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1. Introduction

Algebraic complexity theory is the study of computation via algebraic mod-
els, hence, algebraic techniques. In this article we work with only one model
– arithmetic circuit (in short, circuit). A circuit C(x1, . . . , xn), over a ring
R, computes a polynomial f in R[x1, . . . , xn]. Its description is in the form
of a rooted tree; with the leaves having the variables or constants as input,
the internal nodes computing addition or multiplication, and the root having
the f as output. The edges in C, called wires, carry the intermediate poly-
nomials and could also be used to multiply by a constant (from R). By the
size, respectively the depth, of C we mean the natural notions (sometimes to
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avoid “trivialities” we might want to take into account the bit-size needed to
represent an element in R).

A moment’s thought would suggest that a circuit is a rather compact
way of representing polynomials. Eg. a circuit of size s could produce a poly-
nomial of degree 2s (hint: repeated squaring). In fact, a single product gate
could multiply s linear polynomials and produce nΩ(s) many monomials.
Thus, a circuit is an ‘exponentially’ compact representation of some poly-
nomial families (as opposed to simply writing it as a sum of monomials).
Conversely, are there ‘explicit’ polynomial families (say n-variate n-degree)
that require exponential (i.e. 2Ω(n)) sized circuits? We “expect” almost every
polynomial to be this hard, but, the question of finding an explicit family is
open and is the main goal motivating the development of algebraic complex-
ity.

One can try to directly give a good lower bound against circuits by
designing an explicit polynomial family {fn} and prove that it requires a
‘large’ sized circuit family {Cn}. The other, indirect, way is to design an
efficient hitting-set H for the circuit family, i.e. if Cn 6= 0 then ∃a ∈ H,
Cn(a) 6= 0. This ‘flip’ from lower bounds to algorithms was first remarked
by [HS80] and now it has several improved versions [KI04, Agr05, Agr06].
This is a remarkable phenomenon and is one of the primary motivations to
study the question of PIT: Given a circuit C test it for zeroness, in time
polynomial in size(C). The hitting-set version of PIT is also called blackbox
PIT (contrasted with whitebox PIT).

The last 10 years have seen a decent growth of algebraic tools and tech-
niques to understand the properties of polynomials that a circuit computes.
The feeling is that these polynomials are special, different from general poly-
nomials, but a strong enough algebraic ‘invariant’ or a combinatorial ‘con-
cept’ is still lacking. There have been several articles surveying the known
techniques and the history of PIT [Sax09, AS09, SY10, CKW11, Sap13]. In
this survey we will attempt not to repeat what those surveys have already
covered. So, we will focus only on the new ideas and assume that the reader
has given at least a cursory glance at the older ones. We directly move on to
the Leitfaden.

1.1. Survey overview

This article deals mainly with three broad topics – the ‘universality’ of depth-
3 circuits, the design of hitting-sets via ‘faithful’ morphisms and that via rank
‘concentration’. A major emerging area that we skip in this article is that of
PIT vis à vis GCT (geometric complexity theory) program [Mul11, Mul12a,
Mul12b]; the algebraic-geometry interpretations there are interesting though
any concrete PIT algorithm, or application, is yet to emerge.

Shallow circuits. A depth-2 circuit (top + gate) of size s, over a field, es-
sentially computes a sum of s monomials. Such polynomials are called sparse
polynomials; blackbox PIT for them was solved few decades ago. So, our next
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stop is depth-3: Polynomials of the form

C =

k
∑

i=1

d
∏

j=1

Li,j ,

where Li,j are linear polynomials in F[x1, . . . , xn]. Significant research has
been done with this model, but both sub-exponential PIT and exponential
lower bounds are open here. Recently, a remarkable universality result was
shown for depth-3 [GKKS13]: If an n-variate poly(n)-degree polynomial can
be nontrivially computed by a circuit, then it can be nontrivially computed in
depth-3. This ‘squashing’ of depth means that it suffices to focus on depth-3
for PIT purposes.

If we consider a depth-2 circuit (top × gate), over a ring R, then again
we get some remarkable connections. Fix R to be the 2 × 2 matrix algebra
M2(F), and consider the circuit

D =

d
∏

i=1

Li,

where Li are linear polynomials in R[x1, . . . , xn]. Traditionally, D is called
a width-2 algebraic branching program (ABP). It was shown by [SSS09] that
depth-3 PIT efficiently reduces to width-2 ABP PIT.

