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Abstract. We call a depth-4 formula C set-depth-4 if there exists a (unknown) par-
tition X1 t · · · t Xd of the variable indices [n] that the top product layer respects,

i.e. C(x) =
∑k

i=1

∏d
j=1 fi,j(xXj ), where fi,j is a sparse polynomial in F[xXj ]. Extend-

ing this definition to any depth - we call a depth-∆ formula C (consisting of alternating
layers of Σ and Π gates, with a Σ-gate on top) a set-depth-∆ formula if every Π-layer in
C respects a (unknown) partition on the variables; if ∆ is even then the product gates
of the bottom-most Π-layer are allowed to compute arbitrary monomials.

In this work, we give a hitting-set generator for set-depth-∆ formulas (over any field)
with running time polynomial in exp((∆2 log s)∆−1), where s is the size bound on the in-
put set-depth-∆ formula. In other words, we give a quasi-polynomial time blackbox poly-
nomial identity test for such constant-depth formulas. Previously, the very special case
of ∆ = 3 (also known as set-multilinear depth-3 circuits) had no known sub-exponential
time hitting-set generator. This was declared as an open problem by Shpilka & Yehuday-
off (FnT-TCS 2010); the model being first studied by Nisan & Wigderson (FOCS 1995).
Our work settles this question, not only for depth-3 but, up to depth ε log s/ log log s, for
a fixed constant ε < 1.

The technique is to investigate depth-∆ formulas via depth-(∆ − 1) formulas over a
Hadamard algebra, after applying a ‘shift’ on the variables. We propose a new algebraic
conjecture about the low-support rank-concentration in the latter formulas, and manage
to prove it in the case of set-depth-∆ formulas.

1. Introduction

Polynomial identity testing (PIT) - the algorithmic question of examining if a given
arithmetic circuit computes an identically zero polynomial - has received some attention
in the recent times, primarily due to its close connection to circuit lower bounds. It is
now known that a complete (blackbox) derandomization of PIT for depth-4 formulas, via
a particular kind of pseudorandom generators, implies VP 6= VNP (an algebraic analogue
of the much coveted result: P 6= NP). It is also known that VP 6= VNP, which amounts
to proving exponential circuit lower bounds, must necessarily be shown before proving
P 6= NP ([Val79, SV85]). Blackbox identity testing (equivalently, the problem of designing
hitting-set generators), being a promising approach to proving lower bounds, naturally
calls for a closer examination. Towards this, some progress has been made in the form of
polynomial time hitting set generators for the following models:

• depth-2 formulas [KS01],
• depth-3 formulas with bounded top fanin [ASSS12, SS11],
• depth-4 (bounded depth) constant-occur formulas [ASSS12],

and a quasi-polynomial time hitting-set generator for

• multilinear constant-read formulas [AvMV11],
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among some others (refer to the surveys [SY10, Sax09, AS09]). The hope is, by studying
these special but interesting models we might develop a deeper understanding of the nature
of hitting sets and thereby get a clue as to what techniques can be lifted to solve PIT in
general (i.e. for depth-4 formulas). One such potentially effective technique is the study
of partial derivatives of formulas.

Despite the apparent difference between the approaches of [ASSS12] and [AvMV11], at
a finer level they share a common ingredient - the use of partial derivatives. The partial
derivative based method was introduced in the seminal paper by Nisan and Wigderson
[NW97] for proving circuit lower bounds, and since then it has been successfully applied
(with more sophistications) to prove various interesting results on lower bounds, identity
testing and reconstruction of circuits [ASSS12, AvMV11, GKQ12, GKKS12] (refer to the
surveys [SY10, CKW11] for much more).

Partial derivatives & shifting - the intuition: In a way, partial derivatives shift
the variables by some amount - for e.g., if f(x1, x2, . . . , xn) is a multilinear polynomial
then its partial derivative with respect to x1 is f(x1 + 1, x2, . . . , xn)− f(x1, . . . , xn). Out
of curiosity, one might ask what happens if we shift the polynomial by arbitrary field
constants? If we shift a monomial f(x) = x1x2 . . . xn by c = (c1, . . . , cn) ∈ Fn, ci 6= 0,
we get the polynomial f(x + c) = (x1 + c1)(x2 + c2) . . . (xn + cn). Something interesting
has happened here: The polynomial f(x + c) has many low-support monomials. By a
low-support monomial, we mean that the number of variables involved in the monomial
is less than a predefined small quantity, say `.

Is it possible that shifting has a similar effect on a more general polynomial f(x), i.e.
f(x + c) has low-support monomials with nonzero coefficients, if f 6= 0? Surely, this is
true if c is chosen randomly from Fn (by Schwartz-Zippel [Sch80, Zip79]). But, f is not
just any arbitrary polynomial, it is a polynomial computed by a formula (say, depth-3 or
depth-4 formula). This makes it an interesting proposition to investigate the following
derandomization question: Let f 6= 0 be a polynomial computed by a formula. Is it
possible to efficiently compute a small collection of points T ⊂ Fn, such that there exists
a c ∈ T for which f(x + c) has a low-support monomial with nonzero coefficient?

If the answer to the above question is yes, then it is fairly straightforward to do an
efficient blackbox identity test on f : For the right choice of c ∈ T , g(x) = f(x + c) 6= 0
has a low-support monomial. To witness that g(x) 6= 0, it suffices to keep a set of `
variables intact and set the remaining n−` variables to zero in g; running over all possible
choices of ` variables whom we choose to keep intact, we can witness the fact that g 6= 0.
Since ` is presumably small, g(x) restricted to ` variables is a sparse polynomial which
can be efficiently tested for nonzeroness in a blackbox fashion [KS01].

Indeed, we prove that the above intuition is true for the class of set-depth-∆ formu-
las (precisely defined in Section 1.1) - a highly interesting class capturing many other
previously studied models (see Section 1.1), including set-multilinear depth-3 circuits.

Set-multilinear depth-3 circuits: A circuit C =
∑k

i=1

∏d
j=1 fi,j(xXj ) is called a set-

multilinear depth-3 circuit if X1 t . . . t Xd is a partition of the variable indices [n] and
fi,j(xXj ) is a linear polynomial in the variables xXj i.e. the set of variables corresponding
to the partition Xj . The set-multilinear depth-3 model, first defined by [NW97], kicked off
a flurry of activity. Though innocent-looking, it has led researchers to various arithmetic
inventions – the partial derivative method for circuit lower bounds [NW97], noncommu-
tative whitebox PIT [RS05], the relationship between tensor-rank and super-polynomial
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circuit lower bounds [Raz10], hitting-set for tensors, low-rank recovery of matrices, rank-
metric codes [FS12], and reconstruction (or learnability) of circuits [KS06]. Although, an
exponential lower bound for set-multilinear depth-3 circuits is known [NW97, RY09], the
closely associated problem of efficient blackbox identity testing on this model remained
an open question, until this work.

Our contribution: Hitting set for set-depth-∆ formulas - A whitebox deterministic
polynomial time identity test for set-depth-∆ follows from the noncommutative PIT results
[RS05]. We are interested in blackbox PIT and, naturally, we cannot see inside C and the
underlying partitions of [n]. The only information we have is the circuit-size bound, s. To
our knowledge, there was no sub-exponential time hitting-set known for the set-depth-∆
model. Our work improves this situation to quasi-polynomial for any underlying field
(refer Theorem 1). We remark that even the very special case of set-multilinear depth-3
circuits had no sub-exponential hitting-set known (see [SY10, Problem 27]); closest being
the recent result of [FS12] where they give a quasi-polynomial hitting-set for tensors,
i.e. the knowledge of the sets X1, . . . , Xd is required.

Furthermore, set-depth-4 covers other well-studied models - diagonal circuits [Sax08]
& semi-diagonal circuits [SSS12] - that had whitebox identity tests but no blackbox sub-
exponential PIT were known. For these (and set-multilinear depth-3), our hitting-set has

time complexity sO(log s), although, for general set-depth-4 it requires sO(log2 s).
Depth-4 formulas being the ultimate frontier for PIT (and lower bounds) [AV08], one

might wonder about the utility of our result on hitting-set for set-depth-∆ formulas be-
yond ∆ = 4. It turns out that there is an interesting connection: We show that a
quasi-polynomial hitting set generator for set-depth-6 formulas implies a quasi-polynomial

hitting set generator for depth-3 formulas of the form C =
∑k

i=1

∏d
j=1 fi,j(xXj )

ei,j , where

X1t. . .tXd defines a partition on [n] and fi,j are linear polynomials. Since arbitrary pow-
ers ei,j ≥ 0 are allowed, the above depth-3 model is stronger than set-multilinear depth-3
formulas (as there is no restriction of multilinearity). This appears to be temptingly close
to the general depth-3 model modulo the partition on variables, and provides us with a
good motivation to understand the strength of our approach against depth-3 formulas.

Technical novelty of our approach - As mentioned before, many works have looked
at the partial derivatives of a formula and related matrices, e.g. the Jacobian [ASSS12,
BMS11]. From a geometric viewpoint, the study via derivatives shifts the variables by an
infinitesimal amount and hopes to discover interesting structure. We take a more radical
approach; we shift the circuit by formal variables and look at how the circuit changes
by considering a transfer matrix T . The transfer matrix originates from the study of a
formula with field coefficients via a simpler one having Hadamard algebra coefficients. This
makes the transfer process more amenable to an attack using matrices and linear algebra;
proving properties that are vaguely reminiscent of the case of top-fanin k = 1.

The main technicality lies in proving the invertibility of a transfer matrix, which is
an exponential-sized matrix. Some of the arguments here are combinatorial in nature
involving greedy and binary-search paradigms.

