
ACM Asia Regional (Kanpur Site) Programming Contest

December 13, 2012

Instructions

 There are Eleven (11) problems for each team to be completed in Five hours. Standard Input and
Output files are to be used for each problem. If you test your program using PC2, it will automatically redirect input
from the sample input file to your program. Output must correspond exactly to the provided sample output format,
including (mis)spelling and spacing. Multiple spaces will not be used in any of the judges’ output, except where
explicitly stated. A copy of the problem set will be available at /users/acm/sw/problems.pdf, during the contest.
Sample input and corresponding output files for respective problems can be seen in the directories
/users/acm/sw/inputs and /users/acm/sw/outputs respectively, during the contest.
 Your solution to any problem should be submitted for judging using the PC2 software only. Once you have
submitted the solution, it will reach the judges. The time it takes for your problem to be judged will depend, among
other things, on how busy the judges are. Once your submission has been judged, you will receive a message
through PC2 indicating the judgment. The judgment may be "Yes", meaning that your submission was judged to
be correct. Otherwise you will get a message indicating the problem with your program. For example, the
message may be "Incorrect Output", "Output Format Error", "Compilation Error", "Runtime Error", "Run Time Limit
Exceeded" etc.
 When submitting a program via PC2, you are required to specify a primary source file and other source
files (please see PC2 documentation for details). If you are writing your programs in C or C++, please make sure
that you have one primary source file from which all other source files are INCLUDED. Do not have several source
files that need to be linked together. This main file in which all other files are included would be the primary
source file for the program. If you are writing your programs in Java, please make sure that the name of the file
containing the main class is the same as the name of the main class with a .JAVA suffix. This is your primary
source file for the program.
 You can use any of the standard library functions that your chosen program programming language
provides. In addition, you can use the math library in C/C++. You cannot use any other library that requires an
extra flag to be passed to the compiler command. If you do this, the judges will probably find a code "compilation
error" in your program. Your program is not permitted to invoke any external programs. For example, you cannot
use in C the call system ("grep xyz abc") to determine whether the file abc contains an occurrence of the string
xyz. Violation of this rule may lead to disqualification from the contest.
 Programming style is not considered in this contest. You are free to code in whatever style you prefer.
Documentation is not required. The judges will only test whether the input-output behavior of your program is
correct or not. If your program takes more than 2 minutes to execute for some input, it will be assumed to have
gone into an infinite loop and judged incorrect. A problem is considered as correctly solved when it is accepted by
the judges. The judges are solely responsible for accepting or rejecting submitted runs. The regional contest
director and judges are empowered to adjust for or adjudicate unforeseen events and conditions. Their decisions
are final.
 Teams are ranked according to the most problems solved. Teams who solve the same number of
problems are ranked by least total time. The total time is the sum of the time consumed for each problem solved.
The time consumed for a solved problem is the time elapsed from the beginning of the contest to the submittal of
the accepted run plus 20 penalty minutes for every rejected run for that problem regardless of submittal time.
There is no time consumed for a problem that is not solved.
 No team is allowed to bring any printed materials in the contest area. Further, the team is not allowed to
discuss/ talk with any other team by any means whatsoever, during the contest period. Any such attempt, if it is
detected, may lead to immediate disqualification of all the teams involved.

PROBLEM A

DATA COMPRESSION

Input file: stdin
Output file: stdout

A picture may be worth a thousand words, but on the internet, sending a thousand

words cost you less than sending a picture. It is better still, to send a compressed text.

So, Thrifty Mailer decides to save even more with data compression, using the Move-To-

Front Transform, described as follows.

Let the text consist of 26 letters of the alphabet and the “space” symbol (denoted here

by „_‟). The alphabet is first listed in the canonical order abcdefghijklmnopqrstuvwxyz_.

Let us denote this with O. Suppose we want to send a text w[0]w[1]…w[n-1]. Instead of

sending the text, we send a string of numbers described as follows.

The first number is the index of the letter w[0] in the initial alphabet array. We then

change O by bringing that letter forward. For example, if the first letter is „c‟, the index is

2, and the new alphabet array O is cabdefghijklmnopqrstuvwxyz_.

We then repeat the process for the substring starting with w[1], until there are no more

strings to send. Thus the compressed version of “cat” is “2,1,19”. Compression occurs

when the more frequently used letters are towards the beginning, leading to a string of

very small numbers.