Faithful morphisms. It was observed in the last few years that in all the known
hitting-sets, the key idea in the proof is to work with a homomorphism ϕ and
an algebraic property that the image of ϕ should preserve. [SS12] used a
(Vandermonde-based) map ϕ : F[x1, . . . , xn] → F[y1, . . . , yk] that preserves
the ‘linear’ rank of any k linear polynomials. This gave the first blackbox
PIT for bounded top fanin depth-3, over any field.

[BMS13, ASSS12] used a (Vandermonde & Kronecker-based) map ϕ :
F[x1, . . . , xn] → F[y1, . . . , yk] that preserves the ‘algebraic’ rank (formally,
transcendence degree) of certain k polynomials. This gave the first blackbox
PIT (and lower bounds) for several well-studied classes of constant-depth
circuits. One drawback of the technique is that it requires zero/large charac-
teristic fields.

Rank concentration. Inspired from the tensors, a restricted circuit model
called multilinear read-once ABP (ROABP) has been intensively studied.
Let R be the w × w matrix algebra Mw(F) and let {Si} be a partition of

[n]. Consider the circuit D =
∏d

i=1 Li, where Li are linear polynomials in
R[xSi

] (i.e. the linear factors have disjoint variables). For D [FSS13] gave a
hitting-set in time poly(wn)logw·logn, i.e. quasi-poly-time. The proof is based
on the idea, following [ASS13], that after applying a small (Kronecker-based)
‘shift’, D gets the following property: The rank of its coefficients (viewed as
F-vectors) is concentrated in the ‘low’ support monomials. Thus, checking
the zeroness of these low monomials is enough!

We conjecture that rank-concentration, after a ‘small’ shift, should be
attainable in any ABP D. But currently the proof techniques are not that
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strong. Recently, [AGKS13] have achieved rank-concentration in multilinear
depth-3 circuits where the partitions (corresponding to each product gate)
are ‘close’ to each other in the sense of ‘refinement’.

2. Shallow circuits, deep interconnections

In this section we exhibit the key ideas behind the universality of two shallow
circuits.

2.1. The depth-3 chasm

In the study of circuits one feels that low-depth should already hold the key.
This feeling was confirmed in a series of work [VSBR83, AV08, Koi12, Tav13]:
Any poly(n)-degree n-variate polynomial computed by a poly(n)-sized circuit

C can also be computed by a nO(
√
n) sized depth-4 circuit!

The idea for this is, in retrospect, simple – since the degree is only
poly(n), first, squash the depth of C to O(log n) by only a polynomial blowup
in the size. This is done in a way so as to make the product gates quite
balanced, i.e. their two inputs are roughly of the same degree. Next, identify
a subcircuit C2 by picking those gates whose output polynomial has degree
at least

√
n, and call the remaining subcircuit C1. We view C2 as our circuit

of interest that takes gates of C1 as input. It can be shown that C2 computes
a polynomial of degree ≈ √

n of its input variables (which are poly(n) many).
Obviously, each gate of C1 also computes a polynomial of degree ≈ √

n of
its input variables (which are x1, . . . , xn). Thus, C2 finally computes a sum

of ≈
(poly(n)+

√
n√

n

)

products, each product has
√
n factors, and each factor is

itself a sum of ≈
(

n+
√
n√

n

)

degree-
√
n monomials. To put it simply (& ignoring

the constant factors), C can be expressed as a
∑∏

√
n∑∏

√
n circuit of size

nO(
√
n). The details of this proof can be seen in [Tav13].
The strength of depth-4 is surprising. Recently, an even more surpris-

ing reduction has been shown [GKKS13] – that to depth-3 (again, nO(
√
n)

sized). We will now sketch the proof. It ties together the known results in an
unexpected way.

Essentially, the idea is to modify a
∑∏a∑∏a

circuit C of size s :=
na (where a :=

√
n) by using two polynomial identities that are in a way

“inverse” of each other, and are to do with powers-of-linear-forms. First,
replace the product gates using Fischer’s identity:

Lemma 2.1 ([Fis94]). Any degree a monomial can be expressed as a linear
combination of 2a−1 a-th powers of linear polynomials, as:

y1 · · · ya = (2a−1 · a!)−1 ·
∑

r2,...,ra∈{±1}

(

y1 +

a
∑

i=2

riyi

)a

· (−1)#{i|ri=−1}.

We denote this type of a circuit by the notation
∑∧a∑, where the

wedge signifies the powering by a. The above identity transforms the
∑∏a∑∏a
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circuit C to a
∑∧a∑∧a∑

circuit, of size poly(s). We reuse s for this size
estimate.

Next, the two power gates are ‘opened’ up using an identity introduced
by the author:

Lemma 2.2 ([Sax08]). For any a,m, there exist degree-a univariate polyno-
mials fi,j such that

(y1 + · · ·+ ym)a =

ma+1
∑

i=1

m
∏

j=1

fi,j(yj).

