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Figure 1. Workout with Trainer vs Self-Practice at Home - p— a =
Figure 5. Flowchart illustrating our Interactive System’s workflow. '

= Home Settings do not have adequate exercise evaluation mechanism

Figure 8. Planks - landmarks

= Personal trainer is not always available, even in gym settings

= Rehabilitation therapies and fitness workouts can benefit from real-time evaluation systems. = [nput: Initial position and velocity data of the exercise Landmark

= Qutput: Dynamics rollouts as per the learned physics
= Classification: The MSE for each landmark converted to frequency domain
= Recommendation: One of the class categories

Stick Figure diagram for Planks(2 incorrect vs 1 correct class)
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= ;j Table 1. Avg. F1 scores for full body exercises » Mobile application

* Captures a user doing an exercise Exercise Mean(sec) Standard deviation(sec)

Figure 2. Example of Body worn sensors and comparison with vision based methods
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* At normal pace, this feedback arrives before their next rep is halfway complete

Background - IN and its input

Figure 6. Avg. rollout pred. errors over exercise reps(MSE) for Baselines and IN.

Conclusion and Discussion
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= Physics endowed pipeline is effective in predicting motion dynamics resulting in good
classification performance

= Results for high rollout MSE models degrade as the number of classes increase
= Low latency prompts the user to correct any mistakes in technique without much delay

0.95+£0.06  0.80£0.04
IN 0.98+0.01  0.88+0.03

/ Front Raise MLP RNN GRU IN

Table 2. Avg. F1 scores for upper body exercises
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Table 3. Front Raise Classification Complexity. Methods that do not model exercise dynamics show significant
performance drop as the number of pred. classes increase.
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Figure /. Pushups comparison for Baseliens
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Figure 4. Stick Figure for four full-body exercises. Selected landmarks for each exercise are marked in red.
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