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Abstract

Programs in high level languages make intensive use of heap to support dynamic data structures.

Analyzing these programs requires precise reasoning aboutthe heap structures. Shape analysis

refers to the class of techniques that statically approximate the run-time structures created on

the heap. In this work, we present a novel field sensitive shape analysis technique to identify

the shapes of the heap structures. The novelty of our approach lies in the way we use field

information to remember the paths that result in a particular shape (Tree, DAG, Cycle). We

associate the field information with a shape in two ways: (a) through boolean functions that

capture the shape transition due to change in a particular field, and (b) through matrices that

store the field sensitive path information among two pointervariables. This allows us to easily

identify transitions from Cycle to DAG, from Cycle to Tree and from DAG to Tree, thus making

the shape more precise.
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Chapter 1

Introduction

1.1 A Brief Introduction

Shape analysis is the term for the class of static analysis techniques that are used to infer useful

properties about heap data and the programs manipulating the heap. The shape information of

a data structure accessible from a heap directed pointer canbe used for disambiguating heap

accesses originating from that pointer. This is useful for variety of applications, for e.g. com-

pile time optimizations, compile-time garbage collection, debugging, verification, instruction

scheduling and parallelization.

In last two decades, several shape analysis techniques havebeen proposed in literature.

However, there is a trade-off between speed and precision for these techniques. Precise shape

analysis algorithms [SRW96, SYKS03, DOY06, HR05] are not practical as they do not scale

to the size of complex heap manipulating programs. To achieve scalability, the practical shape

analysis algorithms [CWZ90, GH96, MKSH06] trade precisionfor speed.

In this report, we present a shape analysis technique that uses limited field sensitivity to infer

the shape of the heap. The novelty of our approach lies in the way we use field information to

remember the paths that result in a particular shape (Tree, DAG, Cycle). This allows us to

identify transitions from conservative shape to more precise shape (i.e., from Cycle to DAG,

from Cycle to Tree and from DAG to Tree) due to destructive updates. This in turn enables us

to infer precise shape information.

The field sensitivity information is captured in two ways: (a) we use field based boolean

variables to remember the direct connections between two pointer variables, and (b) we com-

pute field sensitive matrices that store the approximate path information between two pointer

variable. We generate boolean functions at each program point that use the above field sensitive

information to infer the shape of the pointer variables.
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1.2 Contributions of our Work

Our work contributes in the area of analysing pointers that points to dynamically allocated

objects (typically in the heap). Inferring the shape of the data structure pointed to by heap

allocated objects can be used for disambiguating heap accesses originating from that pointer.

We proposed a field sensitive shape analysis tecnique that helps in precise inference of the shape

of the heap data structures. As any field sensitive shape analysis algorithm must remember all

paths between pointers. Our analysis uses certain approximations to remember such paths. They

include: (a) DF :Modified direction matrix that stores the first fields of the paths between two

pointers; (b) IF : Modified interference matrix that stores the pairs of first fields corresponding

to the pairs of interfering paths, and (c) Boolean Variablesthat remember the fields directly

connecting two pointer variables. ‘

1.3 Organization of the Thesis

We discuss some of the prior works on shape analysis in Chapter 2. A motivating example

is used in Chapter 3 to explain the intuition behind our analysis . The analysis is formalized

in Chapter 4 that describes the notations used and in Chapter5 that gives the analysis rules.

We describe some properties of our analysis in Chapter 6. In Chapter 7 we show some of the

cases where our analysis performs better than the field insensitive approaches. We conclude the

presentation in Chapter 8 and give directions for future work.



Chapter 2

Related Work

The shape-analysis problem was initially studied in the context of functional languages. Jones

and Muchnick [JM79] proposed one of the earliest shape analysis technique for Lisp-like lan-

guages with destructive updates of structure. They used sets of finite shape graphs at each

program point to describe the heap structure. To keep the shape graphs finite, they introduced

the concept ofk-limited graphs where all nodes beyondk distance from root of the graph are

summarized into a single node. Hence the analysis resulted in conservative approximations.

The analysis is not practical as it is extremely costly both in time and space .