Thrifty Mailer implements this algorithm – being what he is, he decides to save on the

comma separators. So he would want to send “2119” for cat. This is obviously

ambiguous, since it can be parsed into “2,11,9” and “21,1,9” as well. So in addition,

Thrifty Mailer will send 2 additional pieces of information – how many letters there are,

and what the final letter of the compressed string is.

So Thrifty Mailer sends cat as follows “2119 3 t”.

Unfortunately, the scheme is still ambiguous. Could you help him to write a program

which decompresses the string and gives back the input if there is one such unique

string, and tells “AMBIGUOUS” when there are multiple such strings, and “ERROR” when

the given encoding is invalid and cannot be the compression of any piece of text?

Input

There are several lines of input. The first line is a number “n” specifying how many

compressed inputs are given. This is followed by n lines, each as follows. There is a

string of numbers specifying the compressed indices, followed by a space, followed by a

number specifying the number of characters in the input, followed by a space, finally

with a single character specifying the last letter in the input. The initial string will contain

at most a million characters.

Output

The output consists of several lines, one for each input. If the input is valid, the line

should be the decompressed input (note that this is in small letters). If the input is

ambiguous, then the program should print AMBIGUOUS on that line (in capitals). If the

input line contains invalid compressed string, then the program should print ERROR (in

capitals).

Sample Input

4

0 1 b

0 1 a

121 2 a

1111 3 l

Sample Output

ERROR

a

ma

AMBIGUOUS

PROBLEM B

CONSTELLATIONS

Input file: stdin
Output file: stdout

Stars appear in clusters of various shapes. A cluster is a non-empty group of neighboring
stars, adjacent in horizontal, vertical or diagonal direction. A cluster cannot be a part of

a larger cluster.

Clusters may be similar. Two clusters are similar if they have the same shape and
number of stars, irrespective of their orientation. In general, the number of possible
orientations for a cluster is eight, as Figure below exemplifies.

The night sky is represented by a sky map, which is a two-dimensional matrix of 0's and

1's. A cell contains the digit 1 if it has a star, and the digit 0 otherwise.

Given a sky map, mark all the clusters with lower case letters of the English alphabet.

Similar clusters must be marked with the same letter; non-similar clusters must be
marked with different letters.

You mark a cluster with a lower case letter by replacing every 1 in the cluster by that
lower case letter.

Input

The first two lines of the input contain, respectively, the width W and the height H of a

sky map. Assume that the sky is not more than 100 cells wide or high. The number of
clusters is at most 500 and the number of dissimilar clusters is at most 26.

The sky map is given in the following H lines, of W characters each.

Output

Print the modified skymap with 1s replaced by the letters representing the cluster
to which a star belongs. It is depicted in the following figure for illustration

purpose only. Similar clusters must be labeled with the same letter. Dissimilar
clusters should be labeled with different letters.

Sample Input

23

15

10001000000000010000000

01111100011111000101101

01000000010001000111111

00000000010101000101111

00000111010001000000000

00001001011111000000000

10000001000000000000000

00101000000111110010000

00001000000100010011111

00000001110101010100010

00000100110100010000000

00010001110111110000000

00100001110000000100000

00001000100001000100101

00000001110001000111000

Sample Output

a000a0000000000b0000000

0aaaaa000ccccc000d0dd0d

0a0000000c000c000dddddd

000000000c0b0c000d0dddd

00000eee0c000c000000000

0000e00e0ccccc000000000

b000000e000000000000000

00b0f000000ccccc00a0000

0000f000000c000c00aaaaa

0000000ddd0c0b0c0a000a0

00000b00dd0c000c0000000

000g000ddd0ccccc0000000

00g0000ddd0000000e00000

0000b000d0000f000e00e0b

0000000ddd000f000eee000

 Input visualization Output visualization

PROBLEM C

CROSSTALK

Input file: stdin
Output file: stdout

Morse code is a way of communicating text encoding symbols using dots (.) and dashes (-).

The International Morse Code (IMC) design was done keeping in mind certain statistical
properties of English – for example, since E is the most frequently occurring English letter, it

is assigned a short code (.). The IMC, in turn, leads to some famous phrases – an example is

…---…, which is S(...)O(---)S(…).

For this question, we fix the language of dots and dashes, not necessarily the IMC. Often, in
emergency communications, the same message will be repeated to ensure with high degree
of confidence, that the message gets through to the receiver. Let x be a nonempty string of

symbols. Let xk to denote k copies of x concatenated together. We say that a string x' is a

repetition of x if it is a prefix of xk for some number k. ex: x'=-.--.--.--.--.--. is a repetition

of x=-.-.