Although, Hadamard algebra is implicit in the whitebox identity test of [RS05] and the
study of PIT over commutative algebras of [SSS09] (Theorem 6 in [SSS09]), the novelty
of our approach lies in understanding the effect of shift by viewing it through the lens of
Hadamard algebra, and thereby observing the remarkable phenomenon of low-support rank
concentration, which in turn implies that a low-support monomial survives after shifting.

We state our results more precisely now.
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1.1. Our results. Set-depth & set-height formulas - Let C be an arithmetic formula over
a field F in n variables x, consisting of alternating layers of addition (Σ) and multiplication
(Π) gates, with a Σ-gate on top. The number of layers of Π-gates in C is called the product-
depth (or simply height) of C and will be denoted by H. Naturally, the depth of C - which
is the number of layers of gates in C - is either ∆ = 2H or 2H + 1. Counting the Π-layers
from the top, we label these layers by numbers in the range [H] and will be referring to a
layer as the h-th Π-layer in C, for h ∈ [H].

We say that C is a set-depth-∆ formula if for every h-th Π-layer in C, there exists
a partition Xh,1 t · · · t Xh,dh of variable indices [n] that the product gates of the h-th
Π-layer respect. In other words, for every h ∈ [H] the i-th product gate in the h-th

Π-layer computes a polynomial of the form
∏dh
j=1 fi,j(xXh,j

), where each fi,j(xXh,j
) is a

set-depth-(∆− 2h) formula of height H −h on the variable set xXh,j
. If ∆ = 2H then the

product gates of the H-th Π-layer are allowed to compute arbitrary monomials, i.e. here
the H-th Π-layer need not respect any partition of the variables.

We will also refer to C as a set-height-H formula. Size of C, denoted by s or |C|, is the
number of gates (including the input gates) in C.

Theorem 1 (Main). There is a hitting-set generator for set-height-H formulas, of size s,
that runs in time polynomial in exp((2H2 log s)H+1), over any field F.

Remarks. 1. For blackbox PIT of set-multilinear depth-3 formulas this gives a quasi-
polynomial time complexity of sO(log s) - this is the first sub-exponential time algorithm.
2. For constants H > 1 the formula may not be multilinear, though the hitting-set
remains quasi-polynomial. The time complexity remains sub-exponential up to H =
ε log s/ log log s, for a fixed constant ε < 1 .

An interesting model that is not set-depth-∆ but still Theorem 1 could be applied is -
semi-diagonal formula. The reason being the duality transformation [Sax08, SSS12] that
helps us view it as a set-depth-4 formula. We recall - a depth-4 (ΣΠΣΠ) formula C is
semi-diagonal if, for all i, its i-th (top) product-gate computes a polynomial of the form

mi ·
∏b
j=1 f

ei,j
i,j , where mi is a monomial, fi,j is a sum of univariate polynomials, and b is a

constant. We give two applications, with similar proofs but, for different looking formulas.

Corollary 2 (Semi-diagonal depth-4). There is a hitting-set generator for semi-diagonal

depth-4 formulas, of size s, that runs in time sO(log s) (assuming char(F) zero or large).

Corollary 3 (Set-depth-3 with powers). Consider a depth-3 formula C =
∑k

i=1

∏d
j=1

fi,j(xXj )
ei,j , where fi,j is a linear polynomial in F[xXj ], ei,j ∈ N, and X1 t · · · t Xd

partitions [n]. There is a hitting-set generator for such formulas, of size s, that runs in

time sO(log2 s) (assuming char(F) zero or large). The result continues to hold even if fi,j
is a sum of univariates.

Remarks - The restriction on char(F) in the above two corollaries comes from the use of the
duality trick. We think this restriction can be lifted by using Galois rings ([Sax08, SSS12]),
and defining rank for a Hadamard algebra over a Galois ring appropriately. We avoid
working out the details here just to keep the focus on the main contributions of this work.

1.2. Organization. We develop an extensive terminology in Section 2, which would be
useful later. This section also shows the proof idea at work for the example case of diagonal
circuits. Section 3 proves the first structural property - a small shift ensures low-block-
support rank-concentration in a product of polynomials, that have disjoint variables and
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only low-weight monomials. Starting with this as a base case, Section 4 proves the second
structural property - a small shift ensures low-support rank-concentration in set-depth-∆
formulas (thus, achieving the presence of a low-support monomial). Finally, the proofs of
our main results (or hitting-sets) are completed in Section 5.

2. The basics

2.1. Polynomials. Let N := Z>0 and [n] := {1, . . . , n}. Let R be a commutative ring. In
the motivating cases R will be a field F, which we implicitly assume to be large enough.
This we can do as the required field extensions are constructible in deterministic polyno-
mial time [AL86], further, as in blackbox PIT we are allowed to evaluate the circuit over
any ‘small’ field extension.

Not always will we use bold notation for a vector, hopefully the context will avoid
the confusion. For a vector e ∈ Zn we define |e| :=

∑
i ei. Also, let the support be

S(e) := {i | ei 6= 0} and the weight s(e) be its size. For an exponent vector e ∈ Nn, we
define a coefficient operator Coef(e) : R[x]→ R that on a polynomial f ∈ R[x] equals the
coefficient of xe in f . Clearly, it is an R-module homomorphism but is not multiplicative.
Define the support of f as S(f) := {e ∈ Nn |Coef(e)(f) 6= 0} and the sparsity s(f) be its
size. The monomial-weight of f is µ(f) := maxe∈S(f) s(e). Further, define the cone of f as
S(f) := {e′ ∈ Nn | ∃e ∈ S(f), e′ 6 e}, where the inequality is coordinate-wise, and its size
as s(f). Note that for a sparse polynomial f , s(f) is small but s(f) is usually exponential.

Lemma 4 (Cone). For an n-variate polynomial f , of degree bound d and monomial-weight

µ, we have s(f) 6
(
n+1
µ

)
·
(
d+µ
µ

)
.

For u, v, a ∈ Nn define v! :=
∏
i∈[n] vi!,

(
v
u

)
:=
∏
i∈[n]

(
vi
ui

)
= v!

u!·(v−u)! , and av−u :=∏
i∈[n] a

vi−ui
i . We keep in mind the conventions: For all a < b ∈ N,

(
a
b

)
= 0 and

(
a
0

)
= 1.

Lemma 5 (Shift on monomials). Let u, v ∈ Nn, a1, . . . , an ∈ R and f =
∏
i∈[n](xi + ai)

vi.

Then, Coef(u)(f) =
(
v
u

)
· av−u.

For a polynomial f a shift does not change µ(f) but, might blow up s(f) exponentially.

2.2. Hadamard algebras. For a commutative ring R and κ ∈ N, we define the Hadamard
algebra Hκ(R) := (Rκ,+, ?), on the free R-module Rκ, by defining: u ? v := (ui · vi)i∈[κ],
where · is the multiplication in R. Hκ(R) is an R-algebra (it is closed, associative, dis-
tributive and commutative) with the zero vector as zero and the all-one vector as unity.

We can now naturally define the polynomial ring over Hκ(R), Hκ(R)[x]. It inherits
the operations +, ?, and all the elements of Hκ(R). Also there is an obvious isomorphism
between the algebras Hκ(R)[x] and Hκ(R[x]). (View the elements of Hκ(R) and Hκ(R)[x]
as ‘column vectors’ with entries from R and R[x], respectively.)

For an e ∈ Nn and f ∈ Hκ(R)[x], we have the natural notions – coefficient operator
Coef(e) : Hκ(R)[x]→ Hκ(R), support S(f) ⊂ Nn, and sparsity s(f).

Low-support coefficient-space - For any polynomial f over a Hadamard algebra Hκ(R),
where R is a field, and ` ∈ N>0, define V`(f) := spR{Coef(e)(f) | e ∈ Nn, s(e) < `} ⊆
Hκ(R). We call f `-concentrated over Hκ(R) if V`(f) = spR{Coef(e)(f) | e ∈ Nn}.

We can extend the above definition also to the case when R is an integral domain, as
we can then work with the associated field of fractions.

We demonstrate the usefulness of Hadamard algebra & ‘shifting’ in achieving low-
support rank concentration, using the example case of diagonal circuits (see Section A).
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2.3. Proof ideas. With the spirit of the argument (as in Section A) in mind, let us state

the proof ideas. Let C(x) =
∑k

i=1

∏d
j=1 fi,j(xXj ), where fi,j is a sparse polynomial in

F[xXj ], be a set-depth-4 formula. Consider a ΠΣΠ formula

D(x) := f1(xX1) ? · · · ? fd(xXd
) over Hk(F),

where the i-th coordinate of fj(xXj ) is fi,j(xXj ). Note that C(x) can be expressed as
(1, 1, . . . , 1) ·D(x), where · is the usual matrix product. Denote (1, 1, . . . , 1) by 1.

For a subspace V ⊆ Fk and polynomials D1, D2 ∈ Hk(F)[x], we say D1 ≡ D2 (mod V )
if each coefficient of D1 − D2 is in V . Somewhat wishfully, we would like to propose a
low-support rank-concentration property:

Conjecture 6 (Wishful!). If ` > log |D| then D(x) ≡ 0 (mod V`(D)).

If this is true then the coefficient of xe, in D, is in the F-span of those coefficients that
correspond to low support, i.e. O(log |D|). Suppose we verify the zeroness of πS ◦C(x) =

1 · D(πSx), for S ∈
( [n]
`−1

)
and πS : xi 7→ (xi if i ∈ S, else 0). This means that ∀e ∈ Nn

with s(e) < ` we have 1 · Coef(e)(D) = 0. Now the conjecture implies that also ∀e ∈ Nn
with s(e) > ` we have 1 ·Coef(e)(D) = 0, clearly implying, C(x) = 1 ·D(x) = 0. In other

words, we have a blackbox PIT for set-depth-4 in time poly(nlog |C|).
Unfortunately, Conjecture 6 is easily false! For example, let D(x) = x1 · · ·xn and

1 < ` 6 n. Then obviously D(x) 6≡ 0 (mod V`(D)).
Here is where ‘shifting’ enters the picture. The goal in this paper is to prove that after a

‘small’ shift of the variables, D begins to satisfy something like Conjecture 6. This requires
a rather elaborate study of how a formula changes when shifted; the meat is expressed
through certain transfer equations. Looking ahead, we conjecture (without proof) that
the phenomena continue to hold in general constant-depth formulas.