Chase et al. [CWZ90] introduced the concept of limited reference count to classify heap ob-

jects into different shapes. They also classified the nodes in concrete and summary nodes, where

summary nodes were used to guarantee termination. Using thereference count and concreteness

information of the node, they were able to kill relations (strong updates) for assignments of the

form p→ f = q in some cases. However, this information is not insufficientto compute precise

shape, and detects false cycle even in case of simple algorithms like destructive list reversal.

Sagiv et. al. [SRW96, SRW99, SRW02] proposed generic, unbiased shape analysis al-

gorithms based onThree-Valuedlogic. They introduce the concepts ofabstractionand re-

materialization. Abstraction is the process of summarizing multiple nodes into one and is used

to keep the information bounded. Re-materialization is theprocess of obtaining concrete nodes

from summary node and is required to handle destructive updates. By identifying suitable pred-

icates to track, the analysis can be made very precise. However, the technique has potentially

exponential runtime in the number of predicates, and therefore not suitable for large programs.

Distefano et al. [DOY06] presented a shape analysis technique for linear data structures

(linked-list etc.), which works on symbolic execution of the whole program using separation

logic. Their technique works on suitable abstract domain, and guarantees termination by con-

verting symbolic heaps to finite canonical forms, resultingin a fixed-point. By using enhanced

abstraction scheme and predicate logic, Cherini et al. [CRB10] extended this analysis to support

nonlinear data structure (tree, graph etc.).

Berdine et al. [BCC+07] proposed a method for identifying composite data structures using
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generic higher-order inductive predicates and parameterized spatial predicates. However, using

of separation logic does not perform well in inference of heap properties. Hackett and Rugina

in [HR05] presented a new approach for shape analysis which reasons about the state of a

single heap location independently. This results in precise abstractions of localized portions

of heap. This local reasoning is then used to reason about global heap using context-sensitive

inter-procedural analysis. Cherem et. al. [CR07] use the local abstraction scheme of [HR05] to

generate local invariants to accurately compute shape information for complex data structures.

Jump and McKinley [JM09] give a technique for dynamic shape analysis that characterizes

the shape of recursive data structure in terms of dynamic degree metrics which uses in-degrees

and out-degrees of heap nodes to categorize them into classes. Each class of heap structure is

then summarized. While this technique is useful for detecting certain types of errors; it fails to

visualize and understand the shape of heap structure and cannot express the sharing information

in general.

Our work is closest to the work proposed by Ghiya et. al. [GH96] and by Marron et.

al. [MKSH06]. Ghiya et al. [GH96] keeps interference and direction matrices between any two

pointer variables pointing to heap object and infer the shape of the structure as Tree, DAG or

Cycle. They have also demonstrated the practical applications of their analysis [Ghi96, GH98,

GHZ98] and shown that it works well on practical programs. However, the main shortcoming

of this approach is it cannot handle kill information. In particular, the approach is unable to

identify transitions from Cycle to DAG, from Cycle to Tree and from DAG to Tree. So it has to

to conservatively identify the shapes.

Marron et. al. [MKSH06] presents a data flow framework that uses heap graphs to model

data flow values. They presented an abstract heap model that can represent information on

aliasing, shape, logical data structures, sharing betweenvariables, and sharing between data el-

ements in collections. They introduce a restricted versionof refinement, based on the ideas pre-

sented by Sagiv, Reps and Wilhelm. Using this restricted notion of refinement, they demonstrate

how this model can be used to accurately simulate important program events such as list copy-

ing, sorting, reversal, and various other destructive operations. The analysis uses technique sim-

ilar to re-materialization, but unlike parametric shape analysis techniques [SRW99, SRW02],

the re-materialization is approximate and may result in loss of precision.

Our method is also data flow analysis framework, that uses matrices and boolean functions

as data flow values. We use field sensitive connectivity matrices to store path information, and

boolean variables to record field updates. By incorporatingfield sensitivity information, we are

able to improve the precision without much impact on efficiency. The next chapter presents a

simplified view of our approach before we explain it in full details.

As our work is closest to the work of Ghiya et. al. [GH96] we present a brief summary of

their analysis in Appendix A.



Chapter 3

Motivation

For each pointer variable, our analysis computes the shape attribute of the data structure pointed

to by the variable. Following the existing literature [GH96, SRW96, Ghi96, MKSH06], we

define the shape attributep.shape for a pointerp as follows:

p.shape=















Cycle If a cycle can be reached fromp

Dag Else if a DAG can be reached fromp

Tree Otherwise

where the heap is visualized as a directed graph, and cycle and DAG have there natural graph-

theoretic meanings.