In long-distance communication, there is a small chance of “cross-talk” – when two
messages get mixed with each other. We say that a string s is an interleaving of x and y if its
symbols can be partitioned into two (not necessarily contiguous) nonempty subsequences s'

and s'', such that s' is a repetition of x and s'' is a repetition y. (Each symbol in s must
belong to exactly one of s' or s'').

You have to tell YES if s is an interleaving of x and y else NO.

Input

First line contains number of test cases T. For each test cases , there are 3 lines s,x,y. The
strings contain at most ten thousand characters.

Output

For each test cases output should be YES if s is an interleaving of x and y else NO in a

newline.

Sample Input

1

-...-.-.-

-.-

..

Sample Output

YES

PROBLEM D

A HEXAGONAL COMPLEX

Input file: stdin
Output file: stdout

A recent storm has felled several cell phone towers in Hexagonville.

Aid and relief workers have set up a rudimentary network to communicate with each

other and the outside world. Their simple idea is to station a volunteer near that location

of the city with maximum number of towers still remaining. The remaining volunteers

would communicate with X via handsets. X would then use the mobile network available

from his site.

The distance between any two hexagons I and J in the network is the minimum number

of hexagons to be traversed from I to reach J. (In particular, the distance from any cell

to itself is 0.) Since the towers are not entirely reliable, the engineer has decided to

position himself at that hexagon which is closest to the maximum number of active cells.

In case there are multiple possible cells, the engineer always positions himself at the

south-westernmost such cell.

For this question, you are given a list of active hexagons in a hexagonal grid. The grid

consists of a number of hexagons numbered as follows. The southernmost row of

hexagonal grids has row 0, and row numbers increase northwards. The westernmost

column of hexagons has column number 0, and column numbers increase eastwards.

(See the following figure). Note that even-numbered rows contain only even numbered

columns and odd-numbered rows contain only odd-numbered columns.

Input

The input consists of several lines. The first line contains a number N indicating the

number of grids to solve for. This is followed by N sets of inputs.

The first line of each set specifies the distance that the volunteer can walk. The distance

will be at most 2147483647. The second line of each set says how many active hexagons

there are in the network, say Mi. This is followed by Mi lines, each containing two

numbers (each less than 2147483647) separated by a space indicating the row and the

column number of the active hexagonal grid. There are at most ten thousand active

hexagons in any grid.

Output

The output consists of N lines. Corresponding to each set of inputs, there is a line which

specifies two numbers separated by a space – this indicates the hexagon that the

volunteer should be at to be closest to the maximum number of active towers, within his

walking distance.

Sample Input

2

1

3

0 0

2 0

2 2
3

8

2 0

2 2

2 4

6 2

8 0

10 6

11 1

13 3

Sample Output

1 1

10 4

PROBLEM E

THE PAIN OF DIMENSIONALITY

Input file: stdin
Output file: stdout

You are given a chain consisting of N (N can be represented with an int) links, joined

end-to-end in a straight line. The lengths of the links are 1,2,…, N in sequence - The link

with length 1 is connected to the link with length 2, the chain with length 2 is connected

to the links with length 1 and 3, and so on.

The connection between the links allows movement in any direction. The goal of this

problem is to see whether various polytopes can be constructed using the given chain.

For this problem, you are interested in polytopes with the following constraint. You are

given a number K, K ≤ N. The object you have to construct must be such that any K

adjacent edges must be orthogonal to each other (Note that this is possible only if you

have at least K dimensions).

Your task is very simple. Given such an N and K, you have to determine whether a chain

with link lengths 1,2, …, N, can be used to construct a polyhedron with any K adjacent

sides being mutually orthogonal.

Input

The input consists of several lines. The first line M specifies the number of inputs there

are. This is followed by M lines, each formatted as follows.

Each line has two positive numbers N and K, separated by spaces. N is always at least K.

(N can be represented with an int.)

Output

The output consists of M lines, one for each input. For each input, the corresponding

output line should print YES if it is possible to construct a polyhedron satisfying the

condition, and NO otherwise.