Let us carefully see the jugglery on C. The
∑∧a∑∧a∑

circuit C
has the expression C =

∑

i Ti, where each Ti has the form (
∑s

j=1 ℓ
ei,j
i,j )a with

linear ℓi,j’s. We want to open up the top power gate of C. By Lemma 2.2 we
get

Ti =

sa+1
∑

u=1

s
∏

j=1

fu,j(ℓ
ei,j
i,j ).

Since fu,j is a univariate, it splits into linear polynomials when the base
field F is algebraically closed. As ℓi,j is already a linear polynomial, we deduce
that Ti, and hence C, is a

∑∏∑

circuit of size poly(s).

Finally, note that for the above arguments to work we require F to be
algebraically closed and char(F) > a. Lemma 2.2 has been generalized to all
characteristics by [FS13b], so it is likely that this depth-3 reduction can be
extended to all algebraically closed fields.

The optimality of n
√
n-size, in this reduction, is open. However, [KSS13]

showed that any decent reduction in this size bound would imply V NP 6=
V P .

2.2. The width-2 chasm

Here we look at
∏∑

circuits over a matrix algebra. Though the model
D =

∏

i Li, with linear Li ∈ R[x1, . . . , xn], seems innocuous at first sight, a
closer look proves the opposite! It can be shown fairly easily that a polynomial
computed by a constant-depth circuit (over a field) can as well be computed
by a D over a 3× 3 matrix algebra [BC88]. On the other extreme, by taking
R = Mn(F) we can compute the determinant of a matrix in F

n×n [MV97],
hence, arithmetic formulas (not general circuits!) can be simulated in this
model [Val79].

Perhaps surprisingly, [SSS09] showed that: A polynomial C computed
by a depth-3 circuit (over a field) can be “almost”1 computed by a D over a
2× 2 matrix algebra. This, togetherwith the previous subsection, makes the
∏∑

circuits over M2(F) quite strong.

1We are able to compute only a multiple of C. However, the extra factor is simply a product
of poly-many linear polynomials. So, it suffices for PIT purposes.
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Say, we want to express the depth-3 circuit C =
∑k

i=1 Ti in a 2 × 2

matrix product. Firstly, we express a product Ti =
∏d

j=1 ℓi,j as:
[

ℓi,1 0
0 1

]

· · ·
[

ℓi,d−1 0
0 1

]

·
[

1 ℓi,d
0 1

]

=

[

T ′
i Ti
0 1

]

, where T ′
i := Ti/ℓi,d.

Once we have such k 2 × 2 matrices, each containing Ti in the (1, 2)-
th place, we would like to sum the Ti’s in a ‘doubling’ fashion (instead of
one-by-one).

We describe one step of the iteration. Let

[

L1 L2f
0 L3

]

&

[

M1 M2g
0 M3

]

be encapsulating two intermediate summands f and g. With the goal of
getting (a multiple of) f + g we consider the following, carefully designed,
product:

[

L1 L2f
0 L3

]

·
[

L2M3 0
0 L1M2

]

·
[

M1 M2g
0 M3

]

=

[

L1M1L2M3 L2M3L1M2(f + g)
0 L3M3L1M2

]

After log k such iterations, we get a multiple of C in the (1, 2)-th entry of
the final 2×2 matrix product. Note that the middle matrix, introduced in the
LHS above, potentially doubles (in the degree of the entry polynomials) in
each iteration. Thus, finally, D is a product of poly(d2log k) linear polynomials
over M2(F). Thus, the size blowup is only polynomial in going from depth-3
to width-2.

3. Faithful morphisms, hitting-sets

In algebraic complexity the study of certain maps has been fruitful – ho-
momorphisms ϕ : R := F[x1, . . . , xn] → F[y1, . . . , yk] =: R′ such that the
algebraic ‘relationship’ of certain polynomials {f1, . . . , fk} does not change
in the image of ϕ. When fi’s are linear this boils down to a linear algebra
question and we can easily design ϕ in time poly(n) (hint: employ Vander-
monde matrix). This business becomes complicated when fi’s are non-linear.
Then we have to ask how are fi’s represented. If they are given via monomials
then we invoke the Jacobian criterion to design ϕ, but the time complexity
becomes exponential in k. Several variants of such faithful maps are discussed
in the PhD thesis [Mit13]. We sketch the ideas behind two basic maps here.