2.4. Set-height formulas over Hadamard algebra. Just as we have defined set-height
formulas over a field F - meaning, the underlying constants come from F, we can also define
set-height formula in a natural way over any Hadamard algebra Hκ(R). The reason we
can extend the definition to arbitrary Hκ(R) is that the defining property of set-height
formulas is the existence of a partition of variables for every Π-layer (irrespective of where
the constants of the formula come from). Size of a formula C over Hκ(R) is defined as κ
times the number of gates in C.

Let C be a set-height-H formula (over F) of depth ∆ - we will count depth of C from
the top, i.e. the top Σ-gate is at depth 1. If ∆ is even (resp. odd) then the gates of
the bottom-most Σ-layer compute sparse polynomials (resp. linear polynomials) in the
variables. Let k be the maximum among the fanin of the Σ-gates of C (barring the gates
of the bottom-most Σ-layer), and d the maximum among the fanin of the Π-gates in C.

Uniform fanin of Σ and Π-gates - With the definitions of k and d as above, we can assume
that the fanin of every Σ-gate in C (barring the gates of the bottom-most Σ-layer) is k,
and fanin of every Π-gate is d. This can be achieved by introducing ‘dummy’ gates: The
‘dummy’ Σ-gates introduced as children of a Π-gate compute the field constant 1, and the
‘dummy’ Π-gates introduced as children of a Σ-gate also compute 1 except that some of
the field constants on the wires are set to zeroes. This process keeps C a set-height-H
formula but might bloat up the size from s to s∆, although it does not change k and d
(according to the way we have defined them). Of course, formula C is not modified physi-
cally as it is presented as a blackbox. But the point is, even in the blackbox setting we can
treat C as a set-height-H formula with uniform fanin of Σ and Π-gates. We will call this
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uniform fanin of the Σ and Π-gates as the Σ-fanin and Π-fanin, respectively. Note that the
definition of Σ-fanin excludes the gates of the bottom-most Σ-layer - they are handled next.

Fanin bound on bottom-most Σ-gates - If ∆ is even, denote the set of monomials computed
by the H-th Π-layer by M ; if ∆ is odd then M := x∪ {1}. The fanin of every gate of the
bottom-most Σ-layer is bounded by λ := |M |+ 1. Refer to λ as the sparsity parameter.

Henceforth, we will assume uniform Σ and Π-fanin of C (k and d respectively), keeping
in mind that the fanin of every gate of the bottom-most Σ-layer is bounded by λ. All of
k, d and λ are in turn bounded by s. Denote this class of formulas over F by C0(k, d, λ,x).

Recursive structure of set-height formulas over Hadamard algebras - Let Ch(k, d, λ,x) be
the class of set-height-(H−h) formulas, of depth (∆−2h), in the variables x with Σ-fanin
k, Π-fanin d and sparsity parameter λ, over the Hadamard algebra Rh := Hkh(F). (Eg.,
to begin with h = 0 and the input formula C ∈ C0(k, d, λ,x).) Assume that k, d and λ are
less than s, which is the size of the input formula C. Let Ch be a formula in Ch(k, d, λ,x).

(1) Ch(x) =
∑
i∈[k]

ci ·
∏
j∈[d]

fi,j(xXj ),

ci ∈ Rh, fi,j(xXj ) is a set-height-(H − h − 1) formula over Rh on the variables xXj ,
and X1 t · · · t Xd is the partition of [n] that the first Π-layer of Ch(x) respects. Let
Rh+1 := Hk(Rh) = Hkh+1(F). Define fj(xXj ) := (f1,j(xXj ), . . . , fk,j(xXj ))

T ∈ Rh+1[xXj ].
Let

Dh(x) := f1(xX1) ? · · · ? fd(xXd
) =

∏
j∈[d]

fj(xXj ) over Rh+1,

where ? denotes the Hadamard product in the algebra Rh+1 (extended naturally to the
polynomial ring over Rh+1). Evidently,

(2) Ch(x) = (c1, . . . , ck) ·Dh(x) = cT ·Dh(x),

where · is the product for matrices over Rh[x]. We intend to understand the nature of the
circuit Ch(x) by studying the properties of the circuit Dh(x) - it is here that the recursive
structure reveals itself as in Lemma 7. Let Ph(h′) := {Xh′,1, . . . , Xh′,d} be the partition of
[n] that the h′-th Π-layer of Ch respects. (Recall that when the depth of Ch is even then the
bottom-most Π-layer need not respect any partition - this attribute would always remain
implicit in our discussions.) Define the partition Ph(h′, Xj) := {Xh′,1∩Xj , . . . , Xh′,d∩Xj}
(ignore here the empty sets), for every 1 ≤ j ≤ d.

Lemma 7. For every j ∈ [d], fj(xXj ) is a set-height-(H − h− 1) formula in Rh+1[xXj ]
with Σ-fanin k, Π-fanin d and sparsity parameter λ, i.e. fj(xXj ) ∈ Ch+1(k, d, λ,xXj ), such
that every h′-th Π-layer of fj(xXj ) respects the partition Ph(h′ + 1, Xj). (Pf. in App. B)

2.5. Matrices. A matrix M with coefficients in ring R, and the rows (resp. columns)
indexed by I (resp. J ) is compactly denoted as: M ∈ (I ×J → R). M is simultaneously

a map from I × J to R, and a R-linear transformation from R|J | to R|I|. When R is an
integral domain, we denote the rank by rkRM . Note that the row-rank and column-rank
are equal for a matrix. We call a matrix M ∈ (I × J → R), |I| = |J | − 1, strongly
full if for all u ∈ J , MI,J\{u} is invertible. For two matrices M1,M2 and a R-module
V , we write M1 ≡ M2 (mod V ) to mean that each column of M1 − M2 is in V . For
two matrices M1 ∈ (I1 × J1 → R) and M2 ∈ (I2 × J2 → R), the matrices M−1

1 (when
|I1| = |J1|), M1M2 (when J1 = I2) and M1 ⊗M2 are in (J1 × I1 → R), (I1 × J2 → R)
and ((I1 × I2) × (J1 × J2) → R) respectively. For a matrix M ∈ Rκ×a and an element
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v ∈ Hκ(R), v ? M is the matrix obtained after taking the Hadamard product of each
column with v. For two matrices M1 ∈ (I ×J1 → R),M2 ∈ (I ×J2 → R) the Hadamard-
tensor matrix M1 ~M2 ∈ (I × (J1 × J2) → R) is defined as: Its (j1, j2)-th column is
(M1)I,j1 ? (M2)I,j2 . We list some intuitive formulas.

Lemma 8 (Matrices). For any column-vector v and matrices Ei,Mi, Zi, with suitable
assumptions on the sizes and invertibility, we have:

(1) (⊗iEi) · (⊗iMi) = ⊗i(EiMi).
(2) ⊗iM−1

i = (⊗iMi)
−1.

(3) (v ? M1) ·M2 = v ? (M1M2).
(4) (Z1M1)~ (Z2M2) = (Z1 ~ Z2) · (M1 ⊗M2).

3. Low-block-support rank-concentration

For i ∈ [`], let fi ∈ Hκ(F)[xXi ] be a polynomial of degree at most δ, where the Xi’s are
disjoint subsets of [n]. Define µ := maxi{µ(fi)}. By Lemma 4, the sparsity parameter

λ := maxi{s(fi)} of the fi’s is bounded by (δ + n+ µ)O(µ). Define ` := 2 dlog2 κe+ 1.
Consider the depth-3 (ΠΣΠ) formula over Hκ(F),

D := f1(xX1) ? · · · ? f`(xX`
) in Hκ(F)[x].

We shift it by formal variables t to get D(x + t) = f1(xX1 + tX1) ? · · · ? f`(xX`
+ tX`

)
in Hκ(F[t])[x]. Wlog we can assume that, ∀i ∈ [`], fi(t) is a unit in Hκ(F(t)). This is
because not being a unit only means that the vector fi ∈ F(t)κ has a zero coordinate,
say at place j ∈ [κ]. Then the j-th coordinate of D(t) is zero, and we can forget this
position altogether; project the setting to the simpler algebra Hκ−1(F). We normalize fi
to f ′i(x) := fi(t)

−1 ? fi(x+ t). Define D′(x) := f ′1(xX1) ? · · · ? f ′`(xX`
) in Hκ(F(t))[x].

(3) D(x+ t) = D(t) ? D′(x).

Any exponent e ∈ Nn, possibly appearing in D′, can be written uniquely as e =
∑

i∈[`] ei,

where ei ∈ S(fi), because fi’s are on disjoint set of variables. We will frequently use this
identification. We define the block-support of e, bS(e) := {i ∈ [`] | ei 6= 0}, and let the
block-weight bs(e) be its size. Based on this we define a relevant vector space, for l ∈ N>0,

Vl(D′) := spF(t)

{
Coef(e)(D′) | e ∈ Nn, bs(e) < l

}
.