We use the code fragment in Fig. 3.1(a) to motivate the need for a field sensitive shape

analysis.

Example 3.1. Consider the code segment in the Fig. 3.1(a), AtS4, a DAG is created that is

reachable fromp. At S5, a cycle is created that is reachable from bothp andq. This cycle is

destroyed at lineS6 and the DAG is destroyed atS7.

Field insensitive shape analysis algorithms use conservative kill information and hence they

are, in general, unable to infer the shape transition from cycle to DAG or from DAG to Tree.

For example, the algorithm by Ghiya et. al. [GH96] can correctly report the shape transition

from DAG to cycle (atS5), but fails to infer the shape transition from cycle to DAG (at S6)

and from DAG toTree (at S7). This is evident from Fig. 3.1(b) that shows the Direction

(D) and Interference (I ) matrices computed using their algorithm. We get conservative shape

information atS6 andS7 because the kill-effect of statementsS6 andS7 are not taken into

account for computingD andI .

We now show how we have incorporated limited field sensitivity at each program point in

our shape analysis. The details of our analysis will be presented later (Chapter 5).

Example 3.2.The statement atS4 creates a new DAG structure reachable fromp, because there

are two paths (p→ f andp→ h) reachingq. Any field sensitive shape analysis algorithm must
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S1. p = malloc();
S2. q = malloc();
S3. p→f = q;
S4. p→h = q;
S5. q→g = p;
S6. q→g = NULL;
S7. p→h = NULL;

After Stmt D I

S1
p q

p 1 0
q 0 0

p q
p 1 0
q 0 0

S2
p q

p 1 0
q 0 1

p q
p 1 0
q 0 1

S3
p q

p 1 1
q 0 1

p q
p 1 1
q 1 1

S4
p q

p 1 1
q 0 1

p q
p 1 1
q 1 1

S5, S6, S7
p q

p 1 1
q 1 1

p q
p 1 1
q 1 1

(a) A code fragment (b) Direction (D) and Interfer-
ence (I ) matrices as com-
puted by [GH96]

Figure 3.1: A motivating example

After DF IF
Stmt

S1
p q

p {ε} /0
q /0 /0

p q
p {(ε,ε)} /0
q /0 /0

S2
p q

p {ε} /0
q /0 {ε}

p q
p {(ε,ε)} /0
q /0 {(ε,ε)}

S3
p q

p {ε} { f}
q /0 {ε}

p q
p {(ε,ε)} {( f ,ε)}
q {(ε, f )} {(ε,ε)}

S4
p q

p {ε} { f ,h}
q /0 {ε}

p q
p {(ε,ε)} {( f ,ε),(h,ε)}
q {(ε, f ),(ε,h)} {(ε,ε)}

S5
p q

p {ε, f ,h} { f ,h}
q {g} {ε,g}

p q
p {(ε,ε)} {( f ,ε),(h,ε),(ε,g)}
q {(ε, f ),(ε,h),(g,ε)}{(ε,ε)}

S6
p q

p {ε} { f ,h}
q /0 {ε}

p q
p {(ε,ε)} {( f ,ε),(h,ε)}
q {(ε, f ),(ε,h)} {(ε,ε)}

S7
p q

p {ε} { f}
q /0 {ε}

p q
p {(ε,ε)} {( f ,ε)}
q {(ε, f )} {(ε,ε)}

(a) Direction (DF ) and Interference (IF ) Matrices.

After Stmt S1 S2 S3 S4 S5 S6 S7
Boolean Vars
fpq false false true true true true true
hpq false false false true true true false
gqp false false false false true false false

(b) Values for boolean variables corresponding to relevantpointer fields.

Figure 3.2: Field Sensitive information for the code in Figure 3.1(a)
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remember all paths fromp to q. Our analysis approximates any path between two variables by

the first field that is dereferenced on the path. Further, as there may be an unbounded number

of paths between two variables, we usek-limiting to approximate the number of paths starting

at a given field.

