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Abstract

Early detection of neurodegenerative disorders is an important open problem, since early
diagnosis and treatment may yield a better prognosis. Researchers have recently sought
to leverage advances in machine learning algorithms to detect symptoms of altered gait,
possibly corresponding to the emergence of neurodegenerative etiologies. However, while
several claims of positive and accurate detection have been made in the recent literature,
using a variety of sensors and algorithms, solutions are far from being realized in practice.
This paper analyzes existing approaches to identify gaps inhibiting translation. Using a set
of experiments across three Kinect-simulated and one real Parkinson’s patient datasets, we
highlight possible sources of errors and generalization failures in these approaches. Based
on these observations, we propose our strong baseline called Asynchronous Multi-Stream
Graph Convolutional Network (AMS-GCN) that can reliably differentiate multiple cate-
gories of pathological gaits across datasets.

1. Introduction

Gait impairments, particularly those resulting from Parkinson’s Disease(PD), Alzheimer’s
disease (AD), and other neurodegenerative disorders, cause muscle stiffness, dis-coordination,
tremors, and posture instability and severely reduce peoples’ quality of life. Freezing of gait
(FOG), visible in more severe conditions, significantly increases the risk of falls and frac-
tures (Coste et al., 2014). Gait symptoms such as slowness also correlate with the onset
of dementia (Mielke et al., 2013). Aging increases the risk of gait disorders, rising from
10 % to more than 60 % in people from 60 to 80 years of age (Mahlknecht et al., 2013).
Despite this criticality, gait asymmetries and deficits largely remain underdiagnosed and
receive subpar medical attention. (Rubenstein et al., 2004).

Early diagnosis of gait-related disorders reduces the overall health care cost and initiates
effective therapy routine (Pistacchi et al., 2017). As a possible method for reducing costs
of such diagnosis at scale, automatic pathological gait classification has received significant
interest in recent times, with most prominent approaches using customized sensor arrays
for gait tracking (Xu et al., 2021; Schlachetzki et al., 2017; Um et al., 2017; Kubota et al.,
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2016). While highly accurate, sensor-based methods are inconvenient and obtrusive, thus
limiting their usability for the general populace. Sensor arrays require accurate placement,
rendering them implausible for self- or weakly-supervised diagnosis of gait problems.

Non-invasive computer vision methods employing machine learning techniques turn out
to be a promising replacement for such sensor-based gait analysis. For instance, features
from gait video sequences can be extracted to classify gait as healthy or abnormal (Nieto-
Hidalgo et al., 2016; Ajay et al., 2018; Nguyen et al., 2016). Similarly, Silhouette-based
feature extraction used in biometric technology, has possible extensions to pathological
gait classification (Albuquerque et al., 2021; Ortells et al., 2018; Loureiro and Correia,
2020). However, being appearance-based, such models collapse with scale and clothing
variations (Wang et al., 2010).

Common gait anomalies like lurching, freezing, and stiff-legged gait can be imitated
under supervision. As health data is costly, such simulations are invaluable. They can be
recorded through the use of knee and sole pads, combined with restricted joint movements.
Recent studies show that an affordable Kinect can efficiently capture skeleton informa-
tion (Meng et al., 2016; Li et al., 2018; Jun et al., 2020a; Pachón-Suescún et al., 2020).
Furthermore, the recorded data is considered precise enough to be suitable for training and
classification (Stone and Skubic, 2011; Clark et al., 2019). The Multi-Modal Gait Symme-
try dataset (MMGS) (Khokhlova et al., 2019), Walking Gait dataset (Nguyen et al., 2018),
and Pathological Gait dataset (Jun et al., 2020b) are three such Kinect-based datasets with
simulated gait pathologies.

Graph Networks are well suited to model structured information, with applications in
pose estimation (Xu and Takano, 2021), motion modeling (Huang et al., 2019; Mohamed
et al., 2020; Jaiswal et al., 2023) and physics prediction (Battaglia et al., 2016; Sanchez-
Gonzalez et al., 2020), among others. Of them, the Spatio-Temporal Graph Convolutional
Networks (STGCN), specially designed for processing skeleton information, have been pro-
lifically used for skeleton-based action recognition (Yan et al., 2018; Cheng et al., 2020) and
are currently state-of-the-art in the task of pathological gait classification.

But as we discuss in detail below, several methods proposed for gait classification premise
on individual models fitting to only a single dataset. However, we view this approach as
a critical limitation. Robustness and fairness are paramount to healthcare applications,
where inaccurate predictions could significantly affect the well-being of individuals and the
effectiveness of treatment protocols. Therefore, addressing these limitations and exploring
approaches that ensure reliable and accountable gait classification is crucial. This paper
aims to tackle these challenges.

Specifically, we aim to provide quantitative benchmarks for the ability of state-of-the-art
pathological gait classification models. To this end, we conduct various experiments across
three simulated pathological gait datasets and one dataset incorporating real gait patholo-
gies (Section 3). Consequently, identifying large distribution shifts in the most acclaimed
gait classification models, we also propose and evaluate a new baseline for pathological gait
classification, Asynchronous Multi-Stream Graph Convolution Network (AMS-GCN) (Fig-
ure 1), demonstrating robust classification performance across datasets (Section 4 and 5).
AMS-GCN ensembles gait features over local and global graphs (Figure 2), validating stand-
alone feature efficiency and furnishing critical clinical insights. Moreover, it demonstrates
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STGCN(3,64,1)

STGCN(64,64,1)

STGCN(64,64,1)

Figure 1: Our proposed Expert Committees ensemble model. GAP = Global Average Pooling,
FCN = Fully Connected Network. All individual model predictions are normalized and added to
get final scores.

