Resource Bounded Kučera–Gács Theorems and Polynomial-time Dimension

Satyadev Nandakumar, Akhil S, Chandrasekhar Tiwari

IIT Kanpur

June 17, 2025

Akhil, Nandakuar, Tiwari (IIT Kanpur)

Kučera-Gács Theorem

June 17, 2025

Outline

Overview

- 2 Classical Kučera-Gács Theorem
- Quasi-Polynomial Kučera–Gács
- 4 Kučera–Gács and Dimension
- 5 Finite-state Kučera-Gács

Outline

Overview

- 2 Classical Kučera–Gács Theorem
- 3 Quasi-Polynomial Kučera–Gács
- 4 Kučera–Gács and Dimension
- 5 Finite-state Kučera-Gács
- 6 Conclusion

Theorem

For every $X \in \{0,1\}^{\infty}$, there exists a Martin-Löf random R such that

$X \leq_T R$.

Akhil, Nandakuar, Tiwari (IIT Kanpur)

Kučera-Gács Theorem

June 17, 2025

∃ ▶ 3

Kučera-Gács Theorem

June 17, 2025

Image: A matrix

→ ∃→

э

• Proof of Classical Kučera-Gács.

▲ 西部

표 문 문

- Proof of Classical Kučera–Gács.
- (Quasi) Polynomial-time Kučera–Gács.
 - Optimisation: Number of Oracle queries used.

Theorem

For any $X \in \Sigma^{\infty}$, and $t \in \omega(poly)$, there exits a polynomial-time random $R \in \Sigma^{\infty}$ such that $X \leq_{t'(n)} R$, where $t'(n) = O(n \cdot t(n + \sqrt{n} \log n))$.

Moreover, X[1...n] can be computed using $R[1...n + \sqrt{n} \log n]$.

- Proof of Classical Kučera-Gács.
- (Quasi) Polynomial-time Kučera–Gács.
 - Optimisation: Number of Oracle queries used.
- Polytime Dimension and (quasi) Polytime Kučera–Gács Reductions.

Theorem

For all $X \in \Sigma^{\infty}$, there exists a Polynomial-time Random $R \in \Sigma^{\infty}$ such that $X \leq_{t(n)} R$ via M with oracle use u_n such that

$$\mathcal{K}_{\mathrm{poly}}(X) = \liminf \frac{u_n}{n}.$$

where $t(n) = (n \cdot t'(n + \sqrt{n} \log n))$ and $t'(n) \in \omega(poly)$.

- Proof of Classical Kučera–Gács.
- (Quasi) Polynomial-time Kučera–Gács.
 - Optimisation: Number of Oracle queries used.
- Polytime Dimension and (quasi) Polytime Kučera–Gács Reductions.
- Finite-state Analogue of Kučera–Gács.

Outline

Overview

- 2 Classical Kučera–Gács Theorem
 - 3 Quasi-Polynomial Kučera–Gács
 - 4 Kučera–Gács and Dimension
 - 5 Finite-state Kučera-Gács
 - 6 Conclusion

Theorem (Kučera–Gács)

For every $X \in \{0,1\}^{\omega}$, there exists a Martin-Löf random R such that

 $X \leq_T R$.

3) 3

Theorem (Kučera–Gács)

For every $X \in \{0,1\}^{\omega}$, there exists a Martin-Löf random R such that

 $X \leq_T R$.

Akhil, Nandakuar, Tiwari (11T Kanpur)

Kučera-Gács Theorem

June 17, 2025

Definition

A function $d: \Sigma^*
ightarrow [0,\infty)$ is called a martingale if for all $w\in \Sigma^*$,

 $d(w0) + d(w1) = 2 \cdot d(w).$

Definition

A function $d: \Sigma^*
ightarrow [0,\infty)$ is called a martingale if for all $w\in \Sigma^*$,

$$d(w0) + d(w1) = 2 \cdot d(w).$$

Definition

A function $d: \Sigma^* \to [0,\infty)$ is c.e or lower-semi computable if there exists a computable $\tilde{d}: \Sigma^* \times \mathbb{N} \to [0,\infty) \cap \mathbb{Q}$ such that

•
$$\forall t \; \tilde{d}(w,t) <= \tilde{d}(w,t+1)$$

•
$$\lim_t \tilde{d}(w,t) = d(w)$$
.

Theorem

A sequence $R \in \Sigma^{\infty}$ is Martin-Löf random iff for the universal c.e martingale $d : \Sigma^* \to [0, \infty)$,

 $\limsup_n (d(R \upharpoonright n)) < \infty.^1$

Theorem

A sequence $R \in \Sigma^{\infty}$ is Martin-Löf random iff for the universal c.e martingale $d : \Sigma^* \to [0, \infty)$,

 $\limsup_n (d(R \upharpoonright n)) < \infty.^1$

⁽¹⁾ lim inf_n($d(R \upharpoonright n)$) < ∞ also works.