Ordering & Kronecker-based map - We define a term ordering on the monomials te, e ∈ Nn,
and their inverses. For a w ∈ Nn we denote the ordering as te �w te

′
, or equivalently

1/te
′ �w 1/te, if

∑
i∈[n]wiei 6

∑
i∈[n]wie

′
i. Note that the ordering is multiplicative on the

monomials, equivalently, the induced ordering on the exponents is additive.
For reasons of efficiency, useful later but skippable for now, we assume: ≺w keeps

the monomials
{∏

i∈[`] t
ei | ∀i ∈ [`], ei ∈ S(fi)

}
distinct. If we fix such a w ∈ N>0 (note:

it could be found in time λO(`)), then the Kronecker-like homomorphism τ : ti 7→ ywi

(∀i ∈ [n]) will obviously also map the aforementioned monomials to distinct univariate
ones. We extend τ to a homomorphism from Hκ(F[t])[x] to Hκ(F[y])[x], by keeping x
unchanged. Its domain can be further extended to a subset of Hκ(F(t))[x] (i.e. as long as
τ does not cause a division by zero).

We would like to prove something like Conjecture 6 for D(x+ t). Note that it suffices
to focus on D′(x) as its coefficients are all scaled-up by the same nonzero ‘constant’ D(t).
The rest of the section is devoted to proving the following theorem.
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Theorem 9 (Low block-support suffices). D′(x) ≡ 0 (mod V`(D′)). Further, it remains
true under the map τ .

3.1. Shift-&-normalizing D. We investigate the effect of shift-&-normalizing on fi.
Write, for i ∈ [`], fi(xXi) =:

∑
vi∈S(fi)

zi,vix
vi . (Note: vi ∈ Nn and we will denote its

j-th coordinate by vi,j ∈ N.) This yields, after shift-&-normalize (division by units is
allowed in Hκ(F(t))),

f ′i(x) := fi(x+ t)/fi(t) =:
∑

ui∈S(fi)

z′i,uix
ui ∈ Hκ(F(tXi))[xXi ].

The last step defines

(4) z′i,ui = Coef(ui)(f
′
i) = fi(t)

−1 ?
∑

vi∈S(fi)

zi,vi

(
vi
ui

)
tvi−ui

for all exponent vectors ui ∈ S(f ′i) ⊆ S(f ′i) = S(fi). The constant coefficient of f ′i , z
′
i,0 = 1.

3.2. Transfer equation of a single polynomial. Let f be one of the polynomials
f1, . . . , f` over Hκ(F). Let S := S(f) and S := S(f). For v ∈ S define zv := Coef(v)(f),
and z′v := Coef(v)(f ′). Since f is a unit, obviously, S 6= ∅ and S 6= ∅. Let Z ∈ ([κ]×S → F)
be such that: Its v-th column is the vector zv. Note that exactly s(f) of these columns
are nonzero. Let Z ′ ∈ ([κ] × S → F(t)) be such that: Its u-th column is the vector z′u.
For any C ⊆ S(f) we define a diagonal matrix NC ∈ (C × C → F[t]) as: Its u-th diagonal
element is tu. Let the transfer matrix (of ΣΠ formulas) T ∈ (S × S → F) be such that:
Its (v, u)-th entry is

(
v
u

)
. We are ready to state the promised transfer equation.

Lemma 10 (Transfer equation - primal). Z ′ = f(t)−1 ?ZNSTN
−1
S . (Pf. in Appendix C)

For later use, we need a ‘modulo’ version of this transfer equation. As shorthand denote
Z ′[κ],C by Z ′C , for any C ⊆ S. Note that the transfer matrix captures a transformation,

from Z to Z ′, which is clearly invertible. Thus, T is an invertible matrix. Define T ′ :=
(TS,S)−1 ∈ (S × S → F) and S∗ := S \ {0}. If S∗ = ∅ then it only means that f ∈ Hκ(F),
and is invertible. Such an f could be dropped from D right in the beginning. From now
on we assume S∗ 6= ∅. We deduce a modulo version now.

Lemma 11 (Transfer equation - mod). We have f(t)−1?Z ≡ Z ′S∗NS∗T ′S∗,SN
−1
S (mod z′0).

Further, T ′S∗,S is strongly full. (Pf. in Appendix C)

3.3. Transfer equation of D: Hadamard tensoring. For two subsets B1, B2 ⊂ Nn
we define B1 + B2 := {b1 + b2 | b1 ∈ B1, b2 ∈ B2}, where the sum is coordinate-wise.For
i ∈ [`], let Si := S(fi) and S∗i := Si \ {0}. Define S :=

∑
i∈[`] Si and S ′ :=

∑
i∈[`] S∗i .

Note that there is a natural identification between S ′ and ×i∈[`]S∗i . We will be implicitly
using this. For i ∈ [`], define Zi ∈ ([κ] × Si → F) such that: Its ui-th column is the
vector zi,ui := Coef(ui)(fi). Let Z ∈ ([κ] × S → F) such that: Its u-th column is the
vector zu := Coef(u)(D). Note that Z = ~i∈[`]Zi. For i ∈ [`], define Z ′i ∈ ([κ]× S∗i → F)
such that: Its vi-th column is the vector z′i,vi := Coef(vi)(f

′
i). (Note that Z ′i has fewer

columns than Zi.) Let Z ′ ∈ ([κ] × S ′ → F) such that: Its v-th column is the vector
z′i,v := Coef(v)(D′). Note that Z ′ = ~i∈[`]Z

′
i. For any C ⊆ S we define a diagonal matrix

NC ∈ (C × C → F[t]) as: Its u-th diagonal element is tu. For i ∈ [`], define T ′i := T ′S∗i ,Si
.

Let the transfer matrix (of ΠΣΠ formulas) T ′ ∈ (S ′ × S → F) be ⊗i∈[`]T
′
i .

Lemma 12 (Tf. eqn. depth-3). D(t)−1 ? Z ≡ Z ′NS′T ′N−1
S (mod V`(D′)). (Pf. App. C)
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3.4. Combinatorial juggernaut: To select columns of T ′. Recall that T ′ has rows
(resp. columns) indexed by S ′ (resp. S) and has entries in F. Let M be some κ > 0
columns that we intend to remove from T ′; we call them marked and the others S \M are
unmarked. We make the following claim about the submatrices of T ′ not involving M.

Theorem 13 (Invertible minor). There exist unmarked columns C ⊆ S, |C| = |S ′|, such
that |T ′S′,C | 6= 0. (Proof in Appendix C)

3.5. T ′ on the nullspace of Z: Finishing Theorem 9. Recall that the columns of
Z are indexed by S. Think of these ordered by the weight vector w, as discussed in the
beginning of this section. Pick a basis M, size at most κ, of the column vectors of Z by
starting from the largest column. Formally, M gives the unique (once ≺ is fixed) basis
such that for each u-th, u ∈ S \ M, column of Z there exist columns u1, . . . , ur ∈ M
spanning the u-th column, and u ≺ ur ≺ · · · ≺ u1. We think of the columns M of T ′

marked, and invoke Theorem 13 to get the C ( S. We define an A ∈ (S × C → F):
If a is the v-th column of A then Z · a = 0 expresses the F-linear dependence of zv on
{zv′ | v′ ∈M, v ≺ v′}; in particular, the least row where a is nonzero is the v-th, the entry
being 1. Recall the transfer equation, Lemma 12, for the following.

Lemma 14 (T ′ on nullspace of Z). |T ′N−1
S A| 6= 0. Further, the leading nonzero inverse-

monomial in the determinant has the coefficient |T ′S′,C |. (Proof in Appendix C)

Finally, we use A to finish the proof of our main structure theorem.

Proof of Theorem 9. From the transfer equation, Lemma 12, we recall

D(t)−1 ? Z ≡ Z ′NS′T ′N−1
S (mod V`(D′)).

Right-multiplying by A, we get

(5) 0 = D(t)−1 ? (ZA) ≡ Z ′NS′T ′N−1
S A (mod V`(D′)).

Since T ′N−1
S A is invertible from Lemma 14 and NS′ is obviously invertible, we get

Z ′ ≡ 0 (mod V`(D′)).
(Here we do use that the matrices are over F(t) and that V`(D′) is an F(t)-vector space.)
This immediately implies the first part of Theorem 9, as Z ′ collected exactly those coef-
ficients of D′ that we a priori did not know in V`(D′). The second part of the theorem
follows easily as: (1) τ keeps D(t) a unit, and (2) τ corresponds to the correct term
ordering �w. These two properties allow the above proof also work after applying τ . �

4. Low-support rank-concentration

We will prove that a set-height-H formula, after a ‘small’ shift, begins to have ‘low’-
support rank-concentration. The proof is by induction on the height of the formulas over
Hadamard algebras. For this, we would need the following concepts.

For H > h ∈ N, let th := {tH−1, . . . , th+1, th} be a set of formal variables and F(th)
be the function field. These th-variables are different from the variables x involved in the
formula C. Let R′h := Hkh(F(th)) be a Hadamard algebra over F(th); kh = dimF(th)R′h.
Further, R′h+1[th] denotes the (univariate) polynomial ring over R′h+1, and R′h+1(th) is
the corresponding ring of fractions. (R′h+1(th) is basically Hkh+1(F(th)).)

Low-support shift for Ch(k, d, λ,x) - Let τh be a map from F[x] to F(th)[x] defined as,

τh : xi 7→ xi + αH−1,i t
aH−1,i

H−1 + · · ·+ αh,i t
ah,i
h , for xi ∈ x,
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aH−1,i, . . . , ah,i ∈ Z+ and αH−1,i, . . . , αh,i ∈ F. (τh fixes F, i.e. τh(c) = c for c ∈ F.) In
short, we will write τh : x 7→ x+αh t

ah
h . For `h ∈ N, the map τh (as above) is called an `h-

support shift for the class of formulas Ch(k, d, λ,x) if for every formula Ch ∈ Ch(k, d, λ,x),
the polynomial τh(Ch(x)) = Ch(x+αh t

ah
h ) is `h-concentrated over R′h.

For the rest of our discussion, we will fix `h as follows, for H > h ≥ 0:

`h :=

{
(2HdH log2 ke)H−h−1 · 2 dH log2(kλ)e+ 1, if ∆ is even,

(2HdH log2 ke)H−h + 1, if ∆ is odd (& for h = H, `H := 2).