Figure 2: Local(Left) and Global(Right) graphs along with 25 Joints of Kinect

nearly identical performance across both validation and test sets, distinguishing itself from
the outcomes of previous methods.

Additionally, we evaluate the AMS-GCN with various feature combinations and ensem-
bling techniques, drawing out strategies effective for practical applications in healthcare
(Section 6).

Generalizable Insights about Machine Learning in the Context of Healthcare

• We explore the generalizability of existing gait classification algorithms on multiple
datasets, highlighting potential causes inhibiting test time translation. Consequently,
we show that it is easy to overfit healthcare data tested in isolation, which is antithesis
to robustness critical to healthcare.

• We propose an Asymmetric Multi-Stream Graph Convolutional Network, holistically
processing motion information to assist pathological gait identification in home set-
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tings. Here we emphasize that, in many instances, surprisingly simple combinations
can outperform overly complicated, poorly tested models.

• Finally, using various ablation studies, we draw insights into the relative importance
of different gait features used for classification. This opens up avenues for compliment-
ing existing geriatric evaluations with additional gait parameters, thereby supporting
clinical studies.

2. Gait Classification

Markerless vision systems like camera systems, even though unobtrusive, are prone to errors
and produce noisy joint coordinates. To validate the Kinect approach and provide a foun-
dation for future research, Stone and Skubic (2011) assessed the reliability of Kinect-based
gait parameters, including walking speed, stride time, and stride length, against marker-
based Vicon Motion Capture systems. Their findings identified these parameters as suitable
for detecting early-onset of gait abnormalities and assessing fall risk.

Employing feature engineering to model spatiotemporal relationships, Chaaraoui et al.
(2015) utilized Joint Motion History to diagnose gait abnormalities, focusing on a small set
of 56 data sequences. For binary classification across nine gait classes, Nguyen et al. (2016)
trained an HMM model on body limb angles to diagnose anomalies using a log-likelihood
threshold.

In a non-Kinect-based setting, Ajay et al. (2018) classified Parkinsonian gait directly
from YouTube videos recorded from pervasive devices like smartphones and webcams.
Meanwhile, Li et al. (2018) encoded 3D joint motion trajectories, computing joint cor-
relations for classification on a private dataset. These approaches avoid using joints’ spa-
tiotemporal information directly to reduce noise but are only functional in straightforward
scenarios.

Others have explored the use of sequential and convolutional end-to-end architectures
to broaden the scope of results. For instance, Khokhlova et al. (2019) employed 3D knee
and hip flexion angles, along with rotation data extracted from Kinect gait cycles, to train
an LSTM ensemble, effectively reducing result variance.

Given that gait impairments correspond to a decline in specific limb functionalities, Jun
et al. (2020b) developed a GRU-based classifier using 3D skeletal data, and they observed
classification scores with different joint groups. In another approach, Sadeghzadehyazdi
et al. (2021) utilized a CNN-LSTM model with KL divergence loss on normalized joints
data, applying transfer learning on a different simulated dataset. Taking an encoding-based
approach, Jun et al. (2020a) extracted gait features from a Recurrent Neural Network
Autoencoder (RNN-AE) and compared these features with multiple discriminative models.
However, these studies primarily present results on one or two datasets, necessitating further
examination.

Recent research has increasingly turned towards Graph Networks for modeling human
pose, with a specific emphasis on leveraging Spatio-Temporal Graph Convolutional Net-
works (STGCN) (Yan et al., 2018) as the foundational element for gait classification. For
example, He et al. (2022) utilized a dual-branched STGCN model to independently pro-
cess global and local features, capturing subtle manifestations of Parkinson’s disease. They
recorded and validated their model using a dataset from Parkinson’s patients (PD-Walk).
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In another study, Tian et al. (2022) implemented a three-way data partitioning scheme on
seven lower limb joints, incorporating joint, bone, and sagittal symmetry features along
with an attention mechanism. Similarly, Kim et al. (2022) constructed a multi-branched
bottleneck architecture with five STGCN blocks and attention modules, presenting results
on publicly available activity recognition and gait datasets.

However, these methods require further investigation before they can be put into prac-
tice, as multi-STGCN systems could be susceptible to overparameterization. As such, we
undertake a more in-depth analysis of these results in subsequent sections. Additionally, we
offer insights into the features and model specifications that prove effective and highlight
errors made by previous works. This analysis forms the first part of our contributions.

In the latter part of the paper, leveraging our insights, we construct an expert com-
mittee model for diagnosing pathological gait, while also exploring various modalities of
prediction amalgamation. Surprisingly, a simpler and more straightforward model emerges
as the clear winner, establishing itself as a robust baseline for any work on pathological gait
classification.

3. Benchmarking Study

3.1. Dataset Statistics

Video-based pathological gait detection can assist geriatricians and patients with quanti-
tative gait measurements and support for early diagnosis, cutting down frequent hospital
commutes, particularly for patients with mobility impairments.

In the absence of real patient data, researchers have recognized simulated walks as a
fitting differentiator between standard gait patterns and multifarious abnormalities. Here,
we present a succinct overview of three prominent simulated datasets repeatedly used for
model evaluations for pathological gait classification.

Multi-Modal Gait Symmetry (MMGS) (Khokhlova et al., 2019). This dataset
contains three gait categories - normal, limping gait, and knee rigidity gait, with 27 subjects
walking each category five to seven times. Limping is simulated by affixing a 7cm padding
sole to the right shoe of the subject. The third gait is simulated by constraining knee flexion
while walking.