Our analysis remembers the path information using the following: (a) DF : Modified di-

rection matrix that stores the first fields of the paths between two pointers; (b)IF : Modified

interference matrix that stores the pairs of first fields corresponding to the pairs of interfer-

ing paths, and (c) Boolean Variables that remember the fieldsdirectly connecting two pointer

variables.

Figures 3.2(a) and 3.2(b) show the values computed by our analysis for the example pro-

gram. In this case, the fact that the shape of the variablep becomes DAG afterS4 is captured

by the following boolean functions1 :

pDag = (hpq∧ (|IF [p,q]|> 1))∨ ( fpq∧ (|IF [p,q]|> 1)), hpq = True .

Wherehpq is a boolean variable that is true ifh field of p points toq, fpq is a boolean variable

that is true if f field of p points toq, IF is field sensitive interference matrix,|IF [p,q]| is the

count of number of interfering paths betweenp andq.

The functions simply say that variablep reaches a DAG because there are more than one

paths (|IF [p,q]| > 1) from p to q. It also keeps track of the paths (fpq andhpq in this case).

Later, at statementS7, the path due tohpq is broken, causing|IF [p,q]|= 1. This causespDag to

become false. Note that wedo notevaluate the boolean functions immediately, but associate

the unevaluated functions with the statements. When we wantto find out the shape at a given

statement, only then we evaluate the function using theDF andIF matrices, and the values of

boolean variables at that statement.

Our analysis uses another attributeCycle to capture the cycles reachable from a variable.

For our example program, assuming the absence of cycles before S5, the simplified functions

for detecting cycle onp afterS5 are:

pCycle = gqp∧ (|DF [p,q]| ≥ 1), gqp= True .

Here, the functions captures the fact that cycle onp consists of fieldg from q to p (gqp) and

some path fromp to q (|DF [p,q]| ≥ 1). This cycle is broken either when the path fromp to q is

broken (|DF [p,q]|= 0) or when the linkg changes (gqp = False). The latter occurs afterS6 in

Fig. 3.2(a).

In the rest of the report, we formalize the intuitions presented above and describe our anal-

ysis in details.

1The functions and values shown in this example and in Fig. 3.2are simplified to avoid references to concepts
not defined yet.
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Chapter 4

Definitions and Notations

We view the heap structure at a program point as a directed graph, the nodes of which represent

the allocated objects and the edges represent the connectivity through pointer fields. Pictorially,

inside a node we show all the relevant pointer variables thatcan point to the heap object corre-

sponding to that node. The edges are labeled by the name of thecorresponding pointer field. In

this report, we only label nodes and edges that are relevant to the discussion, to avoid clutter.

Let H denotes the set of all heap directed pointers at a particularprogram point andF

denotes the set of all pointer fields at that program point. Given two heap-directed pointersp,

q ∈ H , a path fromp to q is the sequence of pointer fields that need to be traversed in the heap

to reach fromp to q. The length of a path is defined as the number of pointer fields in the path.

As the path length between two heap objects may be unbounded,we keep track of only the first

field of a path1. To distinguish between a path of length one (direct path) from a path of length

greater than one (indirect path) that start at the same field,we use the superscriptD for a direct

path andI for an indirect path. In pictures, we use solid edges for direct paths, and dotted edges

for indirect paths.

It is also possible to have multiple paths between two pointers starting at a given fieldf ,

with at most one direct pathf D. However, the number of indirect pathsf I may be unbounded.

As there can only be a finite number of first fields, we store firstfields of paths, including the

count for the indirect paths, between two pointer variablesin a set. To bound the size of the

set, we put a limitk on number of repetitions of a particular field. If the number goes beyond

k, we treat the number of paths with that field as∞. This approach is similar to the approach

ofk-limiting [JM79]. andsl-limiting [LH88].

Example 4.1.Figure 4.1(a) shows a code fragment and Fig. 4.1(b) shows a possible heap graph

at a program point after lineS5. In any execution, there is one path betweenp andq, starting

with field f , whose length is statically unknown. This information is stored by our analysis as

1The decision to use only first field is guided by the fact that inour language, a statement can use at most one
field, i.e. p→f = ... or ...= p→f. While it is possible to use prefixes of any fixed length in caseof languages
using more than one fields, it does not make any fundamental change to our analysis.
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S1. q = p;
S2. while(...) {
S3. q→g = s;
S4. q = q→f;
S5. }

p . . . q
f f f f

s

g

h
g g

(a) A code fragment (b) A possible heap graph for code in (a). Solid edges are
the direct paths, dotted edges are the indirect paths.