The above setting satisfies the relation `h = (`h+1−1)H(`−1)+1, where ` := 2dH log2 ke+
1, for every H − 1 > h ≥ 0 (and also for h = H − 1 when ∆ is odd).

Recall Equation 2 that says - for each h ∈ {0, . . . ,H−1} and Ch, there exists c ∈ Hk(Rh)
such that Ch = cT ·Dh. This section is dedicated to proving the following theorem.

Theorem 15 (Low support suffices). We can construct τ0 such that τ0 ◦ D0 is `0-
concentrated over R′1[t0], in time polynomial in (d+ n+ `0)`0, where n := |x|.

Proof strategy ahead - The idea is to construct the map τh by applying induction on height
H − h of the class Ch(k, d, λ,x). By Equation 2,

Ch(x) = cT · (f1(xX1) ? · · · ? fd(xXd
)).

From Lemma 7, fj(xXj ) ∈ Ch+1(k, d, λ,xXj ). By definition, τh+1 : xi 7→ xi+αH−1,i t
aH−1,i

H−1 +

· · ·+ αh+1,i t
ah+1,i

h+1 is an `h+1-support shift for Ch+1(k, d, λ,xXj ) for every 1 ≤ j ≤ d. Here
is where we use induction on height H − h: We will build the map τh from the induc-
tive knowledge of τh+1. Basically, we will show that it is possible to efficiently compute
ah,1, . . . , ah,n ∈ Z+ and αh,1, . . . , αh,n ∈ F such that τh : xi 7→ τh+1(xi) + αh,i t

ah,i
h is an

`h-support shift for Ch(k, d, λ,x).

The proof of Theorem 15. The proof proceeds by induction on height H − h of the
class Ch(k, d, λ,x) (in other words, reverse induction on h). The induction hypothesis
is that τh+1, an `h+1-support shift for the class Ch+1(k, d, λ,x), can be constructed in
time polynomial in (d + n + `h+1)`h+1 , where n := |x|. Overall this means, by varying

h ∈ [0, ...,H− 1], we get a hitting-set of size polynomial in ΠH−1
h=0 (d+ n+ `h)`h 6 (d+n+

`0)
∑

h `h < (d + n + `0)2`0 . We discuss the base case and the inductive step in separate
detail. Keep in mind that fj(xXj ) ∈ Ch+1(k, d, λ,xXj ).

4.1. Base case (h+ 1 > H − 1). The base case is when H −h− 1 = 1 or 0, i.e. fj(xXj )’s
are sparse polynomials or linear polynomials over Rh+1, depending on whether ∆ is even
or odd, respectively. These two base cases have varying level of difficulty. If H−h−1 = 0
then `h+1 = `H = 2, hence taking τH as the identity map suffices (since fj(xXj )’s are linear
polynomials) as an `H -support shift for the class CH(k, d, λ,x). If H − h − 1 = 1 then
fj(xXj )’s are sparse polynomials. We first prove an, independently interesting, property.

Lemma 16 (Sparse polynomial). Let f ∈ Hκ(F)[x] be a polynomial with degree bound δ.
Let `′ := 1 + min{2 dlog2(κ · s(f))e , µ(f)}. We can construct a map σ : xi 7→ xi + tbi, in

time polynomial in (δ+n+ `′)`
′
, such that σ(f) is `′-concentrated over Hκ(F(t)). (Ap. D)

Now we apply the lemma to the sparse polynomial fj(xXj ), which has the sparsity

parameter λ. Hence we define τh+1 = τH−1 : xi 7→ xi+t
bi
H−1 (in other words, aH−1,i := bi).

This, by Lemma 16, ensures that the concentration parameter is 2
⌈
log2(kH−1 · λ)

⌉
+ 1 6
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2 dH log2(kλ)e + 1 = `H−1 = `h+1. Finally, τH−1 is an `H−1-support shift for the class
CH−1(k, d, λ,x), and it can be constructed in time polynomial in (d+ n+ `H−1)`H−1 .

4.2. Induction (h+ 1 to h). Let f̂j(xXj ) := τh+1(fj(xXj )). Then,

D̂h(x) := τh+1(Dh(x)) = f̂1(xX1) ? · · · ? f̂d(xXd
),

where every f̂j is `h+1-concentrated over R′h+1 (by induction hypothesis). Let t :=
{th,1, . . . , th,n} be a set of ‘fresh’ formal variables. (We will keep in mind that the t-
variables would be eventually set as univariates in a variable th.) As before in Eqn. 3,

D̂h(x+ t) =
∏
j∈[d]

f̂j(xXj + tXj ) =
∏
j∈[d]

f̂j(tXj ) ? f̂
′
j(xXj ) = D̂h(t) ? D̂′h(x).

In the same spirit as Theorem 9, we would like to show that D̂′h(x) ≡ 0 (mod V`(D̂′h)),

where V`(D̂′h) := spF(th+1,t)

{
Coef(e)(D̂′h) | e ∈ Nn, bs(e) < `

}
, and ` = 2dH log2 ke + 1.

As before (see ‘key argument’ in Lemma 16), it is sufficient to prove the typical case

(i.e. product of the first ` polynomials), D̂′h,`(x) :=
∏
j∈[`] f̂

′
j(xXj ) ≡ 0 (mod V`(D̂′h,`)) To-

wards this, we define the truncated polynomials, ĝj(xXj ) :=
∑

e:s(e)<`h+1
Coef(e)(f̂j)x

e
Xj

and let the corresponding product be Êh(x) :=
∏
j∈[d] ĝj(xXj ). Sparsity of ĝj(xXj ) over

R′h+1 is bounded by (dH−h−1 + n+ `h+1)`h+1 =: λh. Mimicking the notations on D̂h let,

Êh(x+ t) =
∏
j∈[d]

ĝj(xXj + tXj ) = Êh(t) ? Ê′h(x) and Ê′h,`(x) :=
∏
j∈[`]

ĝ′j(xXj ).

By Theorem 9, we can find ah,1, . . . ah,n ∈ Z+ in time (dλh)O(`) = (d + n + `h)O(`h) such

that by setting th,i = αh,i t
ah,i
h (any αh,i ∈ F \ {0} works), where th is a ‘fresh’ formal

variable, we can ensure that the following is satisfied:

(6) Ê′h,`(x) ≡ 0 (mod V`(Ê′h,`)).

The claim is that the same setting th,i = αh,i t
ah,i
h (now with carefully chosen αh,i’s) also

ensures that D̂′h,`(x) ≡ 0 (mod V`(D̂′h,`)). Consequently, D̂′h is (`− 1)(`h+1 − 1) + 1 < `h
concentrated over R′h+1(th). This is what we argue next. Equation 6 implies
(7)

Êh,`(x+α t) =
∏
j∈[`]

ĝj(xXj +αXj tXj ) = Êh,`(α t)?Ê′h,`(x) ≡ 0 (mod V`(Êh,`(x+α t))),

where (reusing symbol) t := (t
ah,1
h , . . . , t

ah,n
h ) and α := (αh,1, . . . , αh,n). Define, D̂h,`(x) :=∏`

j=1 f̂j(xXj ). We need to take a closer look at how the coefficients of D̂h,`(x), D̂h,`(x+

α t), Êh,`(x) and Êh,`(x+α t) are related to each other. Towards this, define:

ẑj,uj := Coef(uj)(f̂j(xXj )) ∈ R′h+1,

ẑ′j,uj := Coef(uj)(f̂j(xXj +αXj tXj )) ∈ R′h+1[th],

z̃j,uj := Coef(uj)(ĝj(xXj )) ∈ R′h+1; equals ẑj,uj if uj ∈ S(ĝj),

z̃′j,uj := Coef(uj)(ĝj(xXj +αXjtXj )) ∈ R′h+1[th].
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Let,

B̂j := {uj : ẑj,uj is in the F(th+1)-basis of the coefficients of f̂j} and

B̃j := {uj : z̃j,uj is in the F(th+1)-basis of the coefficients of ĝj}
with respect to some fixed basis that comprises coefficients of monomials of as low support

as possible. Note that B̂j = B̃j =: Bj , as f̂j is `h+1-concentrated over R′h+1.
The crucial observation is that, for any vj ∈ Bj , ẑ′j,vj gets a th-free contribution only

from the monomial xvj , thus, its basis representation looks like:

ẑ′j,vj = (1 + a(vj , vj)) · ẑj,vj +
∑

uj∈Bj\{vj}

a(uj , vj) · ẑj,uj ,

where a’s are in F(th+1)[th] and th divides each a(·, vj). Similarly,

z̃′j,vj = (1 + b(vj , vj)) · ẑj,vj +
∑

uj∈Bj\{vj}

b(uj , vj) · ẑj,uj ,

where b’s are in F(th+1)[th] and th divides each b(·, vj). Now define the following matrices:

Ẑj ∈ ([kh+1]×Bj → F(th+1)) ; with uj-th column ẑj,uj ,

Ẑ ′j ∈ ([kh+1]×Bj → F(th)) ; with uj-th column ẑ′j,uj ,

Z̃ ′j ∈ ([kh+1]×Bj → F(th)) ; with uj-th column z̃′j,uj .

From the above crucial observation,

(8) Ẑ ′j = Ẑj · M̂ ′ and Z̃ ′j = Ẑj · M̃ ′,

where M̂ ′, M̃ ′ ∈ (Bj × Bj → F(th+1)[th]) with rows indexed by uj ∈ Bj and columns

indexed by vj ∈ Bj . The (uj , vj)-th entry of M̂ ′ contains a(uj , vj) if uj 6= vj , otherwise

1 + a(uj , vj) if uj = vj . Similarly, the (uj , vj)-th entry of M̃ ′ contains b(uj , vj) if uj 6= vj ,

otherwise 1+b(uj , vj) if uj = vj . Note that both M̂ ′ and M̃ ′ are invertible over F(th+1)(th)

as det(M̂ ′) ≡ det(M̃ ′) ≡ 1 (mod th). Therefore,

(9) Ẑ ′j = Z̃ ′j · (M̃ ′−1M̂ ′) and Z̃ ′j = Ẑ ′j · (M̃ ′−1M̂ ′)−1.

