
Problem A : Arrangement

Given a 3 x 4 grid of distinct letters. The letters in the grid are rearranged so that no letter remains
in the same row or in the same column. In addition it is known that, in the new arrangement, certain given
sets of letters appear in the same row or in the same column. You are required to write a program to
determine the new arrangement of letters in the grid, assuming that there exists such a unique
arrangement.

As an illustration, consider the arrangement given on the left. Assume that after rearrangement of
letters no letter remains in the same row or in the same column. In addition, assume that letters in each
string of letters: LAJ, KIG, HDB, ACJ and EIG appear in the same row while the pair of letters appearing
in each string: KL, AH, ID, GB, JD and LF appears in the same column. On the basis of this information
the program should find the new arrangement shown on the right.

Input
The input may contain multiple test cases.
Each test case contains three lines.
The first line gives a sequence of three strings of distinct letters, each of length four. The j

th
letter

in the i
th

 string (i=1, 2, 3; j=1, 2, 3, 4) represents the letter in j
th

 column and i
th

 row of the grid. The second
line gives a sequence of strings of distinct letters, each of length three. The letters in each string appear
in the same row, after rearrangement. The third line gives a sequence of strings of distinct letters, each of
length two. The letters in each string appear in the same column, after rearrangement.

A blank character separates two consecutive strings in a line.
The input terminates with an input line containing 0 for a test case.

Output
For each test case, print in one line, a sequence of three strings of distinct letters, each of length

four. The j
th

 letter in the i
th

 string (i=1, 2, 3; j=1, 2, 3, 4) represents the letter in j
th

 column and i
th

row of the
grid after rearrangement.

Use a blank character to separates two consecutive strings in a line.

Sample Input (A.in)
ABCD EFGH IJKL
LAJ KIG HDB ACJ EIG
KL AH ID GB JD LF
0

Sample Output (A.out)
KEIG LAJC FHDB

Problem B : Walker

Mr. Walker is a person who is known for his ability to walk fast. He accepts an attractive offer to
get as much free land as he can cover by a walk on an open uneven huge piece of land within a specified
time and following certain conditions.

A walk is a sequence of paths, starting at a marked spot on the land and ending at the same spot
where the walk starts. The first path in a walk begins at the marked spot and extends in one of the four
directions: North (N), South (S), East (E) or West (W). It ends at the point where the direction changes.

Each of the other paths in a walk begins at the point where the previous path ends and ends
either at a point where the direction changes or when the walk ends. Mr. Walker may change directions,
as and when he feels like, depending on the constraint of time and/or quality/quantity of the land he
decides to get. When he changes a direction he must keep the direction always to one of the four
directions N, S, E or W. Paths are distinct and nonintersecting; for example, a path in E or W direction
cannot cross another in N or S direction.

Given a walk, you are required to write a program that finds the area of land covered by the walk.

Input

The input consists of multiple test cases.
For each test case there is only one input line. The line gives a walk defined by a sequence of

paths. A direction followed, without any space, by a distance represents a path. A direction is denoted by
one of the four letters N, S, E or W while a distance is measured in meters and is denoted by an integer.
A space character appears between two paths in the given sequence.

The input terminates when a line containing 0 appears as a test case.

Output
For each test case print the area of land covered by the given walk.

Sample Input (B.in)
N3 W4 S8 E4 N5
W6 N2 E9 S6 W3 N4
W6 N2 W3 S4 W5 S4 E14 N6
0

Sample Output (B.out)
32
30
80

Problem C : Delete

Delete the least number of integers from a given set of integers so that the product of the
remaining integers in the set is a perfect square. In case there is more than one solution then find the
solution that gives the largest perfect square. Assume that each integer contains five or less number of
digits. The total number of integers in the given set is twenty or less. You are required to write a program
for a problem as simple as this.

Input

The input may contain multiple test cases.
For each test case there is a single input line. The line contains the given set of integers. The

input terminates with a line containing 0 as input.

Output

For each test case there is only one output line. The line simply prints the integers to be deleted
in ascending order. There are two special cases; print output for these cases as indicated below.

Case 1: No integer is to be deleted: Print 0 as output.
Case 2: All integers are to be deleted: Print all integers in ascending order.

Sample Input (C.in)
2 3 12 18 24
12 10 15 18
4 12 10 15
10 12 15
0

Sample Output (C.out)
24
0
10 12 15
10 12 15

Problem D : Maximum Score

Professor Anupam Shukla is fond of playing with matrix. One day in his class he has defined a
matrix which is filled up with scores but these scores can be positive, negative or zero. Professor Shukla
has called the position of an element in a matrix by cell. Every cell is connected to its right, left, top and
bottom only if the corresponding cell exists. Score of a connected component is the sum of scores in the
cells of the connected component.

Professor Shukla has asked his students to write a program to find a connected component of
cells from the matrix that has the highest aggregate score. If there are two or more connected
components with the same maximal score, return the one with the largest size, i.e., the one with the
largest number of cells.

