
Normal Finite-State
Sequences Reductions
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Outline

@ Conclusion
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Conclusion

@ Kucera—Gacs : For every sequence, there is a random sequence from
which it is constructively recoverable.

o (Quasi) Polynomial-time analogue of Kucera-Gacs.
o Using v/nlog n extra bits.

@ Cpory dimension can be characterised using poly-time reductions.
e Quasi poly-time reductions from poly-time randoms.

@ Finite-state analogue of Kucera—Gacs does not hold.
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Open Questions

e Can we get an actual polynomial-time Kucera Gacs theorem ?

str

@ Can we characterize ICpoly

using poly-time reductions ?
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