Now observe that any coefficient of D̂h,`(x+α t) is an F(th)-linear combination of the

columns of ~j∈[`]Ẑj (by the definition of Bj), which by Equation 8 (& Lemma 8-(4)) is

an F(th)-linear combination of the columns of ~j∈[`]Ẑ
′
j - this in turn is an F(th)-linear

combination of the columns of ~j∈[`]Z̃
′
j (by Equation 9). By Equation 7, any F(th)-linear

combination of the columns of ~j∈[`]Z̃
′
j can be expressed as an F(th)-linear combination

of those columns u of ~j∈[`]Z̃
′
j for which bs(u) < `, which in turn can be expressed as an

F(th)-linear combination of those columns u of ~j∈[`]Ẑ
′
j for which bs(u) < ` (by Equation 9

again). In other words, we have shown the following: D̂h,`(x+α t) ≡ 0 (mod V`(D̂h,`(x+

α t))). This would imply that D̂′h,`(x) ≡ 0 (mod V`(D̂′h,`)), if we choose α so that the

map th,i 7→ αh,i t
ah,i
h ensures that f̂j(αXj tXj )

−1 is well-defined in R′h+1(th). Such an α

can be constructed, by Lemma 17, in time polynomial in λh = (dH−h−1 + n + `h+1)`h+1 .
Therefore, τh : xi 7→ τh+1(xi) + αh,i t

ah,i
h is such that τh(Dh(x)) is `h-concentrated over

R′h+1[th]. Since Ch(x) = cT · Dh(x), hence τh(Ch(x)) is `h-concentrated over R′h. This

finishes the construction of τh, given τh+1, in time (d+ n+ `h)O(`h). �
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Lemma 17 (Preserve invertibility). Let f ∈ Hκ(F)[x] be a polynomial with degree bound
δ. Assume that f is `′-concentrated over Hκ(F), and that f−1 ∈ Hκ(F(x)). Then, we can

contruct an α ∈ Fn, in time polynomial in κ(δ + n+ `′)`
′
, such that f(α)−1 ∈ Hκ(F).

(Proof in Appendix D.)

5. Reading off the hitting-set

5.1. Proof of Theorem 1. Suppose we are given a blackbox access to a set-height-H
nonzero formula C of size s, more so we can think of C = C0 ∈ C0(k, d, λ,x). Using

Theorem 15 we can construct a map τ0 : F[x] 7→ F[t0][x] such that D̂ := τ0 ◦ D0 is

`0-concentrated over R′1[t0], in time (d + n + `0)O(`0). Clearly, D̂ ∈ Hk(F[t0])[x] and

C ′ := τ0◦C = cT ·D̂. For X ⊆ [n] of size at most `0, define σX : xj 7→ (xj if j ∈ X, else 0)

for all j ∈ [n]. Clearly, σX ◦C ′ is only `0-variate, thus it has sparsity (dH +`0)O(`0). By the

assumption on D̂ we know that there exists such an X for which σX ◦C ′ 6= 0. Thus, using
standard sparse PIT methods (see [BHLV09]) we can construct a hitting-set for C ′, in

time (dH + n+ `0)O(`0) = 2O(`0H log(s+`0)) = exp(O(`0H
2 log s)), which is time polynomial

in exp((2H2 log s)H+1). �

5.2. Proof of Corollary 2. Suppose we are given a blackbox access to a semi-diagonal

formula C =
∑k

i=1mi ·
∏b
j=1 f

ei,j
i,j over field F, where mi is a monomial, fi,j is a sum of

univariate polynomials, and b is a constant. Call its size s.
Assume p := char(F) is zero (or larger than maxi,j{ei,j}). Using the duality trick (see

[SSS12, Theorem 2.1]), there exists another representation of C as C ′ :=
∑k′

i=1

∏n
j=1 gi,j(xj)

of size sO(b). Rewrite this, using the obvious Hadamard algebra Hk′(F), as - C ′ = cT ·D,
where D = G1(x1) ? · · · ? Gn(xn) ∈ Hk′(F)[x]. Trivially, the monomial-weight of each Gj
is bounded by 1. Thus, by invoking Theorem 9 (& the ‘key argument’ in Lemma 16) we

can shift D, in time sO(log k′), such that it becomes O(log k′)-concentrated. On top of the

shift, the usual sparse PIT gives a hitting-set for C in time sO(log s). �

5.3. Proof of Corollary 3. Suppose we are given a blackbox access to the formula

C =
∑k

i=1

∏d
j=1 fi,j(xXj )

ei,j , where fi,j is a sum of univariate polynomials in F[xXj ],

ei,j ∈ N, and X1 t · · · tXd partitions [n]. Let the formula size be s.
Assume char(F) is zero (or larger than maxi,j{ei,j}). Using the duality trick (see

[SSS12, Theorem 2.1]), there exists another representation of fi,j(xXj )
ei,j as Fi,j :=∑ki,j

p=1

∏
q∈Xj

gi,j,p,q(xq) of size sO(1). Trivially, the monomial-weight of each gi,j,p,q is

bounded by 1. Overall, we can represent C now as C ′ :=
∑k

i=1

∏d
j=1 Fi,j , which is a

set-depth-6 formula. Recall the inductive proof of Theorem 15 on C ′. It will have H = 3
inductive steps. The crucial observation is that in the base case (dealing with sparse
polynomials) we can use a better bound `′ = 2 in Lemma 16, as µ(gi,j,p,q) 6 1. This leads

us to an improvement on Theorem 15 - we construct τ0 such that τ0 ◦ D0 is O(log2 s)-

concentrated over R′1[t0], in time polynomial in slog2 s. Again, on top of the shift, the

usual sparse PIT gives a hitting-set for C in time sO(log2 s). �

6. Conclusion

We have identified a natural phenomena - low-support rank-concentration - in constant-
depth formulas, that is directly useful in their blackbox PIT (up to quasi-polynomial time).
In this work we gave a proof for the interesting special case of set-depth-∆ formulas.
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More work is needed to prove such rank-concentration in full generality. Next, it would
be interesting to prove rank-concentration for depth-3 formulas. Another direction is to
improve this proof technique to give polynomial-time hitting-sets for set-depth-∆ formulas.
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Appendix A. Diagonal circuits: The spirit of the argument

A circuit C =
∑k

i=1 f
d
i is a diagonal circuit if fi is a linear polynomial in n variables,

x. 1 We can associate a formula over a Hadamard algebra with C, namely

D(x) := F d over Hk(F),

where F = z0 + z1x1 + . . .+ znxn, every zj ∈ Fk and F restricted to the i-th coordinate of
the vectors z0, . . . , zn is the linear polynomial fi. Clearly, C = (1, 1, . . . , 1) ·D(x), where
· is the usual matrix product. Assume that char(F) = 0 or > d.

Consider shifting every xj by a formal variable tj , i.e. xj 7→ xj + tj . Then,

D(x+ t) = F (x+ t)d = D(t) ? (1 + z′1x1 + . . .+ z′nxn)d =: D(t) ? D′(x),

where z′j = D(t)−1zj . We have stated before (in Section 1) that variables would be
ultimately shifted by field constants. Here is a way to set tj a field constant: To ensure
that D(t)−1 makes sense when tj ’s are set to constants, we map tj 7→ yj where y is a fresh
variable and then set y to an α ∈ F such that α is not a root of any of the polynomials
fi(y, y

2, . . . , yn), 1 ≤ i ≤ k. With this setting, we can safely assume that D(t) and
z′1, . . . , z

′
n ∈ Hk(F).

Clearly, C(x+ t) = (1, 1, . . . , 1) ·D(x+ t) is zero if and only if C = 0. We would like to
show that for ` = dlog ke, C(x+t) is `-concentrated over F. The coefficient of a monomial

xe =
∏
j∈[n] x

ej
j in D(x+ t) is D(t) ? Coef(e)(D′) =

(
d
e

)
D(t) ?

∏
j∈[n] z

′
j
ej =

(
d
e

)
D(t) ? z′e,

where
(
d
e

)
=
(

d
e1,...,en

)
. For a moment, treat z′e as a ‘monomial’ in z1, . . . , zn. List down

all monomials in z1, . . . , zn with degree bounded by d in degree-lexicographic order. The
idea is to form a basis of spF{Coef(e)(D′) | e ∈ Nn} by picking terms z′e, the coefficient

of xe in D′ (upto scaling by
(
d
e

)
), from the ordered list. We pick a term ze1j1 . . . z

em
jm

(ej > 0) from the ordered list if it is not in the span of the already picked terms. The

1A lemma by Ellison [Ell69] states that every n-variate polynomial of degree d over C has a diagonal
circuit representation although k can be exponentially large.
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claim is, if ze1j1 . . . z
em
jm

(ej > 0) is picked then so are the terms
∏
r∈S zjr , for every set

S ⊆ [m] - this follows easily from the degree-lexicographic ordering of the list. This
implies that m < dlog ke = `, as dimension of spF{Coef(e)(D′) | e ∈ Nn} is bounded
by k and there are 2m such terms

∏
r∈S zjr . Therefore, D′(x) is `-concentrated over

Hk(F) which implies that D(x + t) = D(t) ? D′(x) is `-concentrated over Hk(F). Since,
C(x+ t) = (1, 1, . . . , 1) ·D(x+ t), C(x+ t) is also `-concentrated over F.

Thus, by shifting xj 7→ xj + αj , where α ∈ F is such that none of the fi(α, α
2, . . . , αn)

is zero, we are guaranteed that the shifted diagonal circuit satisfies dlog ke-concentration.
Such an α is always present among a set of kn + 1 distinct elements of F. A quasi-
polynomial hitting set generator for C(x) ensues immediately (as sketched in Section 1).