3.1. Bounded fanin depth-3 blackbox PIT

Let C =
∑

i∈[k] Ti be a depth-3 circuit. When k is constant, C is natu-

rally called bounded fanin depth-3. This case of PIT has, by now, a rich
history [DS07, KS07, KS11, SS11, KS09, SS13, SS12]. Several new tech-
niques have sprung up from this model – a locally decodable code structure, a
rank-preserving map via extractors, Sylvester-Gallai configurations (higher-
dimensions and all fields) and rank bounds. We will sketch here the main idea
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behind the poly-time blackbox PIT of bounded fanin depth-3. The details are
quite technical and could be seen in [SS13, SS12].

Vandermonde map. We define a homomorphism Ψβ, for a β ∈ F, as:

∀i ∈ [n], Ψβ : xi 7→
k
∑

j=1

βijyj,

and Ψβ(α) = α for all α ∈ F. This (naturally) defines the action of Ψβ, on all
the elements of R, that preserves the ring operations. We have the following
nice property, as a consequence of [GR08, Lemma 6.1]:

Lemma 3.1 (Ψβ preserves k-rank). Let S be a subset of linear forms in R
with rk(S) ≤ k, and |F| > nk2. Then ∃β ∈ F, rk(ψβ(S)) = rk(S).

Intuitively, Ψβ is faithful to any algebraic object involving the elements
in span(S). The proof of this lemma is by studying the coefficient-matrix of
the linear polynomials in S, and its change under Ψβ . This map has a role
to play in bounded fanin depth-3 owing to a certain structural theorem from
[SS13] – certificate for a non-identity.

To discuss this certificate we need a definition, that of ‘paths’ of ‘nodes’
in C (assumed to be nonzero). A path p with respect to an ideal I is a
sequence of terms {p1, p2, . . . , pb} (these are products of linear forms) with
the following property. Each pi divides Ti, and each pi is a ‘node’ of Ti with
respect to the ideal 〈I, p1, p2, . . . , pi−1〉.2 So p1 is a node of T1 wrt I, p2 is a
node of T2 wrt 〈I, p1〉, etc.

Let us see an example of a path (〈0〉, p1, p2, p3) in Figure 1. The oval
bubbles represent the list of forms in a product gate, and the rectangles
enclose forms in a node. The arrows show a path. Starting with the zero
ideal, nodes p1 := x21, p2 := x2(x2 + 2x1), and p3 := (x4 + x2)(x4 + 4x2 −
x1)(x4 + x2 + x1)(x4 + x2 − 2x1) form a path. Initially the path is just the
zero ideal, so x21 is a node. Note how p2 is a power of x2 modulo radsp〈p1〉,
and p3 is a power of x4 modulo radsp〈p1, p2〉.

The non-identity certificate theorem [SS13, Theorem 25] states that for
any non-identity C, there exists a path p such that modulo 〈p〉, C reduces to
a single nonzero multiplication term.

Theorem 3.2 (Certificate for a non-identity). Let I be an ideal generated by
some multiplication terms. Let C =

∑

i∈[k] Ti be a depth-3 circuit that is

nonzero modulo I. Then ∃i ∈ {0, . . . , k− 1} such that C[i]
3 mod I has a path

p satisfying: C ≡ α · Ti+1 6≡ 0 (mod I + 〈p〉) for some α ∈ F
∗.

The proof of this theorem involves an extension of Chinese remainder-
ing to ideals that are generated by multiplication terms. Once we have this
structural result about depth-3, observe that we would be done if we could

2By a node pi we mean that some nonzero constant multiple of pi is identical to a power-
of-a-linear-form modulo radsp〈I, p1, p2, . . . , pi−1〉, where radsp is the ideal generated by
the set of all the linear polynomials that divide pj , j ∈ [i− 1] and the generators of I.
3We mean C[i] :=

∑
j∈[i] Tj .
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T1 T2 T3

x1

x1

x2

x2 + 2x1

x3 + 10x1

x3 − x1

x3 + 3x1

x4 + x2
x4 + 4x2 − x1

x4 + x2 + x1

x4 + x2 − 2x1

Figure 1. Nodes and paths in C = T1 + T2 + T3 + . . .

somehow ensure Ti+1 /∈ 〈p〉 (in our application I is zero). How do we preserve
this ideal non-membership under a cheap map?

Notice that the rank of the set S0 of linear polynomials that divide the
nodes in the path p is < k (since path length is below k). Moreover, Ti+1

factors into at most d linear polynomials, denote the set by S1. So if we apply
a map that preserves the rank of each of the d sets S0 ∪ {ℓ}, ℓ ∈ S1, then,
intuitively, the ideal non-membership should be preserved. As rk(S0∪{ℓ}) ≤
k we can employ the previously discussed map Ψβ (over a field satisfying
|F| > dnk2). This idea could be easily turned into a proof; details are in
[SS12].