[Merkle Mihalovic 2004] Given $X\in\Sigma^\infty$,

표 문 문

[Merkle Mihalovic 2004] Given $X\in\Sigma^{\infty}$,

• Take the *universal* c.e Martingale $d: \Sigma^* \to [0, \infty)$.

3)) J

[Merkle Mihalovic 2004] Given $X\in\Sigma^\infty$,

- Take the *universal* c.e Martingale $d: \Sigma^* \to [0,\infty)$.
- 2 Construct a ML-random sequence R by encoding X.
 - Randomness: Diagonalizing against d.
 - Recoverability: Use bits of X to choose among possibilities for R.

[Merkle Mihalovic 2004] Given $X\in\Sigma^\infty$,

- Take the *universal* c.e Martingale $d: \Sigma^* \to [0,\infty)$.
- Onstruct a ML-random sequence R by encoding X.
 - Randomness: Diagonalizing against d.
 - Recoverability: Use bits of X to choose among possibilities for R.
- Oecode X from R via a computable function.

• Stage i : Extend R_{i-1} to R_i using X[i].

3)) J

- Stage i : Extend R_{i-1} to R_i using X[i].
- Choose an R_i such that

 $d(R_i) \leq d(R_{i-1})(1+\delta_i).$

- Stage i: Extend R_{i-1} to R_i using X[i].
- Choose an R_i such that

$$d(R_i) \leq d(R_{i-1})(1+\delta_i).$$

• Take $\delta_i = i^{-2}$, then $\prod_i (1 + \delta_i) < \infty$.

- Stage i: Extend R_{i-1} to R_i using X[i].
- Choose an R_i such that

$$d(R_i) \leq d(R_{i-1})(1+\delta_i).$$

- Take $\delta_i = i^{-2}$, then $\prod_i (1 + \delta_i) < \infty$.
- $\liminf_n d(R \upharpoonright n) < \infty \implies R \text{ is MLR.}$

Encoding X into R.

- At stage *i*, extend R_{i−1} by enough bits (ℓ_i) so that there are atleast 2 candidates for R_i.
 - ℓ_i can be computed from δ_i .

Encoding X into R.

- At stage *i*, extend R_{i-1} by enough bits (ℓ_i) so that there are atleast 2 candidates for R_i.
 - ℓ_i can be computed from δ_i .
- If $X_i = 0$, pick leftmost feasible R_i .
- If $X_i = 1$, pick the rightmost feasible R_i .

 $d(R_i) < d(R_{i-1})(1+\delta_i).$

→ < Ξ >

2

Decoding X from R.

- At stage i, calculate R_{i-1} and R_i from R.
- Run two processes parallely. Check among $x \in R_{i-1}.\Sigma^{\ell_i}.$
 - Check if forall $x \preccurlyeq R_i$, $d(x) \le d(R_{i-1})(1+\delta_i)$. X[i] = 0.
 - Check if forall $R_i \preccurlyeq x \ d(x) \le d(R_{i-1})(1+\delta_i)$. X[i] = 1.

Theorem (Kučera–Gács)

For every $X \in \{0,1\}^{\omega}$, there exists a Martin-Löf random R such that X is Turing reducible to R, i.e.

 $X \leq_T R.$

Outline

Overview

- 2 Classical Kučera–Gács Theorem
- Quasi-Polynomial Kučera–Gács
 - 4 Kučera–Gács and Dimension
 - 5 Finite-state Kučera-Gács
 - 6 Conclusion

Definition

A function $d:\Sigma^* o [0,\infty)$ is called a martingale iff for all $w\in\Sigma^*$,

$$d(w0) + d(w1) = 2 \cdot d(w).$$

Definition

A function $d: \Sigma^* \to [0,\infty) \cap \mathbb{Q}$ is poly-time computable if there is a turing machine that on input $x \in \Sigma^n$ outputs d(x) in time $O(n^k)$.

Definition

A sequence $R \in \Sigma^{\infty}$ is polytime random iff for all poly-time computable martingale $d: \Sigma^* \to [0, \infty)$,

 $\limsup_n (d(R \upharpoonright n)) < \infty.$

3 🕨 🤅 3

Theorem

For any $X \in \Sigma^{\infty}$, and $t \in \omega(poly)$, there exits a polynomial-time random $R \in \Sigma^{\infty}$ such that $X \leq_{t'(n)} R$, where $t'(n) = O(n \cdot t(n + \sqrt{n} \log n))$.

Moreover, X[1...n] can be computed using $R[1...n + \sqrt{n} \log n]$.