Sample Input

2

3 2

8 2

Sample Output
NO

YES

PROBLEM F

SUCCINCT RANDOMNESS

Input file: stdin
Output file: stdout

At a small party, Professor Dicius is in charge of randomly allotting guests to one of

2N (N is at most 20) tables. The professor‟s favourite randomness-generating-device is the

die. But he absent-mindedly happened to wear the wrong coat today and all his dice are

at home. None of the guests carry dice about them. Dicius was almost resigned to the

idea of throwing a coin for N times for each guest, and assigning the table according to

the outcomes. This of course would be an intolerably long procedure and would spoil the

party.

Dicius instead decides on the following “pseudo-random” scheme. He would write down a

bit string of length 2N which contains all N-long string exactly once, if you look for strings

in a sliding fashion, with wraparound. For example, the string 0110 contains the strings

01, 11, 10, and 00, from left-to-right, the last pattern being produced by looking for

a 2-long string by wrapping around the pattern. Such a string is called a succinct random

string. Thus, the first guest would be seated to table 1, the second to table 3, the third

to table 2, and the fourth to table 0.

After the first 2N guests are seated according to this scheme, Dicius would repeat the

procedure, hoping that the guests are too distracted to notice the periodicity. Dicius

assures you that the procedure is random enough, and there are such strings for every

such length 2N.

Your task as Dicius‟ helper is very simple. Given a 2N-long binary string, you have to

determine whether every table will have guests assigned to it. If the given string does

not have this property, you have to indicate that the string is invalid.

Input

The input consists of several lines. The first line is a number M which specifies how many

inputs are present. This is followed by M lines, each consisting of a single binary string,

at most 220 characters long.

Output

The output consists of M lines, one for each input string. If the corresponding input string

is a succinct random string, then you should output VALID. Otherwise, you should output

INVALID. (both in uppercase)

Sample Input

3

0110

0011

01100

Sample Output

VALID

VALID

INVALID

PROBLEM G

IT‟S A JUNGLE OUT THERE

Input file: stdin

Output file: stdout

The big forest of Aranya occupies a vast expanse, filled with wild animals. The forest is

represented by an NxM matrix. Each cell in the forest is marked either empty, or
occupied by a lion, or occupied by a tiger. You are in charge of estimating the tiger

population in the jungle.

Tigers, as you may be aware of, jealously guard their territory. If a tiger occupies A[i][j],

then no tiger may occupy any of the cells A[i-2][j-2], A[i-2][j+2], A[i+2][j-2] or
A[i+2][j+2], with one exception to this rule – if there is a lion in the cell A[i-1][j-1], A[i-

1][j+1], A[i+1][j-1] or A[i+1][j+1], then a tiger can occupy A[i-2][j-2], A[i-2][j+2],
A[i+2][j-2], or A[i+2][j+2], respectively.

The exact positions of lions in the jungle are known. By sampling, you know some of the
positions of the tigers in the jungle. You have to estimate the maximum number of tigers

in all the unsurveyed parts of the jungle, given this information. You can assume that
the given configuration conforms to the constraints of tiger habitat.

Input

The input consists of several lines. First line contains number of test cases N. For each test

cases there are two integers N and M, specifying the size of the array NxM. N and M are at
most thousand. Next, there are N lines with M characters each (with no separation). A
character T indicates the presence of a tiger, character L indicates the presence of a lion and

E indicates that the cell is empty.

Output

For each test cases there is a line specifying the maximum number of tigers that can live in
the empty cells. (Note that the tigers which are known should not be counted.)

Sample Input

2

3 3

TET

TLE

EEE

4 3

ETT

TLE

EEE

EEE

Sample Output

5

6

PROBLEM H

A JOYOUS BANQUET

Input file: stdin
Output file: stdout

Wedding bells are ringing in the house. The date, venue and the time of the

wedding, and the subsequent feast, have all been decided. Now it is time for the

most time-consuming tasks of all, that of inviting the friends and relatives for the

wedding and the feast.

Now, here‟s the problem – you know that certain families that you plan to invite,

do not get along with each other. A family has at most 4 members, and at least

one member. Two families I and J are incompatible, if at least one member of I

and one member of J are uncomfortable if their respective families sit next to

each other, either in the wedding or at the feast. The wedding hall, fortunately

has enough seats that this does not pose a problem.

The banquet hall has a limited seating capacity, ad you may have to serve

several rounds to serve all the guests. You do not want incompatible families to

be seated next to each other on the banquet table (the table is a long table,

guests sit only one one side, and the table is not circular). To reduce expenditure

in hiring the hall, you want to serve as few rounds as you can, while maintaining

that only compatible families are seated next to each other. A family appears

only as a whole. Also, they may be seated in multiple rounds. It goes without

saying, of course, that every family has to be served.