Finally, what we have achieved is the construction of a map Ψβ, in
time poly(dnk), that reduces the variables of C from n to k and preserves
nonzeroness. Once this is done, the poly(ndk) blackbox PIT follows from the
brute-force hitting-set.

3.2. Depth≥ 3 results

Looking at the success of bounded fanin depth-3 one wonders about the
analogous depth-4 model:

C =
∑

i∈[k]

∏

j∈[d]

fi,j, where fi,j are sparse polynomials. (3.1)

Here we are thinking of a bounded k. But now even k = 2 seems nontrivial!
In fact, a simpler PIT case than this is an old open question in a related area
[vzG83].

This bounded top fanin depth-4 PIT is an important open question cur-
rently. What is doable are other restricted models of depth-4. Inspired from
the last subsection we ask: Is there a notion of ‘rank’ for general polynomials,
are there easy ‘faithful’ maps, and finally is all this useful in PIT?

There are several notions of rank in commutative algebra. The one we
[BMS13] found useful is – transcendence degree (trdeg). We say that a set
S of polynomials {f1, . . . , fm} ⊂ F[x1, . . . , xn] is algebraically dependent if
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there exists a nonzero annihilating polynomial A(y1, . . . , ym), over F, such
that A(f1, . . . , fm) = 0. The largest number of algebraically independent
polynomials in S is called trdeg(S). With this notion we call a homomorphism
ϕ faithful if trdeg(S) = trdeg(ϕ(S)). The usefulness of ϕ (assuming that one
can come up with it efficiently) was first proved in [BMS13]:

Lemma 3.3 (Faithful is useful). Let ϕ be a homomorphism faithful to f =
{f1, . . . , fm} ⊂ F[x]. Then for any C ∈ F[y], C(f) = 0 ⇔ C(ϕ(f)) = 0.

This implies that we can use a faithful map to ‘reduce’ the number of
variables n without changing the nonzeroness of C. The strategy can be used
in cases where trdeg(f) is small, say, smaller than a constant r.

The only missing piece is the efficiency of ϕ4. To do this we need three
fundamental ingredients – an efficient criterion for algebraic independence
(Jacobian), its behavior under ϕ (chain rule), and standard maps (Vander-
monde & Kronecker based).

Lemma 3.4 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials
of degree at most d, and trdeg(f) ≤ r. If char(F) = 0 or char(F) > dr,
then trdeg(f) = rkF(x) Jx(f), where Jx(f) := (∂fi/∂xj)m×n

is the Jacobian
matrix.

There are several proofs of this, see [Jac41, For91, BMS13, MSS12].
This gives us an efficient way to capture trdeg, when the characteristic is
zero/large. Let us now see how the Jacobian matrix changes under ϕ.

Lemma 3.5 (Chain rule). Jy(ϕ(f)) = ϕ (Jx(f)) ·Jy(ϕ(x)), where ϕ applied to
a matrix/set refers to the matrix/set obtained by applying ϕ to every entry.

This is a simple consequence of the chain rule of ‘derivatives’. It suggests
that for ϕ to preserve the trdeg of the polynomials, we need to control – (1)
the image of the original Jacobian under ϕ, and (2) the Jacobian of the image
of x. In our applications, the former is achieved by a Kronecker-based map
(i.e. sparse PIT tricks, eg. [BHLV09]) and the latter by Vandermonde map
(as seen in the previous subsection).

This general ‘recipe’ has been successfully implemented to various cir-
cuit models. The case of the circuit C′(x) := C(f), where trdeg(f) ≤ r and
fi’s are polynomials of sparsity at most s, was worked out in [BMS13]. The
proof follows exactly the above strategy. The time complexity is polynomial
in size(C′) and (s · deg(C′))r, where the exponential dependence comes from
the sparsity estimate of Jx(f) (and of course the final brute-force hitting-set
for the r-variate ϕ(C′)).

[ASSS12] extended the recipe to depth-4 circuits (3.1) where the number
of fi,j ’s where any variable appears is bounded by r5. This model is called
occur-r depth-4; it generalizes the well-studied multilinear read-r depth-4.
Interestingly, slightly modified techniques also provided exponential lower

4It can be shown, from first principles, that a faithful r-variate map always exists [BMS13].
5Note that this does not mean that trdeg(fi,j |i, j) is bounded.
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bounds against these special models. This required proving some combinato-
rial properties of the derivatives of immanant (eg. permanent, determinant).