Pathological Gait (Jun et al., 2020b). This dataset contains five pathological gaits -
antalgic, stiff-legged, lurching, steppage, and Trendelenburg gaits and one normal category,
recorded via six Kinect devices calibrated to be mutually consistent. Each subject walked
20 times for each gait type, and thus this dataset contains 10 subjects x 6 gait types x 120
walks(6 Kinect x 20 times) = 7200 total data clips from 6 Kinects.

Walking Gait (Nguyen et al., 2018). The Walking Gait dataset is recorded via
a treadmill and contains nine gait types where the eight abnormal gaits are simulated by
padding a sole of 5, 10, and 15 cm under the left and right feet and by attaching a weight
of 4-kilogram to the left and right ankles. Nine subjects walk for each of these nine gait
types, with each walk containing 1200 frames.

Apart from these, we compare models on PD-Walk dataset (He et al., 2022) which
contains data from actual Parkinson’s Disease(PD) patients. This dataset has skeleton
joints data from walking videos for 96 PD patients and 95 healthy subjects.
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Figure 3: Claimed and Reproduction Accuracies for existing models. FCN claimed results for
binary classification on Walking Gait dataset use data preprocessing but no data augmentation. All
MIB-STGCN results are without attention mechanism. 2s-AGCN has prominently been applied to
Human Activity Recognition and has no reliable investigation for Gait Analysis.[1] - Reimplemented
using Cross Entropy Loss. [2] - Reimplemented using Focal loss. All Reproduction results with
multiple runs over multiple splits.

For more details on these datasets, the readers are requested to refer to the specific
dataset papers.

While prior results in the gait classification literature appear optimistic, robust assess-
ments of these proposals are not always available. For instance, evaluations often lack
validation sets and fail to specify essential hyperparameter details. To enhance account-
ability and ensure accurate reporting, results should be demonstrated on multiple train,
validation, and test splits, and yet many papers are lax in reporting the data splits used.

Even though we have attempted to optimize all relevant hyperparameters in our bench-
marking study, it is plausible that specific hyperparameters we could not discover might
shift the classification scores closer to claimed values. Nevertheless, our study proceeds
from the premise that models should be reproducible based on the details reported in pub-
lications, and we meticulously outline all essential implementation assumptions to uphold
transparency.

3.2. Contemporary Models

For this study, we examine the best-performing gait classification models based on estab-
lished machine learning architectures. To thoroughly cover the space of prior works, we
focus on FCN (Fully Convolutional Networks), 2s-AGCN (Two-Stream Adaptive Graph
Convolutional Networks), MIB-STGCN (Multiple-Input Branch STGCN), and ADGCN
(Asymmetric Dual-Stream Graph Convolution Network), the last three being variants of
the celebrated STGCNs coming from the skeleton action recognition setting. Below, we
briefly describe the key distinctions among these models.
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Table 1: FCN with early stop-
ping on Walking gait in binary
and multi-class settings. FCN
shows a significant validation-test
performance gap as gait cate-
gories(classes) increase. Models
trained only with data of the spe-
cific classes used for comparison.

Class Train
Loss

Best
Val
Loss

Test
Loss

2 0.0003 0.17 0.73
5 0.05 0.84 1.1
9 0.10 1.8 1.6
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ADGCN(Original)            ADGCN(BoneFeatures)
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 S
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Figure 4: ADGCN performance with and without bone
features on PD-Walk dataset. Bone features adaptation
adds a third branch of input, pairing bone length and an-
gles locally. Test set performance did not improve on in-
cluding bone features.

Sadeghzadehyazdi et al. (2021) evaluated multiple models on the Walking Gait
dataset (Nguyen et al., 2018), employing eighteen normalized joints and KL divergence loss.
We specifically focus on their Fully Convolutional Network (FCN) model, featuring
650 input-output channels in the convolutional layers, followed by a fully connected layer.
We adopt their data preprocessing approach, normalizing data between -1 and 1, and apply
our data augmentation technique for consistent evaluation (refer Appendix Section A).

While they implemented early stopping, the use of a validation set is not mentioned in
their study. Additionally, hyperparameters such as the learning-rate decay rate, momentum
value, and L1 regularization constant are unspecified, which we fine-tune ourselves.

Two-Stream Adaptive Graph Convolutional Networks (2s-AGCN) Shi et al.
(2019) improves upon the STGCN by integrating dual stream predictions of bone vectors
and joint coordinates. This model, leveraging a learnable graph structure and attention
module, has demonstrated promising results in action recognition tasks. In our gait classifi-
cation implementation, each stream of 2s-AGCN comprises three graph convolutional blocks
with 64 input and output channels, followed by Global Average Pooling (GAP). Thereafter,
the dual stream predictions are summed up to obtain the final model output.

Multiple-Input Branch STGCN Kim et al. (2022) uses multiple input branches,
in contrast to multiple networks of 2s-AGCN. This model fuses joints, velocity, and bone
inputs with three STGCN blocks and processes the concatenated outputs with two STGCN
blocks. The two tested variants - with and without attention - show equivalent performance.
Consequently, we choose the simpler attentionless configuration for our experiments. Due
to the lack of data split specifications, we adopt the same splitting mechanisms used in our
other experiments (See Appendix Table 9). For missing hyperparameters, we draw insights
from other STGCN-based modalities like Song et al. (2020) and conduct multiple tests with
different hyperparameter combinations to report the best results.

Asymmetric Dual-Stream Graph Convolution Network (ADGCN) He et al.
(2022) is a dual-stream GCN that utilizes joint coordinates, velocity, and acceleration, feed-
ing these features in pairs to three STGCN blocks. The network employs two joint graphs:
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local connections consisting of natural joint connections and global connections where each
joint connects to a central joint, a scheme also adopted in our proposed model (Figure 2).
However, our model differs in two key aspects. First, while ADGCN combines inputs in
pairs (trajectory + velocity and velocity + acceleration), we train models independently for
each input. Second, we incorporate bone features in our model.