Input

The input consists of several lines. The first line specifies the number N of sets of

inputs. This is followed by N sets of inputs, each of the following format:

The first line in each set specifies the number M (≤ 50) of the families. This is

followed by M lines of inputs describing the M families. Each line consists of

several numbers separated by spaces. The first number specifies the number of

members F in the family. This is followed by F numbers, specifying the family

members. This is followed by a number C describing the number of persons that

some member in the family dislikes. Subsequently, there are C numbers

specifying the guests disliked by some family member. No family is incompatible

with itself. Also, if a family I is incompatible with J, then J is incompatible with I

as well.

Output

The output consists of N lines, one line for each set of inputs. For each set of

inputs, you should output the minimum number of rounds of banquet rounds

required.

Sample Input

2

5

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

6

2 1 2 4 20 30 40 50

2 10 11 2 21 52

2 20 21 4 1 11 40 51

2 30 31 3 1 41 51

2 40 41 3 1 20 30

3 50 51 52 4 1 10 20 30

Sample Output

1

2

PROBLEM I

ROBBER‟S COVE

Input file: stdin
Output file: stdout

The seacoast of Spelunksgard is flanked by a rugged mountain range with an

extensive network of caves. For centuries, robbers have hidden treasure and

themselves in these caves to elude the hands of the law. The caves have been

extensively surveyed in modern times, and their structure has been well-

understood.

There are two kinds of caves in the cave complex. A cavern is one where a

person can hide loot, or stay. A tunnel is a narrow passageway between two

caverns. The cave complex consists of tunnels and caverns. Due to the nature of

the rocks in the hill, no cavern is situated directly above another cavern, although

many tunnels are stacked on top of each other. Air shafts have been constructed

in modern times, from each cavern, all the way up to the face of the hill. The

cave also has a surveillance mechanism that has recently been set up, whereby

every cavern and tunnel can be watched from the outside by the police.

On this occasion, policemen have determined that an armed robber (without

loot), is hiding in the complex. A policeman takes a finite (nonzero) amount of

time to move from one cavern to another. Since nothing much is known about

the robber, the police are assuming that the robber can move from any cavern to

another along a path (consisting of caverns and tunnels connecting caverns), to

any other cavern with infinite speed. However, the robber cannot move through a

cavern with a police officer in it.

The police officers can track the robber‟s movements. They want to capture the

robber – that is, occupy the same cavern as the robber. If a policeman directly

enters the cavern with the robber in it, the robber may hear the policeman

entering through the airshaft and may escape to another cavern if there is an

escape route available. You have to determine the minimum number of

policemen that will ensure capture of the robber.

Input

The input consists of several lines. The first line specifies N, the number of

distinct cave complexes to solve for. This is followed by N sets of inputs of the

following form:

The first line contains a number M (≤ 500) specifying the number of tunnels in the

cave complex. This is followed by M lines each containing two numbers I and J

(each ≤ 30), separated by a space. This denotes two caverns I and J connected

by a tunnel.

Output

The output should contain N lines, one for each cave complex. The output for a

given cave complex is the minimum number of police officers needed to trap a

robber.

Sample Input
1

6

0 1

1 2

2 3

0 3

1 3

0 2

Sample Output
4

PROBLEM J.

A CHANGE IN CHANGE

Input file: stdin
Output file: stdout

Coin mintage is a venerable field with many nice puzzles. Every government wants to

mint a very small number of denominations, with the constraint that every integer must

be expressible using one or more coins of available denominations. The problem is trivial

if 1 is one of the available denominations.

The republic of Bubblistan has got itself into a bind with its innovative financial policy.

Large inflation has led to a situation where the metal to mint 1 saipa (the currency of

Bubblistan) costs more than the value it represents. The government has to withdraw

from minting any more 1 saipa coins.

Bubblistan has decided on a small number of new denominations to mint. However the

government is now worried that there may be some values which cannot be represented

by the new set of denominations.

In this question, you are given a set of denominations that have been chosen fort

minting. You have to compute what the largest amount of currency that cannot be

expressed using this set of denominations, is. If no upper bound exists on inexpressible

amounts, you have to output INFINITY.

Input

The input consists of several lines. The first line specifies N, the number of sets of

denominations. This is followed by N lines of input, of the following form:

An input line consists of a sequence of numbers separated by a single space. The first

number M (≤ 10) specifies how many denominations are there in the currency system.