Appendix B. Missing proofs of Section 2

B.1. Proof of Lemma 7.

Proof. Recall that fj(xXj ) = (f1,j(xXj ), . . . , fk,j(xXj ))
T , where every fi,j(xXj ) is a set-

height-(H − h− 1) formula over Rh. The proof is by induction on height (H − h− 1) of
fj(xXj ) (in other words, reverse induction on h).

Base case (h+ 1 > H − 1): The base case is when H − h− 1 = 1 or 0, i.e. fi,j(xXj )’s are
sparse polynomials or linear polynomials depending on whether ∆ is even or odd, repec-
tively. In this case, fj(xXj ) is a set-height-(H−h−1) formula overRh+1. Also, the sparsity
parameter λ remains the same by its definition. Hence, fj(xXj ) ∈ Ch+1(k, d, λ,xXj ). (Here
we do not care about the partition.)

Inductive step (h + 2 to h + 1): The crucial property to note here is that the formulas
fi,j(xXj )’s appear as sub-formulas of Ch at depth-3 (Equation 1). Therefore, the cor-
responding Π-layers of f1,j(xXj ), . . . , fk,j(xXj ) respect the same partitions of xXj . In
particular, we can express every fi,j(xXj ) as,

fi,j(xXj ) =
k∑
p=1

bi,j,p ·
d∏
q=1

gi,j,p,q(xYj,q),

where bi,j,p ∈ Rh, gi,j,p,q(xYj,q) is a set-height-(H − h− 2) formula over Rh, and the first
Π-layer of all fi,j(xXj ), for 1 ≤ i ≤ k, respect the same partition Ph(2, Xj). In other
words, Yj,q’s partition Xj as do X2,q ∩ Xj . (Note: With j fixed, here X2,q ∩ Xj are the
only relevant variable indices.) Hence,

(10) fj(xXj ) =

k∑
p=1

bj,p ·
d∏
q=1

gj,p,q(xYj,q),

where bj,p = (b1,j,p, · · · , bk,j,p)T ∈ Rh+1 and gj,p,q(xYj,q) = (g1,j,p,q(xYj,q), . . . , gk,j,p,q(xYj,q))T

∈ Rh+1[xYj,q ].
In order to apply induction, we make a comparison between fi,j(xXj ) and gi,j,p,q(xYj,q)

(and between fj(xXj ) and gj,p,q(xYj,q)). Just like fi,j(xXj ) is a set-height-(H − h − 1)
formula over Rh occurring as a sub-formula at depth-3 of the formula Ch, gi,j,p,q(xYj,q) is a
set-height-(H−h−2) formula overRh occurring as a sub-formula at depth-5 of the formula
Ch. Hence, by induction, gj,p,q(xYj,q) is a set-height-(H − h − 2) formula in Rh+1[xYj,q ]
with Σ-fanin k, Π-fanin d and sparsity parameter λ i.e., gj,p,q(xYj,q) ∈ Ch+2(k, d, λ,xYj,q),
such that every h′-th Π-layer of gj,p,q(xYj,q) respects the partition Ph(h′ + 2, Yj,q). Since
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gj,p,q(xYj,q) has only variables xYj,q and Yj,q ⊆ Xj , we can also say that every h′-th Π-layer
of gj,p,q(xYj,q) respects the partition Ph(h′+2, Xj). The h′-th Π-layers of the gj,p,q(xYj,q)’s
(for 1 ≤ q ≤ d) correspond to the (h′ + 1)-th Π-layer of fj(xXj ). Hence, by Equation 10,
we infer that every h′-th Π-layer of fj(xXj ) respects the partition Ph(h′ + 1, Xj). Note
that the Σ-fanin, Π-fanin and the sparsity parameter remain k, d and λ, respectively. This
proves the claim. �

Appendix C. Missing proofs of Section 3

C.1. Proof of Lemma 10.

Proof. Consider a column u ∈ S of Z ′; it is z′u. Now

z′u = f(t)−1 ?
∑
v∈S

zv

(
v

u

)
tv−u [by Equation 4]

= f(t)−1 ?
∑
v∈S

zv · tv ·
(
v

u

)
· t−u

= f(t)−1 ? Z · (u-th column of NSTN
−1
S ).

Running over all u ∈ S gives us the result. �

C.2. Proof of Lemma 11.

Proof. Lemma 10 gives Z ′S = f(t)−1 ? ZNSTS,SN
−1
S . Rewrite it as,

f(t)−1 ? Z = Z ′SNST
′N−1
S .

Going modulo the subspace spF(t){z′0} kills the 0-th column of Z ′S and yields,

f(t)−1 ? Z ≡ Z ′S∗NS∗T ′S∗,SN−1
S (mod z′0).

For the second part we exploit the independence of T ′S∗,S from Z and the Hadamard

algebra. Formally, fix a large enough κ̃, say |S|, and the Hadamard algebra Hκ̃(F). Let

e ∈ S. Fix Z̃ as: Its e-th column is 0 and the rest are linearly independent modulo 1 (note:

1 = z̃′0). For this ‘generic’ setting we still have the equation, f̃(t)−1?Z̃ ≡ Z̃ ′S∗NS∗T ′S∗,SN
−1
S

(mod z̃′0). Implying,

f̃(t)−1 ? Z̃S\{e} ≡ Z̃ ′S∗NS∗T ′S∗,S\{e}N
−1
S\{e} (mod z̃′0).

Since the LHS is a matrix of rank |S| − 1, we deduce that T ′S∗,S\{e} is invertible. In other

words, T ′S∗,S is strongly full. �

C.3. Proof of Lemma 12.

Proof. For i ∈ [`], we can apply Lemma 11 to fi and get,

(11) fi(t)
−1 ? Zi ≡ Z ′iNS∗i T

′
iN
−1
Si (mod 1)

where the 1 is the unity, the all one vector, in Hκ(F). Denote the ui-th column of the
matrix on the RHS, of the above congruence, by Ci,ui .
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Consider a column u ∈ S of Z; it is zu. Now

D(t)−1 ? zu =
∏
i∈[`]

fi(t)
−1 ? zi,ui

=
∏
i∈[`]

(αi + Ci,ui) [for some αi ∈ F(t) by Equation 11]

≡
∏
i∈[`]

Ci,ui (mod V`(D′)) [∵ the product of ` or less Ci,ui vanishes]

Running over all u ∈ S gives us,

D(t)−1 ? Z ≡ ~i∈[`]

(
Z ′iNS∗i T

′
iN
−1
Si

)
≡

(
~i∈[`]Z

′
i

)
· ⊗i∈[`]

(
NS∗i T

′
iN
−1
Si

)
[by Lemma 8-(4)]

≡ Z ′ ·NS′ · T ′ ·N−1
S (mod V`(D′)) [by Lemma 8-(1)]

�

C.4. Proof of Theorem 13.

Proof. We know that T ′ = ⊗i∈[`]T
′
i , where each T ′i ∈ (S∗i ×Si → F) is strongly full (Lemma

11 for fi). Thus, we can apply invertible row operations Ei ∈ (S∗i ×S∗i → F) such that EiT
′
i

has a |S∗i |-sized identity submatrix, and another column that has only nonzero entries.
Since, from now on, we are not going to use the properties of the index sets S∗i ,Si,

we replace them by a more readable identification: Define, for i ∈ [`], ni := |S∗i | > 0
and identify S∗i (resp. Si) with Ui := [ni] (resp. Wi := [0..ni]). Let U := ×i∈[`]Ui and
W := ×i∈[`]Wi. Wlog we keep the following setting: For all i ∈ [`],

(1) (T ′i )Ui,Ui = Ini [by Lemma 8-(1), and taking EiT
′
i to be our new T ′i ], and

(2) the column (T ′i )Ui,0 is zero free.

Define an indicator function (note: δ(·) equals 1, if the boolean condition is true, else 0)

ε : N>0 × N→ {0, 1}; (u,w) 7→ δ ((w = 0) ∨ (w 6= 0 ∧ w = u)) .

Extend it to N`>0 × N` by defining ε : (u,w) 7→
∏
r∈[`] ε(ur, wr).

Note that the (u,w)-th entry in T ′i is nonzero iff ε(u,w) = 1. Thus, ε exactly indicates
the non-zeroness in T ′i .

Similarly, by tensoring, the (u,w)-th entry in T ′ ∈ (U×W → F) is nonzero iff ε(u,w) =
1. Thus, ε exactly indicates the non-zeroness in T ′.

We will build C incrementally, starting with C = ∅. During this build up we might apply
row permutations R on T ′.

Consider a column u, u ∈ U ⊂ W , of T ′. This column has exactly one nonzero entry;
appearing at the row indexed by u ∈ U . Put all these unmarked columns u in C, and
collect the marked ones in M1.

IfM1 = ∅ then we already have |C| = |U | and we are done (infact, T ′U,C is identity). So

assume |M1| =: m1 ∈ [κ] and define m2 := κ −m1 < κ. Let the other marked columns
be M2 :=M\M1; they lie in W \ U and are m2 many.

Consider the unmarked columns in W \U ; collect them in L := W \ (U ∪M2). We will
now focus on the submatrix T ′M1,W\U =: T ′1. Note that its column-indices are `-tuples

with at least one zero.
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Claim 18. There exists a row-permutation R1 ∈ Fm1×m1, and m1 unmarked columns
C1 ⊆ L such that: (R1T

′
1)M1,C1 is a lower-triangular m1 ×m1 matrix with w-th (w ∈ C1)

diagonal entry being nonzero.