In the original paper, the ADGCN model is trained for 32 epochs with the Adam
optimizer, a learning rate of 3e-4 with cosine annealing, and a weight decay of 5e-6. The
results are reported using Focal loss and Cross Entropy loss, but Focal loss hyperparameters
are not specified. We implement both losses and find the performance similar(see Figure 3).
Therefore, all our ensuing comparisons use Cross-Entropy loss to ensure a fair assessment
against other models.

3.3. Benchmarking Results

As anticipated, our replication study of the aforementioned models reveals distribution
shifts across different datasets when evaluated over different splits, which we quantitatively
characterize to provide a holistic perspective on their overall performance (Figure 3).

Fully Convolutional Networks (FCN) Sadeghzadehyazdi et al. (2021). Table 1
presents loss values with our reimplementation on the Walking Gait dataset. As the number
of classes increase, train-test performance gap escalates. These results offer insights into
the kind of misrepresentation that can occur without proper data splits. Table 2 compares
performance across all datasets.

Two-Stream Adaptive Graph Convolutional Networks (2s-AGCN) Shi et al.
(2019) was designed for action recognition tasks, incorporating nine Adaptive Graph Con-
volutional Network (AGCN) blocks. Our replicability study employs three AGCN blocks
with 64 output channels to prevent overfitting on gait data. Its results across all datasets
(Table 2) offer acceptable threshold values for comparing with our proposed model.

Multiple-Input Branch STGCN (MIB-STGCN) Kim et al. (2022). This model
uses five STGCN blocks. Testing on multiple datasets (Table 2) reveals significant variations
between validation and test accuracies for this model.

Asymmetric Dual-Stream Graph Convolution Network (ADGCN) He et al.
(2022). The original ADGCN network, as tested with early stopping in our experiments,
converged within the initial ten epochs, and further training only lead to overfitting. Table 2

Table 2: F1 scores for FCN, 2sAGCN, MIB-STGCN and ADGCN on different datasets. We see
a considerable val-test gap for most of the models. See Appendix Table 10 for hyperparameter
settings.*NC=No Convergence

Dataset
FCN 2sAGCN MIB-STGCN ADGCN

Val Test Val Test Val Test Val Test

MMGS 75.2 70.1 93.3 83.2 83.0 76.7 81.1 71.8
Walking Gait 58.1 64.1 65.3 55.3 60.4 50.0 *NC *NC
Pathological Gait 88.2 85.5 98.0 95.6 93.4 88.1 96.4 93.9
PD-Walk 77.1 77.2 84.1 83.1 80.1 80.1 75.1 79.1
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presents its results across all datasets. Notably, the model failed to converge on the Walking
Gait dataset, resulting in Validation and Test F1 scores below 40%.

We also tested an ADGCN modification that utilizes the same input features as our
proposed model. Figure 4 compares our adaptation—integrating bone features (local graph
with bone length and bone angles) as the third input branch and the original ADGCN
architecture. While including bone features improved performance on the validation set,
this enhancement did not consistently extend to the test set. This suggests that utilizing
paired features does not consistently guarantee superior performance. In contrast, our
proposed model, involving independent experts, demonstrates consistent improvements, as
depicted in Table 3.

In conclusion, our findings suggest that despite the prolific use of STGCN variants in
gait classification, their implementation procedure is often unreliable. Our study indicates
that these models tend to overfit to the details of a specific training subset, resulting in poor
generalization on the test set. While 2s-AGCN demonstrated acceptable performance, some
modifications exhibited a test-time performance deterioration. These observations empha-
size the need for careful validation when employing STGCN variants for gait classification
tasks.

4. Asynchronous Multi-Stream Graph Convolutional Network
(AMS-GCN)

In high-dimensional settings, deep learning models often converge poorly, showing promising
results only on specific datasets or on certain subspaces of the dataset. The stochastic nature
of these optimizations can lead to overfitting on training data, sabotaging performance on
the test data. An ensemble can mitigate such problems by averaging over different local
optima, preventing any single model from dominating the predictive performance (Sagi and
Rokach, 2018).

Ensemble learning, characterized by expert committees, involves training these experts
on specific input feature spaces and amalgamating their expertise to enhance generalization.
Drawing inspiration from Shi et al. (2019), we introduce a Multi-Stream network that
incorporates global and local branches, exposing distinct pathologically relevant features for
different disorders. Our model uses five features - joint coordinate, velocity, acceleration,
bone vector, and bone angle (Appendix Table 11). For each feature, we have two networks
- one local network that exploits the natural human-body joint relations, and one global
network where all joints are connected to the ”SpineBase” joint, one of the twenty-five joints
provided by the Kinect (Figure 2). Thus, we have a total of ten networks in the ensemble.

The ten networks can be trained independently and parallelly for a classification task.
Each of these consists of three STGCN blocks with each block having 64 output channels
followed by a global average pooling layer. Finally, we apply a fully connected layer with
64 inputs. We use Cross Entropy loss with train-test-validation splits and early stopping
for training each network.

To get the final ensemble prediction, we first add the raw output from a feature’s local
and global network and convert this sum into probability scores using the softmax func-
tion. These values form the prediction score from a single feature. Finally, we average the
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probability scores from the five features to get the desired AMSGCN prediction. Please see
Appendix Section B for preprocessing details.