The faithful maps recipe has been able to unify all the assorted poly-time
hitting-sets known. However, one drawback is that it needs the characteris-
tic to be zero/large. Baby steps in resolving that issue have been taken by
[MSS12].

4. Rank concentration, shift, hitting-sets

The hitting-sets that we saw till now were for models where some parameter
was kept bounded. But we could also study models with a ‘structural’ restric-
tion, eg. multilinearity. This route has also been successful and enlightening.
We call a depth-3 circuit C =

∑

i Ti multilinear if the linear factors in Ti
involve disjoint variables. Hence, each product gate Ti induces a partition Pi

on the variables (or indices) [n]. Moreover, we call C set-multilinear if these
partitions are the same across all Ti’s.

There is a large body of work on the set-multilinear model [RS05,
AMS10, FS12, FS13b, ASS13, FS13a, FSS13, AGKS13]. The motivation
for this model is, on the one hand, the algebraic concept of tensors, and,
on the other hand, the interest in read-once boolean branching programs
[Nis92, IMZ12, Vad12]. Interestingly, [FSS13] has shown (extending the ideas
of [ASS13]) that the current situation in the arithmetic world is exponentially
better than that in the boolean one!

Here we will exhibit the key ideas of [ASS13] and [AGKS13] on two toy
cases that are already quite instructive; this saves us from the gory technical
machinery that drives the more general cases.

4.1. Multilinear ROABP

[ASS13] gave the first quasi-poly-time hitting-set for set-multilinear depth-3
(and extensions to constant-depth, non-multilinear versions). This was gener-
alized by [FSS13] to any depth; in fact, they dealt directly with themultilinear
ROABP D =

∏

i Li overMw(F), where Li’s are linear polynomials in disjoint
variables. Both the papers proved ‘low-support rank concentration’ in their
models.

For the following discussion we fix a base commutative ring R = Hw(F)
called the Hadamard algebra (instead of the w × w matrix algebra). This is
basically (Fk,+, ⋆), where + is the vector addition and ⋆ is the coordinate-
wise vector product (called the Hadamard product).

ℓ-concentration.We say that a polynomial f ∈ R[x1, . . . , xn] is ℓ-concentrated
if

rkF{coeff (xS) | S ⊆ [n], |S| < ℓ} = rkF{coeff (xS) | S ⊆ [n]},
where coeff extracts a coefficient in f .

I.e. the coefficient-vectors of ‘lower’ monomials already span every pos-
sible coefficient-vector in f . We are interested in studying whether circuits
compute an ℓ-concentrated polynomial for small ℓ (say, logn instead of n).
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By itself this is not true, eg. the trivial circuit D = x1 · · ·xn is not even n-
concentrated. But, maybe we can transform f a bit and then attain (log n)-
concentration? In this case, D′ := D(x1 + 1, . . . , xn + 1) is suddenly 1-
concentrated!

It was shown by [ASS13] that anyD, aboveR, becomes (log k)-concentra-
ted after applying a ‘small’ shift; the price of which is nlog k time. Once
we have this it directly applies to the set-multilinear depth-3 model. Since,
a depth-3 C =

∑

i∈[k] Ti can be rewritten as C = [1, . . . , 1] · D, where

D =







T1
...
Tk






is of the promised sort over R = Hk(F) (since D completely

factorizes into disjoint-variate linear polynomials). So, ℓ-concentration in D
implies an easy way to check C for zeroness – test the coefficients of the
monomials below ℓ-support in C.

Glimpse of a proof. We now show how to achieve ℓ-concentration, ℓ =
O(log k), in the following toy model:

D =
∏

i∈[n]

(1 + zixi), where zi ∈ Hk(F). (4.1)

Because of the disjointness of the factors it can be seen, as a simple
exercise, that: D is ℓ-concentrated iff DS :=

∏

i∈S(1+zixi) is ℓ-concentrated,

for all S ∈
(

[n]
ℓ

)

. Thus, from now on we assume, wlog, n = ℓ.
Shift D by formal variables t, and normalize, to get a new circuit:

D′ =
∏

i∈[ℓ]

(1 + z′ixi), where z′i ∈ Hk(F(t)).

We can express the new coefficients as:

z′i = zi/(1 + ziti), ∀i ∈ [ℓ].

Conversely, we write:

zi = z′i/(1− z′iti), ∀i ∈ [ℓ]. (4.2)

We write zS for
∏

i∈S zi. Now the goal is to ‘lift’ an F-dependence of
zS ’s to the z′S ; which ultimately shows the condition on the shift that shall
yield concentration.

Consider the 2ℓ vectors {zS | S ⊆ [ℓ]}. If ℓ > log k then there is a
nontrivial linear dependence amongst these vectors, say,

∑

S⊆[ℓ]

αSzS = 0, where αS ∈ F.