Figure 4.1: Paths in a heap graph

the set{ f I1}. Further, there are unbounded number of paths betweenp ands, all starting with

field f . There is also a direct path fromp to s using fieldg, and 3 paths starting with field

h betweenp ands. Assuming the limitk ≥ 3, this information can be represented by the set

{gD, f I∞,hI3}. On the other hand, ifk< 3, then the set would be{gD, f I∞,hI∞}.

For brevity, we usef ∗ for the cases when we do not want to distinguish between direct or

indirect path starting at the first fieldf . We now define the field sensitive matrices used by our

analysis.

Definition 4.1. Field sensitive Direction matrix DF is a matrix that stores information about

paths between two pointer variables. Given p,q∈H , f ∈ F :

ε ∈ DF [p, p] whereε denotes the empty path.

f D ∈ DF [p,q] if there is a direct path f from p to q.

f Im ∈ DF [p,q] if there are m indirect paths starting with field f from p to q

and m≤ k.

f I∞ ∈ DF [p,q] if there are m indirect paths starting with field f from p to q

and m> k.

LetN denote the set of natural numbers. We define the following partial order for approxi-

mate paths used by our analysis. Forf ∈ F , m,n∈N , n≤ m:

ε ⊑ ε, f D ⊑ f D, f I∞ ⊑ f I∞, f Im ⊑ f I∞, f In ⊑ f Im .

The partial order is extended to set of pathsSP1,SP2 as2:

SP1 ⊑ SP2 ⇔ ∀α ∈ SP1,∃β ∈ SP2 s.t.α ⊑ β .

For pair of paths:

(α,β)⊑ (α′,β′)⇔ (α ⊑ α′)∧ (β ⊑ β′)

2Note that for our analysis, for a given fieldf , these sets contain at most one entry of typef D and at most one
entry of typef I
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Table 4.1: Determining shape from boolean attributes

pCycle pDag p.shape
True Don’t Care Cycle
False True DAG
False False Tree

For set of pairs of pathsRP1,RP2:

RP1 ⊑ RP2 ⇔∀(α,β) ∈ RP1,∃(α
′,β′) ∈ RP2 s.t.(α,β)⊑ (α′,β′)

Two pointersp,q∈H are said to interfere if there existss∈H such that bothp andq have

paths reachings. Note thats could bep (or q) itself, in which case the path fromp (from q) is

ε.

Definition 4.2. Field sensitive Interference matrix IF between two pointers captures the ways

in which these pointers are interfering. For p,q,s∈ H , p 6= q, the following relation holds for

DF and IF :

DF [p,s]×DF [q,s] ⊑ IF [p,q] .

Our analysis computes over-approximations for the matrices DF and IF at each program

point. While it is possible to compute onlyDF and use above equation to computeIF , com-

puting both explicitly results in better approximations for IF . Note that interference relation is

symmetric, i.e.,

(α,β) ∈ IF [p,q]⇔ (β,α) ∈ IF [q, p] .

While describing the analysis, we use the above relation to show the computation of only one

of the two entries.

Example 4.2. Figure 4.2 shows a heap graph and the corresponding field sensitive matrices as

computed by our analysis.

As mentioned earlier, for each variablep ∈ H , our analysis uses attributespDag and pCycle

to store boolean functions telling whetherp can reach a DAG or cycle respectively in the heap.

The boolean functions consist of the values from matricesDF , IF , and the field connectivity

information. For f ∈ F , p,q ∈ H , field connectivity is captured by boolean variables of the

form fpq, which is true whenf field of p points directly toq. The shape ofp, p.shape, can be

obtained by evaluating the functions for the attributespCycle andpDag, and using Table 4.1.