Input

The input may contain multiple test cases.
First line of the input of the program will be the dimensions of the matrix and the scores are given

on the next line onwards.

Output

The output should be the total score followed by the matrix showing the cells in the connected
component. Other cells should be represented by 'x'.

Sample Input (D.in)
 3 4
-1 4 -6 7
 3 2 -9 -9
-3 0 -5 4

Sample Output (D.out)
10
X 4 -6 7
3 2 X X
X 0 X X

Problem E : Numerology

Suppose there are some groups of friends who all believe fervently in numerology. They decide
to choose the best group among them by aligning the vowels of their names. In order to account for
mismatches in the number of vowels, a special symbol '-' is introduced that can augment the total number
of vowels to make them the same. A symmetric matrix of size 6x6 is conceived to encode the scores of
matching each vowel plus the gap to every other vowel and the gap. Even though the scores can be
positive and negative, certain constraints apply.

For example, the score of a vowel with itself is positive, while that of a gap with any character
(including another gap) is negative. When aligning their names, the column-wise scores are accumulated.
For each column, the score is the cumulative of the pair-wise scores. For example, if the alignment of
vowels of three names AEI, AO and EU is
AEI
A-O
EU
then the score for the first column is score(A,A) + score(A,-) + score(-,A), while that of the second and
third columns are score(E,-) + score(-,E) + score(E,E) and score(I,O) + score(O,U) + score(U,I)
respectively. The total score is the sum of the scores of the three columns.

Write an algorithm to compute the maximum possible score of a group of friends. Assume that
there are 3 to 5 friends in a group.

Input

The input may contain multiple test cases.
The first line contains the information about the number of friends in the group. If the number is n,

then the next n lines contain the names of these n friends. Next six lines provide the 6x6 score matrix
ordered according to A, E, I, O, U,-. For example, score (I, O) is the value in the 3

rd
 column of the 4

th
 row.

The input terminates with a line containing 0 as input.

Output
Output the maximum total score followed by the corresponding alignments.

Sample Input (E.in)
3
SATTEKI DRY
ANMOL WRY
SEMI FRY
+3 +1 +1 -1 -2 -4
+1 +5 +2 -3 -3 -4
+1 +2 +3 +0 -1 -4
-1 -3 +0 +3 +2 -4
-2 -3 -1 +2 +4 -4
-4 -4 -4 -4 -4 -4
0
Sample Output (E.out)
-2
AEI
-AO
-EI

Problem F : Tree
Assume, in a forest there are n trees and ith

 tree is at position i, for i =1 ...n. These trees are
having different heights. Let us assume that the tree i is having nonnegative heights hi feet. One day the
forester has decided to trim the heights or uproot the trees to arrange the rooted trees with respect to
their heights. That is, at the end of the operation, rooted trees satisfy the property of hi < hj for i < j. Note
that if one uproots a tree, then it cannot be placed back in any place and hence it is no longer in the
forest.

The problem is to determine is the minimum cutting of wood required to make sure that all
remaining trees satisfy the height property.

Input

The input may contain multiple test cases.
Each test case contains a sequence of n integers to indicate the heights of n trees in the forest.

The ith
 integer indicates the height of the ith

 tree.

Output

For each test case, output is the total length of the wood cut. It is followed by a line which tells the
amount of cut from each tree, i.e., ith

 element in the line tells the amount of cut in the ith
 tree. Next line

contains the information about the final height of each tree which means that ith
 element in that line tells

the current height of the ith
 tree. If a tree is uprooted, then mark its final height as 'x'.

Sample Input (F.in)
2 5 1 2 7

Sample Output (F.out)
3
0 0 1 2 0
2 5 x x 7

Problem G : Badness

Assume that there are n vectors each of size 2k. Number the dimensions of the vector as 1,
2, …, 2k. Define the badness of a vector by the sum of the absolute values of the k differences of the k
consecutive pairs.

For example, the badness of the vector {1, 4, 3, 2} is |1 4| + |3 2| = 4.
The badness of the set of n vectors is the cumulative badness of the elements. However, the

dimensions can be shuffled to produce another vector.
For example, the above vector can be shuffled to produce {2, 1, 4, 3} which improves the

badness to 2.
The problem is to choose a shuffling of the vectors such that the cumulative badness is

minimized. Note that the shuffling must be consistent and must be applied to all the vectors in the set, i.e.,
if two columns are interchanged, they must be interchanged for all the vectors.

Input

The input may contain multiple test cases.
First line of a test case contains two information. First one is the number of vectors while second

one tells about the length of the vector. If the number of vectors is n, each of the length say, 2k, then next
lines provide the vectors. The input terminates with a line containing 0 as input.

Output

Output the total badness value followed by the shuffled vectors.

Sample Input (G.in)
2 4
1 5 4 2
2 2 3 3

Sample Output (G.out)
4
2 1 5 4
3 2 2 3