5. AMS-GCN Classification Analysis

To investigate our model’s performance, we train AMS-GCN over multiple train, validation,
and test splits on all the datasets used in this paper. AMS-GCN performs well on all the
datasets except for Walking Gait (Table 3). As we describe below, Walking Gait is hard
to classify because of subtle inter-class variations. For AMS-GCN, validation and test
scores are consistent across all other datasets, exhibiting the model’s robust generalization
capabilities. See Appendix Section D for threshold agnostic comparisons.

5.1. Multi-Modal Gait Symmetry (MMGS) Dataset

Khokhlova et al. (2019) used proper train-validation-test splits for assessing this dataset,
which we reuse to maintain consistent performance validation. Their findings reveal signif-
icant variance between validation and test scores across different splits. This can be due
to inherent noise present during data capturing. Different data splits could also be captur-
ing different demographic categories as this dataset contains features from 19 men and 8
women aged 23 to 55 (standard deviation of seven years). Notably, AMS-GCN outperforms
all competitors, and demonstrates consistent performance between the validation and test
sets (Table 3).

5.2. Walking Gait Dataset

In their study, Nguyen et al. (2016) used five out of nine subjects for training and the re-
maining four for testing. In our approach, we use five subjects for training, allocate two for
validation, and reserve two for testing. Notably, diagnosing treadmill walking proves to be
more challenging than regular walking. As indicated in Table 3, all models exhibit subopti-
mal performance. A more granular analysis shows that classes 4 and 8 (15cm padding sole
under left and right feet) are difficult to separate for all the experts of AMS-GCN (Table 4).
We also notice that different input features capture class-specific properties, endorsing our
hypothesis of an ensemble approach. These findings also suggest that a weighted average
ensemble model may be more suitable for this dataset.

5.3. Pathological Gait Dataset

The dataset paper (Jun et al., 2020b) utilizes leave one subject out cross-validation for
reporting results. It has data from 10 subjects, so we fixed six subjects for training and
two each for validation and testing. Table 3 clearly shows that AMS-GCN outperforms all
other models. Other models also perform comparatively well on this dataset. One reason
for this could be the use of multiple Kinects, which facilitates robust data collection. Deep
learning algorithms are vulnerable to outliers. Hence, a less noisy dataset would generally
procure higher accuracy.
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Table 3: Validation and Test time weighted-average F1 scores for all models on all the datasets.
All PD-Walk results are for 10 runs over two data splits, all other results are for 15 runs over
three data splits. AMS-GCN performs better than all other models both in terms of F1 scores and
test-validation gap. *ADGCN did not converge on Waking Gait, and plateaued at around 40% F1
score,NC = No Convergence.

Model
MMGS Walking Gait Pathological Gait PD-Walk

Val Test Val Test Val Test Val Test

FCN 75.2±8.1 70.1±6.7 58.1±2.8 64.1±1.4 88.2±7.0 85.5±2.1 77.1±5.7 77.2±3.2
MIB-STGCN 83.0±5.5 76.7±6.8 60.4±8.8 50.0±7.2 93.4±3.1 88.1±3.4 80.1±4.1 80.1±4.0
2s-AGCN 93.3±4.6 83.2±2.9 65.3±4.9 55.3±6.5 98.0±1.3 95.6±3.0 84.1±4.2 83.1±4.8
ADGCN 81.1±8.8 71.8±10.7 NC* NC* 96.4±2.7 93.9±3.4 75.1±5.0 79.1±6.0
AMS-GCN 91.2±3.9 88.3±3.7 73.4±3.4 65.9±4.5 98.6±1.3 96.1±2.1 84.8±1.5 85.4±2.1

Table 4: Class-specific F1 scores for five expert models of AMS-GCN on the test set of Walking
Gait dataset for 9 classes. Test subjects[2,7], Class 1 is normal walk. Certain features show good
scores on specific gait classes, advocating a weighted ensemble approach for this dataset.

joint input 1 2 3 4 5 6 7 8 9

coordinates 0.59 0.64 0.46 0.52 0.66 0.78 0.52 0.41 0.80
velocity 0.60 0.44 0.38 0.37 0.79 0.38 0.14 0.49 0.52
acceleration 0.42 0.30 0.34 0.48 0.26 0.41 0.01 0.50 0.73
bone vectors 0.31 0.31 0.25 0.00 0.65 0.50 0.57 0.52 0.83
bone angles 0.40 0.79 0.57 0.46 0.80 0.46 0.42 0.39 0.54

5.4. PD-Walk - real Parkinson’s Patient Dataset

The dataset paper offers details on multiple train-test splits but does not include a validation
set. To address this, we split their original test set into 40% validation and 60% test data.
All models are steady between validation and test results (Table 3). Our proposed model
beats the State of the Art algorithm (ADGCN from PD-Walk paper). The success of
machine learning with a real Parkinsonian gait dataset demonstrates its potential to aid
geriatricians in identifying early signs of neurodegenerative disorders.

6. AMS-GCN: Performance Insights

6.1. Ensembling Techniques

To analyze how the ten expert committees of AMS-GCN supplement each other, we test var-
ious ensembling techniques such as Hard Weighted Majority Voting, Soft Weighted
Majority Voting, and Stacking. For this analysis, we utilize the MMGS dataset
(Khokhlova et al., 2019) and report the aggregate results of ten runs over two data splits.

Weighted Majority Voting Algorithm - In this voting scheme, for every wrong
ensemble prediction we update the weights of all the incorrect models according to the
following scheme:

wt+1 = wt ∗ beta, β = 0.5
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Table 5: Ensemble methods comparison using test time F1 scores on MMGS dataset over ten runs
with two data splits.