We use the following operations in our analysis. LetSdenote the set of approximate paths
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q

p

r

s

f1
f3

f5

f2

f4

DF p q s r

p {ε} { f D
1 } { f I1

1 , f I1
2 } { f I2

1 , f I1
2 }

q /0 {ε} { f D
3 } { f I1

3 , f I1
4 }

s /0 /0 {ε} { f D
5 }

r /0 /0 /0 {ε}

(a) Heap graph (b) Direction Matrix

IF p q s r

p {ε,ε} {( f D
1 ,ε), {( f I1

1 ,ε), {( f I2
1 ,ε),

( f I1
2 , f D

3 ), ( f I1
2 ,ε), ( f I1

2 ,ε)}
( f I1

2 , f I1
4 )} ( f I1

1 , f D
5 )}

q {(ε, f D
1 ), {ε,ε} {( f D

3 ,ε), {( f I1
3 ,ε),

( f D
3 , f I1

2 ), ( f I1
4 , f D

5 )} ( f I1
4 ,ε)}

( f I1
4 , f I1

2 )}

s {(ε, f I1
1 ), {(ε, f D

3 ), {ε,ε} {( f D
5 ,ε)}

(ε, f I1
2 )} ( f D

5 , f I1
4 )}

( f D
5 , f I1

1 )}

r {(ε, f I2
1 ), {(ε, f I1

3 ), {(ε, f D
5 )} {ε,ε}

(ε, f I1
2 )} (ε, f I1

4 )}

(c) Interference Matrix

Figure 4.2: A heap graph and its field sensitive path matrices

between two nodes,P denote a set of pair of paths, andk ∈ N denotes the limit on maximum

indirect paths stored for a given field. Then,

• Projection: Forf ∈ F , S⊲f extracts the paths starting at fieldf .

S⊲f ≡ S∩{ f D, f I1, . . . , f Ik, f I∞} .

• Counting: The count on the number of paths is defined as :

|ε|= 1, | f D|= 1, | f I∞|= ∞, | f I j |= j for j ∈N

|S| = ∑
α∈S

|α|

• Path removal, intersection and union over set of approximate paths : For singleton sets of

paths{α} and{β}, path removal ({α}⊖{β}), intersection ({α}∩{β}) and union({α}∪
{β}) operations are defined as given in Table 4.2. These definitions can be extended to set

of paths in a natural way. For example, for general sets of paths,S1 andS2, the definition

of removal can be extended as:

S1⊖S2 =
⋂

β∈S2

(
⋃

α∈S1

{α}⊖{β})
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Table 4.2: Path removal, intersection and union operations, whereγ denotes any other path.

(a) Path removal (b) Intersection
⊖ {β} {ε} { f D} { f I j} { f I∞} {γ}
{α}
{ε} /0 {ε} {ε} {ε} {ε}
{ f D} { f D} /0 { f D} { f D} { f D}

{ f Ii} { f Ii} /0 { f Im} /0 { f Ii}

{ f I∞} { f I∞} /0 { f I∞} { f I∞} { f I∞}

∩ {β} {ε} { f D} { f I j} { f I∞} {γ}
{α}
{ε} ε /0 /0 /0 /0
{ f D} /0 { f D} /0 /0 /0
{ f Ii} /0 /0 { f In} { f Ii} /0
{ f I∞} /0 /0 { f I j} { f I∞} /0

(c) Union
∪ {β} {ε} { f D} { f I j} { f I∞} {γ}
{α}
{ε} {ε} {ε, f D} {ε, f I j} {ε, f I∞} {ε,γ}
{ f D} { f D,ε} { f D} { f D, f I j} { f D, f I∞} { f D,γ}
{ f Ii} { f Ii ,ε} { f Ii , f D} { f It} { f I∞} { f Ii ,γ}
{ f I∞} { f I∞,ε} { f I∞, f D} { f I∞} { f I∞} { f I∞,γ}

i, j ∈N , m= max(i − j,0), n= min(i, j) andt =

{

i + j if i + j ≤ k
∞ Otherwise

.

Table 4.3: Multiplication by a scalar

⋆ α ε f D f I j f I∞

i

i ε f Ii f Im, m=

{

i ∗ j if i ∗ j ≤ k
∞ Otherwise

f I∞

∞ ε f I∞ f I∞ f I∞

• Multiplication by a scalar(⋆): Let i, j ∈ N , i ≤ k, j ≤ k. Then, for a pathα, the multipli-

cation by a scalari, i ⋆α is defined in Table 4.3. The operation is extended to set of paths

as:

i ⋆S =

{

/0 i = 0

{i ⋆α | α ∈ S} i ∈N ∪{∞}
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Chapter 5

Analysis

For{p,q} ⊆H , f ∈ F , n∈N andop ∈ {+,−}, we have the following eight basic statements

that can access or modify the heap structures.