く 戸 ト く ヨ ト く ヨ ト 一

- **1** Take the *universal* poly-time Martingale $d: \Sigma^* \to [0, \infty)$.
- Construct a polytime-random sequence R by ensuring
 - Randomness: Diagonalizing against d.
 - Recoverability: Use bits of X to choose among possibilities for R.

Oecode X from R via a quasi poly-time computable function.
Theorem

For any $t \in \omega(poly)$, there exits a $t(n) \cdot n \cdot \log n$ -time Martingale that is universal over all polynomial-time martingales.

$egin{array}{c c c c c c c c c c c c c c c c c c c $	d_7
--	-------

. . .

э

Image: A matrix

→ < Ξ >

- At stage i, $\ell_i = 2 + 2 \cdot \log i$.
- Encoding *n* bits of *X* requires $\Omega(n \log n)$ bits of *R* !
- Modify: *n* bits of X requires only $n + O(\sqrt{n} \log n)$ bits of R.

э

• At stage *i*, encode next *i* bits of X into R.

Taking δ_i = i⁻², ℓ_i = i + 2 log i.
Only need n + √n log n bits of R to get X[1...n].

Encoding

 $n(w) \leq \#\{x \in \Sigma^{\ell_i - |w|} : d(R_{i-1}.w.x) < d(R_{i-1}) \cdot (1 + i^{-2}).\}$

Encoding

June 17, <u>2025</u>

Image: Image:

▶ ∢ ≣ ▶

Decoding

June 17, 2025

< 17 >

< ≣⇒

Theorem

For any $X \in \Sigma^{\infty}$, and $t \in \omega(poly)$, there exits a polynomial-time random $R \in \Sigma^{\infty}$ such that $X \leq_{t'(n)} R$, where $t'(n) = O(n \cdot t(n + \sqrt{n} \log n))$.

Moreover, X[1...n] can be computed using $R[1...n + \sqrt{n} \log n]$.

く 戸 ト く ヨ ト く ヨ ト 一

Outline

1 Overview

- 2 Classical Kučera–Gács Theorem
- 3 Quasi-Polynomial Kučera–Gács
- 4 Kučera–Gács and Dimension
 - 5 Finite-state Kučera-Gács
 - 6 Conclusion

• Measures Density of Information in an infinite sequence.

Theorem (Lutz, Mayordomo)
For
$$X \in \Sigma^{\infty}$$
,
 $\operatorname{cdim}(X) = \liminf_{n} \frac{K(X \upharpoonright n)}{n}$.

• K(x): Algorithmic Information content in a string.

$$K(x) = \min_{\pi \in \mathcal{P}} \{ U(\pi) = x \}.$$

Akhil, Nandakuar, Tiwari (IIT Kanpur)

Theorem (Doty (2006))

For all $X \in \Sigma^{\infty}$, there exists a Martin-Löf Random $R \in \Sigma^{\infty}$ such that $X \leq_T R$ via M with oracle use u_n such that

$$\operatorname{cdim}(X) = \liminf \frac{u_n}{n}.$$

• Density of Information in an infinite sequence measured using Polynomial-time algorithms.

Definition

For $X \in \Sigma^{\infty}$,

$$\mathcal{K}_{\mathrm{poly}}(X) = \inf_{t \in \mathrm{poly}} \liminf_{n} \frac{K_t(X \upharpoonright n)}{n}.$$

• $K_t(x)$: t-time bounded Algorithmic Information content in a string.

$$\mathcal{K}_t(x) = \min_{\pi \in \mathcal{P}} \{ U^{t(|x|)}(\pi) = x \}.$$

Akhil, Nandakuar, Tiwari (11T Kanpur)

June 17, 2025

Definition

For two sequences $X, Y \in \Sigma^\infty$, we say

$$X \leq_P Y \iff \exists \mathsf{ poly-time T.M s.t } orall n M^Y(1^n) = X \upharpoonright n.$$

Theorem

$$\mathcal{K}_{\text{poly}}(X) = \inf_{\substack{Y \in \Sigma^{\infty} \\ M \in OTM}} \left\{ \liminf \frac{u_n}{n} \mid X \leq_P Y \text{ via } M \right\}.$$

 u_n : Oracle use of Y by M to produce X[1...n].

Poly-time Dimension and Reductions

Akhil, Nandakuar, Tiwari (IIT Kanpur)

Kučera-Gács Theorem

June 17, 2025

표 문 문

$$\mathcal{K}_{\text{poly}}(X) \leq \inf_{\substack{Y \in \Sigma^{\infty} \\ M \in \text{OTM}}} \left\{ \liminf \frac{u_n}{n} \mid X \leq_P Y \text{ via } M \right\}.(*)$$

• *s* > * via

• Machine M(t(n) time), Oracle Y, Indices $\{n_i\}$.

•
$$K_t(X \upharpoonright n_i) \leq |u_n(Y)| \leq sn_i$$
.