Method Test F1

Hard Weighted Majority 79.2±6.6
Soft Weighted Majority 80.4±3.0
Stacking 82.7±3.4
Joint Training 76.6±6.6
AMS-GCN 88.3±3.0

All the models start with an initial weight of one. In the hard voting case, the weights of the
models having the same prediction are summed to form the ensemble prediction, whereas,
in the soft voting case, individual model weights and predictions are multiplied and added
to generate the ensemble prediction. The weights are updated using the validation set.

In Stacking, the validation set experts’ predictions are used to train another classi-
fier, which predicts the final class for a sample. During test time, this classifier takes the
committees’ outputs and predicts the test sample label. For our comparisons, we used the
XGBoost classifier. We also tested a Joint Training model by adding another feedfor-
ward layer on top of the last STGCN block (having sixty-four-bit output) of each expert.
This ensemble trains all models together and gives one consolidated prediction for the ten
experts. However, the results of this setup were not so encouraging.

Moreover, the other tested ensembles also could not come close to the performance
of our AMS-GCN (Table 5). We hypothesize that even for the same gait abnormality,
different feature combinations dominate classification on different data splits, just as the
same abnormality can be simulated using different techniques. Hence, relying heavily on
certain features grounded on an isolated data segment deteriorates the performance on
other segments. This is probably why many of the benchmarked methods do not work
when tested across different data splits. They learn specialized feature combinations not
universally relevant for all data splits, which is taken care of by an equi-weighted ensemble
model.

6.2. Feature Utility.

To gauge the effect of different gait features on classification score, we run AMS-GCN with
different combinations of features, using single, pair, triplets, and four features at a time.
Table 6 reports the best and worst-performing combinations for each set over ten runs on
two data splits of each dataset.

The results show that different datasets have different (combinations of) dominating
features. For example, as a single feature, Acceleration does worst on MMGS (Khokhlova
et al., 2019), whereas it does best on Walking Gait (Nguyen et al., 2016). We also find that
bone features are always part of the best-performing model and thus play a crucial role in
differentiating various pathological conditions. However, as we move towards using four or
five features, all the models show almost equivalent performance between best and worst
feature combinations.
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Table 6: AMS-GCN Input feature comparison - best and worst feature combinations and respec-
tive F1 scores. Vel=Velocity, Acc=Acceleration, boneL = bone Length and boneA = bone Angle.
Whenever two models have the same F1 score, we report one of them randomly. The ”Method”
column shows the number of features combined to test the ensemble methods. Pathological Gait
dataset is not compared as it is relatively easy to classify.

Method Worst F1 best F1

MMGS
1 Acc(56.0) boneA(86.0)
2 Vel+Acc(55.0) boneL+boneA(87.0)
3 Joint+Vel+Acc(77.0) Acc+boneL+boneA(87.0)
4 Joint+vel+Acc+boneL(82.0) Joint+Acc+boneL+boneA(86.0)

PD-Walk
1 Acc(17.0) boneL(87.0)
2 Vel+Acc(17.0) boneL+boneA(86.0)
3 Vel+Acc+boneA(83.0) Acc+boneL+boneA(86.0)
4 Joint+Vel+Acc+boneA(85.0) Vel+Acc+boneL+boneA(86.0)

Walking Gait
1 Joint(41.0) Acc(62.0)
2 Vel+Acc(54.0) Joint+Acc(66.0)
3 Joint+boneL+boneA(55.0) Vel+Acc+boneA(71.0)
4 Joint+Vel+Acc+boneL(63.0) Joint+Acc+boneL+boneA(64.0)

Therefore, from single and pair comparisons we gain insights into the significance of cer-
tain features over others. Notably, among comparably performing combinations, removing
bone angles almost always degrades results. Similarly, joint coordinates also show up in
many of the best-performing combinations. Velocity and acceleration in isolation show bad
performance but could be subtly affecting the overall ensemble score. Furthermore, as we
increase the number of features in a direct combination, the performance fluctuations settle
down. We anticipate that this hierarchical exploration of gait features will help catalyze
future advancements in gait assessment methods.

6.3. Performance with Benchmarked Model Inputs

For a more direct comparison against other models, we narrow down the AMS-GCN input
space to match that of respective models, as detailed in Table 7, and compare them over
multiple runs on multiple splits. The results indicate that even when using a limited number
of features, a direct local-global feature ensemble is most robust against subtle variations in
gait anomalies. After conducting various tests on the Walking Gait dataset, we found FCN
showing high loss values albeit better test accuracy. We hypothesize that FCN might be
memorizing patterns in the training set, resulting in a significant loss on specific examples
from validation and test sets. Notably, AMS-GCN on Walking Gait with reduced ADGCN
features set performed better than using all five features, advocating for a weighted ensemble
for this dataset.

Please check github for the code.
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Table 7: Head-to-head F1 score comparison of AMS-GCN with different models using the same
feature set incorporated in compared models. Refer Appendix Table 11 for the specific feature set
used by each model. AMS-GCN performs better than other models even with a reduced feature set.
The closest competitor is 2s-AGCN, which does not use global graphs. All results are averaged over
10-15 runs over three data splits.*NC=No Convergence

Dataset FCN
Features

MIB-STGCN
Features

2s-AGCN
Features

ADGCN
Features

FCN Ours MIB-STGCN Ours 2s-AGCN Ours ADGCN Ours

MMGS 70.1 81.4 76.7 85.6 83.2 84.8 71.8 79.1
Walking Gait 64.1 61.8 50.0 62.1 55.3 55.5 *NC 67.2
Pathological Gait 85.5 93.3 88.1 96.0 95.6 95.9 93.9 94.5
PD-Walk 77.2 80.3 80.1 84.2 83.1 83.9 79.1 81.6