Rewriting this in terms of z′S we get:
∑

S⊆[ℓ]

αS ·
∏

i∈S

z′i/(1− z′iti) = 0.

Or,
∑

S⊆[ℓ]

αS · z′S ·
∏

i∈[ℓ]\S
(1 − z′iti) = 0. (4.3)
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Let us collect the ‘coefficient’ of z′[ℓ] in the above expression. It comes
out to,

∑

S⊆[ℓ]

αS · (−1)|[ℓ]\S| · t[ℓ]\S . (4.4)

If we can ensure this expression to be nonzero then Equation (4.3) tells
us that z′[ℓ] is in the F(t)-span of the ‘lower’ z′S . But, ensuring the nonzeroness

of Equation (4.4) is easy – use ti’s such that all the (≤ ℓ)-support monomials
tS are distinct. We can use standard sparse PIT tricks [BHLV09] for this, in
time poly(nℓ).

What we have shown is that, after applying a Kronecker-based shift, the
circuit D becomes ℓ-concentrated; all this in time nO(log k). This ‘recipe’ of
studying the generic shift, via some combinatorial properties of the ‘transfer’
equations (4.2), is generalized in [ASS13] to other D; and further improved in
[FSS13] to multilinear ROABP. The latter use a ‘primal’ interpretation of the
‘transfer’ matrix and show that the linear transformation– corresponding to a
Kronecker shift together-with the truncation of the high-support monomials
–behaves like a rank-extractor.

It is not known how to design such hitting-sets, even for the toy case,
in poly-time.

4.2. Towards multilinear depth-3

It is tantalizing to achieve ℓ-concentration in multilinear depth-3 (before em-
barking on the general depth-3!). A partial result in that direction was ob-
tained in [AGKS13]. We will sketch their ideas in a toy model.

Consider a multilinear depth-3 circuit C with only two partitions be-
ing induced by the product gates – P1 = {{1}, · · · , {n}} and an arbitrary
partition P2. Say, the number of the corresponding product gates is k1 re-
spectively k2 (summing to k). We can say, naturally, that P1 is a refinement
of P2 (denoted P1 ≤ P2) because: For every color (or part) S ∈ P2 there exist
colors in P1 whose union is exactly S. In this refinement situation [AGKS13]
showed that, again, a suitable shift in the

∏∑

circuit D (corresponding to
C) achieves ℓ-concentration in time poly(nlog k).

Glimpse of a proof. We can assume P2 different from P1, otherwise this case
is no different from the last subsection. We assume that the first k1 product
gates in C =

∑

i∈[k] Ti respect P1 and the rest k2 respect P2. The correspond-

ing circuit D where we desire to achieve concentration is D =







T1
...
Tk






over

R = Hk(F). But now the linear factors of D are not necessarily in disjoint

variables. Eg.

[

x1x2
x1 + x2

]

=

(

x1 +

[

0
1

]

· x2
)

·
([

0
1

]

+

[

1
0

]

· x2
)

over

H2(F).
To get some kind of a reduction to the set-multilinear case, we prove rank

concentration in parts. First, we consider those monomials (called P1-type)
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that could only be produced by the ‘upper’ part of D (i.e. the first k1 product
gates of C). Such a monomial, say indexed by S ⊆ [n], is characterized by
the presence of i, j ∈ S that are in the same color of P2. For a fixed such i, j
we can “access” all such monomials by the derivative ∂2D/∂xi∂xj =: ∂i,jD.
Notice that this differentiation kills the ‘lower’ part of D and only the P1-
part remains. So, we can prove (2 + log k1)-concentration in the monomials
containing i, j as in Section 4.1. This proves O(log k1)-concentration in the
monomials of P1-type.

Next, we want to understand the remaining monomials (called P2-type);
those that could be produced by the ‘lower’ part of D (i.e. the last k2 product
gates of C). These, obviously, could also be produced by the upper part of
D. Let us fix such a monomial, say x1 · · ·xℓ. Assume that S1, . . . , Sℓ ∈ P2

are the colors that contain one of the indices 1, . . . , ℓ. Consider the subcircuit
Dℓ that in its i-th coordinate, ∀i ∈ [k], simply drops those factors of Ti that
are free of the variables S1 ∪ · · · ∪ Sℓ. The problem here is that Dℓ may be a
‘high’ degree circuit (≈ n instead of ℓ) and so we cannot use a proof like in
Section 4.1.