This is followed by M numbers which represent the available denominations. (Each

denomination can be represented with an int.)

Output

The output consists of several lines. For each of the N input sets, you have to output the

maximum value that cannot be expressed using the coins of the denominations in the

input. If there is no upper bound on the set of expressible values, then you should print

INFINITY.

Sample Input

3

1 2

2 2 3

3 6 10 15

Sample Output

INFINITY

1

29

PROBLEM K

CROSSWORD

Input file: stdin
Output file: stdout

Acme Courant Management, who runs the town paper, is in dire straits. Circulation is

down, and it is wondering how to draw a reluctant audience into subscribing to the
paper. Being a university town, there are a lot of people who like puzzles, and good
puzzles attract good readership. Of course, there is a Sudoku generating algorithm that

the paper has added which does a very good job of classifying puzzles generated into
easy, medium and hard. Could, however, more puzzles be automatically generated?

An editor gets the bright idea that the newspaper could generate crosswords by a

program. This is a considerably different cup of tea, however, since as any crossword

aficionado knows, good crosswords have very good “cryptic” clues. The editor, however,

hits upon a fair enough first pass. Here‟s his scheme of automated crosswords.

You are given a dictionary of synonyms – each entry in the dictionary is a list of words,

all of which have the same meaning. There are several such entries in the dictionary.

Unlike actual English, each word has a unique meaning, so it appears in at most one of

these lists.

Each crossword clue consists of an anagram (rearrangement of the letters) of some

word in the dictionary. The solution to the clue is a synonym of the anagram. There

may be multiple solutions to a given clue, but the entire crossword is guaranteed to have

a unique solution.

Clues are of two kinds – across clues, and down clues. The solutions to the across clues

are filled in from left-to-right on the crossword grid, and the solutions to the down clues

are filled in from top-to-right on a crossword grid.

The clues are numbered from 1 to 10 across and 1 to 10 down. (Not all numbers may be

present, since the number of clues depends on the crossword grid.)

You have to outdo the editor by writing a program that can automatically solve any

crossword generated by the editor‟s ingenious mechanism. The constraint to be satisfied

is that when an across clue and a down clue share solution cells, then the letters in the

across solution and the down solution should agree on those cells. The crossword is

guaranteed to have a unique solution.

Input

The input consists of several lines.

The first line is a number, say N describing how many lists (of synonyms) are present in

the dictionary.

(The dictionary) This is followed by N lines, each consisting of several strings separated

by a whitespace. A string is a contiguous, non-empty sequence of lowercase English

letters.

(The crossword clues) This is immediately followed by a line with 2 numbers I & J,

separated by a space, denoting the number of Across clues and Down clues. I and J are

at most 100.

The next I lines provide the across clues. The subsequent J lines provide the down clues.

Each clue is formatted as follows.

Each clue is a number, followed by a space, followed by a clue word.

(The crossword grid) This is followed by an integer B specifying the size of the crossword

grid. This is followed by a BxB matrix of integers. B is at most 100.

A -1 in any cell in the matrix indicates a dark cell in the crossword where no letter of the

solution can appear. (See the following figure for illustration)

A contiguous subrow of non-negative numbers starting with a positive number r

indicates the space where the solution to the rth across clue is to be filled in. In a row, a

0 indicates that the cell is not the start of either an across or a down clue. A positive

number in any cell in the subrow except the starting cell indicates the beginning of a

down clue from that cell.

A contiguous subcolumn of non-negative numbers with number c indicates the space

where the solution to the cth down clue is to be filled in.

Output

The output should consist of I+J lines. The first I lines are the solutions to the across

clues, in the order of specification of the across clues. The next J lines are the solutions

to the down clues, again in the order of specification of the down clues.

Sample Input

4

BLUE AZURE

UMBREA SHADOW SHADE ECLIPSE

RED MAROON

DARK BLACK NOIR

2 2

1 ZAURE

2 DER

1 CIPEELS

2 BLACK

8

 1 0 1 0 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1

-1 -1 2 0 2 -1 -1 -1

-1 -1 0 -1 0 -1 -1 -1

-1 -1 -1 -1 0 -1 -1 -1

-1 -1 -1 -1 0 -1 -1 -1

Sample Output

BLUE

RED

UMBRA

DARK

1

 B

 L

1

 U

 E

 M

 B

 2

 R

 E

2

 D

 A

 A

 R

 K

 Crossword Visualization