7. Discussion

Previous studies (Sadeghzadehyazdi et al., 2021; Kim et al., 2022; Tian et al., 2022) have
incorporated features such as joint coordinates, motion signals at different scales, and joint
adjacency to guide the classification process. However, none have articulated results that
combine all such features, especially with local and global graph structures. Although He
et al. (2022), use local and global graphs, as described earlier in Section 3.3, a direct combi-
nation like ours performs better than their paired inputs. In addition, after experimenting
with various ensembling methods, our tests reveal that, in such high-dimensional settings,
a straightforward combination works best. This finding motivates the final ensembling
technique chosen by us. Thus, our AMS-GCN model, even though superficially a simple en-
semble, distinguishes itself from previous works. After conducting comparisons across four
datasets with multiple runs and splits, our results suggest that the proposed AMS-GCN
model establishes itself as a robust baseline for future endeavors and a viable alternative to
previous research efforts. In summary, the contributions of this paper are threefold. First,
we benchmark the performance of algorithms developed for gait classification on four differ-
ent datasets, testing their generalized ability to identify various pathological gait conditions.
A critical reporting mistake seen in this literature is not using separate validation and test
sets, thus leaving open the possibility of over-fitting to the test set during training (Dwork
et al., 2015). Another fallacy is the common practice of tuning model hyperparameters
directly on the test set (Recht et al., 2019). We report results using a test-validation split,
and find distribution shifts of between 10-15% (Figure 3) across datasets for most models,
in line with recent generalization results in related settings (Recht et al., 2019).

Second, we present a robust model tested on multiple datasets that demonstrates good
generalizable performance to support clinicians for early diagnosis in home settings, outper-
forming state-of-the-art models by between 5-10% across datasets in most cases (Figure 5).

Finally, through various tests employing different feature combinations, we capture in-
sights into the efficacy of different feature combinations for gait assessment. This foundation
paves the way for future research, particularly in developing clinical studies aimed at fur-
ther investigating these crucial gait features, thereby bolstering efforts in automatic gait
classification.
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Figure 5: Accuracy comparison for AMS-GCN against the best previously reported results. All
AMS-GCN results are averaged over multiple data splits. *F1 score using Cross Entropy Loss. For
Walking Gait, all models perform poorly.

Our replication study revealed a significant amount of distribution shift for existing
studies. We also showed that in complex optimization scenarios, models are susceptible to
showing promising results on one part of the dataset while doing poorly on other parts,
supporting the reporting of disaggregated error analyses in this area of machine learn-
ing (Burnell et al., 2023). Previously, Zhang et al. (2021) have shown that large neural
networks have enough capacity to perfectly shatter the training set, fitting a random label-
ing of the training data and also true images with noise. Along the same lines, we found
that STGCN-based models are prone to overfitting on typically sized datasets in this area.
To actually realize the potential of a proposed algorithm, experiments must be conducted
over multiple data splits, requiring algorithms to consistently perform well across all splits.

We also strongly recommend using early stopping in training as a safeguard against
fitting noise in the data, especially when working with pose estimation methods where
limbs can be easily deformed across video frames. Ensuring reliability is crucial for the
practical application of healthcare technologies. Therefore, given the intricate nature of
gait data, adopting a streamlined AMS-GCN ensemble approach that treats all models
uniformly proves to be advantageous.

Limitations While we report heterogeneities in model performance across data splits in
several of our experiments, we ourselves report only aggregate measures of performance
for ease of comparison with the existing literature. Future work should focus on reporting
disaggregated evaluations on ’hard’ data (Burnell et al., 2023).

Many other variants of STGCN models in the action recognition field could work even
better for pathological gait classification, which needs further exploration. Our proposed
method achieves good performance because a mixture of experts shades individual models’
inadequacies, making up for occasional poor convergence.
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In this study, we did not evaluate the efficacy of using different sets of joints for classifi-
cation, which needs further exploration and can be examined in an extension of the current
work.
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Appendix A. Datasets - Feature Selection and Preprocessing

We follow standard and identical preprocessing pipelines for all Kinect-based datasets. Each
Kinect dataset captures the x, y, and z coordinate time series for 25 joints. First, we
identify V relevant joints for differentiating pathological gaits and subtract the per-frame
”SpineMid” joint (Figure 2) coordinates from each joint across all frames. While Tian et al.
(2022) advocate using selected lower body joints, we maintain a more general setting to
facilitate meaningful comparisons.

Then, we split these normal and simulated walks into multiple data clips of length T,
augmenting them by overlapping 40 frames between successive clips. The Pathological Gait
dataset, being sufficiently large, is exempt from such augmentation.

Finally, for each frame, we range normalize each x, y, and z input by applying the
following formula on each coordinate of the selected V joints.

knormalized =
k − kmin

kmax − kmin
(1)

where k ϵ V and kmin and kmax are the min and max value of k for each data clip i.e., across
T frames. This gives us normalized model input for T frames and V joints. We use T =
48 and V = 19 for all Kinect-based experiments. Consequently, we use 19 of the 25 Kinect
body tracking joints removing the fingers, ”SpineMid”, and Head joints.

PD-Walk involves different sets of joints than Kinect. Here, we exclude head information
and use the remaining 12 joints (=V) for further analysis (refer to Table 9 for a description
of the train, validation, and test splits used in investigating the existing models).