But, notice that all the degree-(≥ ℓ) monomials inDℓ are P1-type; where
we know how to achieve ℓ-concentration. So, we only have to care about
degree-(≤ ℓ) P2-type monomials in Dℓ. There, again, (log k)-concentration
can be shown using Section 4.1 and the well-behaved transfer equations.

This sketch, handling two refined partitions, can be made to work for
significantly generalized models [AGKS13]. But, multilinear depth-3 PIT is
still open (nothing better than exponential time known).

Remark 4.1. Using a different technique [AGKS13] also proves constant-
concentration, hence designs poly-time hitting-sets, for certain constant-width
ROABP. These models are arithmetic analogues of the boolean ones – width-
2 read-once branching programs [AGHP92, NN93] and constant-width read-
once permutation branching programs [KNP11].

5. Open ends

The search for a strong enough technique to study arithmetic circuits con-
tinues. We collect here some easy-to-state questions that interest us.

Top fanin-2 depth-4. Find a faithful map ϕ that preserves the algebraic inde-
pendence of two products-of-sparse polynomials

∏

i fi and
∏

j gj . If we look

at the relevant 2× 2 Jacobian determinant, say wrt variables X := {x1, x2},
then the question boils down to finding a hitting-set for the special rational

function
∑

i,j

detJX (fi,gj)
figj

. Can this version of rational sparse PIT be done in

sub-exponential time?

Independence over Fp. Currently, there is no sub-exponential time algo-
rithm/heuristic known to test two given circuits for algebraic independence
over a ‘small’ finite field Fp. The reason is that something as efficient as the
Jacobian criterion is not readily available, see [MSS12].
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Model in Eqn.(4.1). Find a poly-time hitting-set for this simple model. Note
that a poly-time whitebox PIT is already known [RS05].

Multilinear depth-3. Achieve o(n)-concentration in multilinear depth-3 cir-
cuits, in no(n) time. Here, the presence of an exponential lower bound against
the model [RY09] is quite encouraging.
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ple construction of almost k-wise independent random variables, Ran-
dom Struct. Algorithms 3 (1992), no. 3, 289–304, (Conference version
in FOCS 1990).

[AGKS13] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena,
Hitting-sets for low-distance multilinear depth-3, Electronic Colloquium
on Computational Complexity (ECCC) 20 (2013), 174.

[Agr05] Manindra Agrawal, Proving lower bounds via pseudo-random generators,
Proceedings of the 25th Annual Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 2005, pp. 92–105.

[Agr06] , Determinant versus permanent, Proceedings of the 25th Inter-
national Congress of Mathematicians (ICM), vol. 3, 2006, pp. 985–997.

[AMS10] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan, New
Results on Noncommutative and Commutative Polynomial Identity Test-
ing, Computational Complexity 19 (2010), no. 4, 521–558, (Conference
version in CCC 2008).

[AS09] Manindra Agrawal and Ramprasad Saptharishi, Classifying polynomials
and identity testing, Indian Academy of Sciences, Platinum Jubilee P1
(2009), 1–14.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena, Quasi-polynomial
hitting-set for set-depth-∆ formulas, STOC, 2013, pp. 321–330.

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin
Saxena, Jacobian hits circuits: hitting-sets, lower bounds for depth-
D occur-k formulas & depth-3 transcendence degree-k circuits, STOC,
2012, pp. 599–614.

[AV08] Manindra Agrawal and V. Vinay, Arithmetic circuits: A chasm at depth
four, FOCS, 2008, pp. 67–75.

[BC88] Michael Ben-Or and Richard Cleve, Computing Algebraic Formulas Us-
ing a Constant Number of Registers, STOC, 1988, pp. 254–257.
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[Tav13] Sébastien Tavenas, Improved Bounds for Reduction to Depth 4 and
Depth 3, MFCS, 2013, pp. 813–824.

[Vad12] Salil P. Vadhan, Pseudorandomness, Foundations and Trends in Theo-
retical Computer Science 7 (2012), no. 1-3, 1–336.

[Val79] Leslie G. Valiant, Completeness classes in algebra, STOC, 1979, pp. 249–
261.

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rack-
off, Fast Parallel Computation of Polynomials Using Few Processors,
SIAM J. Comput. 12 (1983), no. 4, 641–644.

[vzG83] Joachim von zur Gathen, Factoring Sparse Multivariate Polynomials,
FOCS, 1983, pp. 172–179.

Nitin Saxena
Department of CSE
IIT Kanpur
Kanpur 208016
India
e-mail: nitin@cse.iitk.ac.in


	1. Introduction
	2. Shallow circuits, deep interconnections
	3. Faithful morphisms, hitting-sets
	4. Rank concentration, shift, hitting-sets
	5. Open ends
	References