표) 표

$$\mathcal{K}_{\text{poly}}(X) \geq \inf_{\substack{Y \in \Sigma^{\infty} \\ M \in \text{OTM}}} \left\{ \liminf \frac{u_n}{n} \mid X \leq_P Y \text{ via } M \right\}.(*)$$

• $s > \mathcal{K}_{poly}$

• For indices $\{n_i\}$, $K_t(X \upharpoonright n_i) < s \cdot n_i$, say via π_i .

• Take
$$n_i = o(n_1 + ... n_{i-1})$$
.

• Attempt 1 :
$$Y = \pi_1 . \pi_2 \ldots \pi_i \ldots$$

3

Kučera–Gács Theorem

→ < ∃ →</p>

• • • • • • • • •

글 🕨 🔺 글 🕨

Ξ.

Theorem

$$\mathcal{K}_{\text{poly}}(X) = \inf_{\substack{Y \in \Sigma^{\infty} \\ M \in OTM}} \left\{ \liminf \frac{u_n}{n} \mid X \leq_P Y \text{ via } M \right\}.$$

 u_n : Oracle use of Y by M to produce X[1...n].

Putting things together

Akhil, Nandakuar, Tiwari (IIT Kanpur)

June 17, 2025

→

Image: A matrix

Theorem

For all $X \in \Sigma^{\infty}$, there exists a Polynomial-time Random $R \in \Sigma^{\infty}$ such that $X \leq_{t(n)} R$ via M with oracle use u_n such that

$$\mathcal{K}_{\mathrm{poly}}(X) = \liminf \frac{u_n}{n}.$$

where $t(n) = (n \cdot t'(n + \sqrt{n} \log n))$ and $t'(n) \in \omega(poly)$.

Outline

1 Overview

- 2 Classical Kučera–Gács Theorem
- 3 Quasi-Polynomial Kučera–Gács
- 4 Kučera–Gács and Dimension
- 5 Finite-state Kučera-Gács

6 Conclusion

• Finite-State Randoms and Finite-State Reductions.

Theorem (Schnorr, Stimm 1972)

For any sequence $X\in\Sigma^\infty$

X is Finite-State Random $\iff X$ is Normal

Akhil, Nandakuar, Tiwari (IIT Kanpur)

• Finite-State Randoms and Finite-State Reductions.

Theorem

There exists an $X \in \Sigma^{\infty}$ such that for all Normal $N \in \Sigma^{\infty}$ and finite state reductions $T : \Sigma^{\infty} \to \Sigma^{\infty}$,

 $T(N) \neq X.$

A (10) A (10)

• If $N \in \Sigma^{\infty}$ is normal, N induces a stationary distribution on the transitions of G.

Theorem (Schnorr, Stimm)

For any normal $N \in \Sigma^{\infty}$ and finite state transducer $G = (Q, \Sigma, q_0, \delta, \tau)$, there exists a probaility distribution $P : Q \times \Sigma \rightarrow [0, 1]$ such that

$$\lim_{n} \frac{\#((q,a),X \upharpoonright n)}{n} = P(q,a)$$

Proof overview

Image: A matrix

< ≣⇒

Therefore P(0) and P(1) in T(X) must converge !

B → B

• Consider any $X \in \{0,1\}^\infty$ such that P(0) and P(1) in X does not converge.

Theorem

There **does not** exist a Normal $N \in \Sigma^{\infty}$ and finite state reduction $T : \Sigma^{\infty} \to \Sigma^{\infty}$ such that

$$T(N) = X.$$

< A > <

Outline

1 Overview

- 2 Classical Kučera–Gács Theorem
- 3 Quasi-Polynomial Kučera–Gács
- 4 Kučera–Gács and Dimension
- 5 Finite-state Kučera-Gács

- Kučera–Gács : For every sequence, there is a random sequence from which it is constructively recoverable.
- (Quasi) Polynomial-time analogue of Kučera–Gács.
 - Using $\sqrt{n} \log n$ extra bits.
- \mathcal{K}_{poly} dimension can be characterised using poly-time reductions.
 - Quasi poly-time reductions from poly-time randoms.
- Finite-state analogue of Kučera–Gács does not hold.

- Can we get an actual polynomial-time Kucera Gacs theorem ?
- Can we characterize $\mathcal{K}_{\mathrm{poly}}^{\textit{str}}$ using poly-time reductions ?

- Merkle, Wolfgang, and Nenad Mihailović. "On the construction of effectively random sets." The Journal of Symbolic Logic 69.3 (2004): 862-878.
- Doty, David. "Dimension extractors and optimal decompression." Theory of Computing Systems 43.3 (2008): 425-463.
- Schnorr, Claus-Peter, and Hermann Stimm. "Endliche automaten und zufallsfolgen." Acta Informatica 1 (1972): 345-359.