Appendix B. AMS-GCN Model Architecture and Preprocessing

We use the following procedure to normalize the 3D Joints coordinates for the V selected
joints (V=19 for Kinect-based datasets and 12 for PD-Walk).

vt = xt+1 − xt (2)

at = vt+1 − vt (3)

bt = x− xadj (4)

ba = arccos(
bt

||bt||
) (5)

where xt, vt, and at are coordinates, velocity, and acceleration at time t for each joint. bt
is the bone vector defined as the difference in coordinate values of adjacent joints according
to the graph connections. ba is the bone angle corresponding to each bone vector. We also
add a residual connection in our STGCN blocks such that the input of each block is added
to its output before applying the activation function and transmitting information to the
next block.
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Appendix C. Hyperparameters and Data splits

We train all the models (except FCN) using Adam optimizer and early stopping on vali-
dation loss with batch size 32. The base learning rate was 0.1, with a weight decay rate
of 0.001. We train the models for 200 epochs and update the learning rate after every 80
epochs as one-tenth of the previous value. FCN (Sadeghzadehyazdi et al., 2021) uses L1
regularization with regularization constant 1e-5 and is trained for 400 epochs with early
stopping.

We use the following settings for training all the experts of AMS-GCN : Epochs =
200, Optimizer = Adam, Batch size = 32, weight decay = 1e-3, base learning rate = 0.1,
Learning rate decay = 0.1 * learning rate at epochs 80, 160, and 180. Early stopping on
validation loss.

Table 8 shows the per-class frequency for all the datasets and Table 9 shows data splits
for all the datasets used in our experiments.

Table 8: Class frequency for each class for all datasets. Each class is split into Train/Val/Test across
multiple splits for results comparison. Class 1 is the correct class. *Bracketed number denotes the
total number of classes in the dataset

.

Dataset Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

MMGS(3)* 1221 1220 1406 - - -
Walking Gait(9)* 1504 for each of the 9 classes
Pathological Gait(6)* 1199 1186 1197 1196 1196 939
PD-Walk(2)* 4482 5390 - - - -

Table 9: Subject Wise data splits for different Pathological Gait datasets reusing the splits used in
the dataset papers.

Splits Train Val Test

MMGS(22 subjects)
Split 1 [2,3,7,8,9,11,13,14,15,19,21] [1,6,10,17,18] [4,5,12,16,20,22]
Split 2 [2,5,8,10,11,13,14,15,16,19,20] [1,4,17, 18,21] [3,6,7,9,12,22]
Split 3 [2,3,8,10,12,13,16,17] [5,6, 9,11,21] [1,4,7,14,15,18,19,20,22,]

Walking Gait
Split 1 [1,3,5,6,9] [4,8] [2,7]
Split 2 [1,3,5,6,9] [2,7] [4,8]
Split 3 [1,3,5,6,9] [2,4] [7,8]

Pathological Gait
Split 1 [1,2,4,7,8,10] [3,6] [5,9]
Split 2 [1,2,6,7,9,10] [3,5] [4,8]
Split 3 [1,3,5,7,9,10] [4,8] [2,6]

PD-Walk
Split 1 Split 1 of dataset paper 40% of test data 60% of test data
Split 2 Split 3 of dataset paper 40% of test data 60% of test data
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Table 10: Hyperparameters used for training various models in the benchmarking study.
LR=Learning Rate, Ep=Training Epochs, L1 const. is the L1 regularisation constant.

FCN MIB-STGCN 2sAGCN ADGCN

LR=0.1,
Ep=400,
LR=0.1*LR
every 100 ep,
L1 const.=1e-5

LR=0.1,
Ep=200,
Wt.Decay=0.001,
LR=0.1*LR
every 80 epochs

LR=0.1,
Ep=200, Wt.
Decay=0.001,
LR=0.1*LR
every 80 epochs.

LR=0.1,
Ep=200, Wt.
Decay=.001,
LR=0.1*LR
every 80 epochs.

Table 11: Input features used by different methods compared in this study.

Model Feature Set

FCN Joint
MIB-STGCN Joint + Velocity + Bone

Vector + Bone Angles
2s-AGCN Joint + Bone Vector
ADGCN Joint + Velocity + Acceleration
AMS-GCN Joint + Velocity + Acceleration

+ Bone Vector + Bone Angles

Appendix D. Threshold Agnostic Metrics Comparisons

To further test AMSGCN, we also compare AUROC/AUPRC scores for all the models (Ta-
ble 12 and 13). These results further highlight the performance benefit of using AMSGCN.
We also see that AMSGCN has better AUPRC values than other models on the Walking
Gait dataset which is the most difficult dataset to classify among all tested.

Table 12: AUROC (Mean + Standard Deviation) scores on pathological gait datasets.

Model MMGS Walking Gait Pathological Gait PD-Walk

FCN 0.92±0.04 0.93±0.01 0.98±0.02 0.79±0.06
MIB-STGCN 0.90±0.03 0.92±0.02 0.99±0.01 0.91±0.02
2sAGCN 0.94±0.02 0.94±0.01 0.99±0.01 0.91±0.06
ADGCN 0.87±0.06 0.82±0.01 0.99±0.01 0.90±0.03
AMSGCN 0.96±0.03 0.97±0.01 0.99±0.01 0.94±0.01

Table 13: AUPRC (Mean + Standard Deviation) scores on pathological gait datasets.

Model MMGS Walking Gait Pathological Gait PD-Walk

FCN 0.86±0.06 0.59±0.01 0.95±0.04 0.84±0.01
MIB-STGCN 0.82±0.04 0.66±0.06 0.95±0.02 0.95±0.01
2sAGCN 0.90±0.03 0.70±0.04 0.99±0.01 0.92±0.6
ADGCN 0.78±0.09 0.46±0.04 0.98±0.01 0.93±0.03
AMSGCN 0.93±0.03 0.77±0.03 0.99±0.01 0.96±0.01
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