Proof of Claim 18. We will again build C1 incrementally, starting from ∅.
Recall that each row of T ′1 is indexed by an `-tuple u in U . For i ∈ [`] we denote the

i-th coordinate in u by u(i), and for an I ⊆ [`], u(I) denotes the ordered set {u(i)|i ∈ I}.
For w ∈ W , define the support S(w) := {i ∈ [`] |w(i) 6= 0}. We want to permute the
rows so that the coordinates of the row-indices appear in a decreasing order of frequency.
Formally, pick R1 ∈ Fm1×m1 to reorder the rows of T ′1 as M1 = (u1, . . . , um1) such that:

• The ordered list u1(1), . . . , um1(1) has repetitions only in contiguous locations and
the frequencies are non-increasing. In equation terms: The list has some r distinct
elements α1, . . . , αr ∈ U1 with respective frequencies i1 > · · · > ir (summing to
m1), and they appear as α1(i1 times), . . . , αr(ir times).
• The ordered list (u1(1), u1(2)), . . . , (um1(1), um1(2)) has repetitions only in con-

tiguous locations and the frequencies are non-increasing.
• The same as above holds for 3-tuples, 4-tuples,. . .,`-tuples.

We now describe an iterative process to build C1 one element at a time. In the i-th
iteration, i ∈ [m1], we will add an unmarked, unpicked column wi ∈ L to C1. The process
maintains the invariant: (R1T

′
1)M1,C1 is a lower-triangular matrix.

Iteration i = 1 - The row u1 of T ′1 has exactly 2`− 1 nonzero columns. (Why? Zero-out at
least one coordinate of u1.) Since 2` − 1 > κ > |M2| we can pick a column w1 ∈ L such
that ε(u1, w1) 6= 0, thus (T ′1)u1,w1 6= 0. Add w1 to C1.

Iteration i > 2 - Consider the list u1, . . . , ui. We claim that there are positions I ⊂ [`],
|I| 6 dlg ie, such that ui(I) is not contained in any of the previous sets in the list. The
proof is by binary-search in the list. Start with I = ∅. Pick the least j1 ∈ [`] such that
u1(j1), . . . , ui(j1) are not all the same; add j1 to I. By the ordering on u’s the frequency
µ1 of ui(j1) is at most i/2. If it is one then we stop with this I, otherwise we zoom-in
on the ‘halved’ list ui−µ1+1, . . . , ui. Again we pick the least j2 ∈ [j1 + 1, `] such that
ui−µ1+1(j2), . . . , ui(j2) are not all the same; add j2 to I. This leads to a further halving
of the list, and so on. Finally, we do have our positions I, |I| 6 dlg ie, such that ui(I)
appears for the first time in ui.

We deduce that each column w of T ′1, with I ⊆ S(w) ( [`] and w(S(w)) = ui(S(w)), has
the first nonzero entry at the ui-th row. (Why? Consider ε(uj , w) = ε(uj(S(w)), w(S(w))) =
ε(uj(S(w)), ui(S(w))).) The number of such columns w, that are unmarked and unpicked,

is at least (2`−|I|−1)−m2−(i−1) > 2`−|I|−κ > 2`−dlg ie−κ > 2`−dlg κe−κ = 2dlg κe+1−κ > 0.
So we can pick such a column, say, wi ∈ L \ C1 and add to C1.

Note that the square submatrix of T ′1 thus far, (R1T
′
1){u1,...,ui},C1 is lower-triangular with

a nonzero diagonal.

After the iteration i = m1 - The square matrix (R1T
′
1)M1,C1 is lower-triangular with a

nonzero diagonal.
This finishes the claim. �

Since R1 permutes the rows of T ′1, its action can be lifted to the rows of T ′; call this
action R. Also, append C1 to the current C (making its size |U |). Define M1 := U \M1
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and C1 := C \ C1. Consider the square matrix (RT ′)U,C . It looks like,[
(RT ′)M1,C1

(RT ′)M1,C1
(RT ′)M1,C1

(RT ′)M1,C1

]
=

[
IM1,C1

(RT ′)M1,C1
0M1,C1

(R1T
′
1)M1,C1

]
.

Clearly, its determinant equals |(R1T
′
1)M1,C1 | 6= 0. Thus, |T ′U,C | 6= 0 and we are done. �

C.5. Proof of Lemma 14.

Proof. Let a be the v-th column of A. Let a′ ∈ F|M| be the vector having the entries of a
appearing at the rows M. Consider (T ′N−1

S ) · a. By the property of a we can write,

(T ′N−1
S )a = (T ′N−1

S )S′,v + (T ′N−1
S )S′,M · a′

= T ′S′,v · t−v + (T ′N−1
S )S′,M · a′.

Thus, the v-th column of A has the leading monomial t−v which ‘contributes’ the vector
T ′S′,v. Going over the columns a, running v ∈ C, by the column-linearity of determinant
and the multiplicativity of the inverse-monomial ordering, we deduce that the largest
possible (inverse-monomial) term in the expression |T ′N−1

S A| is:

|T ′S′,C | · t−
∑

v∈C v.

We know this is nonzero, by the property of C, thus it is indeed the leading term. In
particular, |T ′N−1

S A| 6= 0. �

Appendix D. Missing proofs of Section 4

D.1. Proof of Lemma 16.

Proof. If 2 dlog2(κ · s(f))e > µ(f) then `′ = 1 + µ(f). In this case trivially, for any shift
σ, σ(f) is `′-concentrated over Hκ(F(t)). So, from now on we assume 2 dlog2(κ · s(f))e
< µ(f), thus `′ = 1 + 2 dlog2(κ · s(f))e.

Define R := Hs(f)(Hκ(F)). Let f =:
∑

e∈S(f) zex
e. Define a column vector D ∈ (S(f)×

[1]→ Hκ(F[x])) with e-th entry being zex
e; D can be seen as a polynomial overR. Rewrite

D as a product of univariate polynomials over R as:

D(x) = g1(x1) ? · · · ? gn(xn).

Clearly, each gi has degree, hence sparsity, bounded by δ, and can be seen as an element
in Hκ·s(f)(F)[xi].

For any X ⊆ [n] of size `′, define DX(x) :=
∏
i∈X gi(xi). Recalling Theorem 9 we

can construct a shift σ for DX , such that σ ◦DX is `′-concentrated, in time polynomial
in (δ + n + `′)`

′
. Using induction on the number of variables, it is easy to see that if

σ ◦ DX is `′-concentrated (∀X ∈
([n]
`′

)
) then so is σ ◦ D. The key argument is: Since

the constant coefficient in each g′i (i.e. shift-&-normalized gi) is one, deduce that the
coefficient of any term in D′ (i.e. shift-&-normalized D) of block-weight 6 `′ is produced

by the product of some 6 `′ g′i’s, so this case is covered by some X ∈
([n]
`′

)
. Also, deduce

that the coefficient of any term in D′ of block-weight > `′ can be inductively written down
as a linear combination of {Coef(e)(D′) | e ∈ Nn, s(e) < `′}. Finally, σ ◦ D inherits this
concentration property from D′.

Recall f = 1T · D, where 1 is the unity in R = Hs(f)(Hκ(F)). Thus, from the `′-
concentration of σ ◦D (over R), we can deduce the `′-concentration of σ ◦ f (over Hκ(F)).
This completes the construction of σ. �
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D.2. Proof of Lemma 17.

Proof. View f as a vector with κ coordinates; each entry is in F[x]\{0}. Call the i-th entry
fi. Clearly, fi has variables (resp. degree) at most n (resp. δ). Also, by the concentration
property there exists ei ∈ Nn, with s(ei) 6 `′, such that Coef(ei)(fi) 6= 0.

For X ⊆ [n] of size at most `′, define σX : xj 7→ (xj if j ∈ X, else 0) for all j ∈ [n].

Clearly, σX ◦ fi is only `′ variate, thus it has sparsity (δ + `′)O(`′). By the assumption
on fi we know that Xi := S(ei) is of size at most `′, and σXi ◦ fi 6= 0. Using standard
sparse PIT methods (see [BHLV09]), we can construct a hitting-set for σXi ◦ fi in time

(δ+ `′)O(`′). Varying over all subsets X ⊆ [n] of size at most `′, we get a hitting-set for fi
in time (δ+n+`′)O(`′). For convenience, denote this hitting-set as a set of evaluation-maps
{σi,1, . . . , σi,r}; each map is from x to F and we write σi,j ◦ fi to mean fi(σi,j(x)). Overall
we are ensured the existence of a j, for a given i, such that σi,j ◦fi 6= 0. We will now show
how to combine all these into a single map.

Pick distinct κr elements β1,1, . . . , βκ,r ∈ F. Consider the univariate polynomial g(u) :=∏
i∈[κ],j∈[r](u − βi,j). Define gi,j(u) := g(u)/(u − βi,j), for all i, j. Consider an evaluation

map from F[x] to F[u, v] - σ := v ·
∑

i∈[κ],j∈[r] gi,j(u) · σi,j . We claim that, for all i ∈ [κ],

σ ◦ fi 6= 0. To see this, note that there is some j ∈ [r] for which σi,j ◦ fi 6= 0. Further,
let f ′i be a homogeneous part of fi, say of degree δi, such that σi,j ◦ f ′i 6= 0. Consider the
partial evaluation (σ ◦ fi)(βi,j , v) = fi(v · gi,j(βi,j) · σi,j(x)). Here the coefficient of the

monomial vδi is gi,j(βi,j)
δi · (σi,j ◦ f ′i) 6= 0. Consequently, σ ◦ fi 6= 0.

Thus, for all i ∈ [κ], σ ◦ fi is a nonzero bivariate polynomial in F[u, v]. Since its degree
remains bounded by δ · κr, we can again apply [BHLV09] to replace u, v by a hitting-set.

Finally, we hit an α ∈ Fn, in time polynomial in κ(δ + n+ `′)`
′
, such that for all i ∈ [κ],

fi(α) 6= 0. This finishes the proof. �
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