1. Allocations

(a) p = malloc();

2. Pointer Assignments

(a) p = NULL;

(b) p = q;

(c) p = q → f;

(d) p = &(q → f);

(e) p = q op n;

3. Structure Updates

(a) p → f = q;

(b) p → f = NULL;

Our intend is to determine, at each program point, the field sensitive matricesDF andIF , and

the boolean variables capturing field connectivity. We formulate the problem as an instance of

forward data flow analysis, where the data flow values are the matrices and the boolean variables

as mentioned above. For simplicity, we construct basic blocks containing a single statement

each. Before presenting the equations for data flow analysis, we define the confluence operator

(merge) for various data flow values as used by our analysis. Using the superscriptsx andy to
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denote the values coming along two paths,

merge( f x
pq, f y

pq) = f x
pq∨ f y

pq, f ∈ F , p,q∈H

merge(px
Cycle, p

y
Cycle) = px

Cycle∨ py
Cycle, p∈H

merge(px
Dag, p

y
Dag) = px

Dag∨ py
Dag, p∈H

merge(Dx
F ,D

y
F) = DF whereDF [p,q] = Dx

F [p,q]∪Dy
F [p,q],∀p,q∈H

merge(I x
F , I

y
F) = IF whereIF [p,q] = I x

F [p,q]∪ I y
F [p,q],∀p,q∈H

The transformation of data flow values due to a statementst is captured by the following set of

equations:

Dout
F [p,q] = (Din

F [p,q]⊖Dkill
F [p,q])∪Dgen

F [p,q]

Iout
F [p,q] = (I in

F [p,q]⊖ Ikill
F [p,q])∪ Igen

F [p,q]

pout
Cycle = (pin

Cycle∧¬pkill
Cycle)∨ pgen

Cycle

pout
Dag = (pin

Dag∧¬pkill
Dag )∨ pgen

Dag

Field connectivity information is updated directly by the statement.

5.1 Analysis of Basic Statements

We now present the basic statements that can access or modifythe heap structures, and our

analysis of each kind of statements.

1. p = malloc(): After this statement all the existing relationships ofp get killed and it

will point to a newly allocated object. We will consider thatp can have an empty path to

itself and it can interfere with itself using empty paths (orε paths).

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = False pgen

Dag = False

∀s∈H ,s 6= p :

Dkill
F [p,s] = Din

F [p,s] Dgen
F [p,s] = /0

Dkill
F [s, p] = Din

F [s, p] Dgen
F [s, p] = /0

Dkill
F [p, p] = Din

F [p, p] Dgen
F [p, p] = {ε}

Ikill
F [p,s] = I in

F [p,s] Igen
F [p,s] = /0

Ikill
F [p, p] = I in

F [p, p] Igen
F [p, p] = {ε,ε}
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2. p = NULL: This statement only kills the existing relations ofp.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = False pgen

Dag = False

∀s∈H :

Dkill
F [p,s] = Din

F [p,s] Dgen
F [p,s] = /0

Dkill
F [s, p] = Din

F [s, p] Dgen
F [s, p] = /0

Ikill
F [p,s] = I in

F [p,s] Igen
F [p,s] = /0

3. p = q, p = &(q→f), p = q op n: In our analysis we consider these three pointer

assignment statements as equivalent. After this statementall the existing relationships of

p gets killed and it will point to same heap object as pointed toby q. In caseq currently

points to null,p will also points to null after the statement. Sop will have the same field

sensitive Direction and Interference relationships asq. The kill effect of this statement is

same as that of the previous statement. The generated boolean functions for heap object

p corresponding to DAG or Cycle attribute will be same as that of q, with all occurrences

of q replaced byp.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = qin

Cycle[q/p] pgen
Dag = qin

Dag[q/p]

whereX[q/p] creates a copy ofX with all occurrences ofq replaced byp.

∀s∈H ,s 6= p,∀ f ∈ F

fps= fqs, fsp= fsq

Dkill
F [p,s] = Din

F [p,s] Dgen
F [p,s] = Din

F [q,s]

Dkill
F [s, p] = Din

F [s, p] Dgen
F [s, p] = Din

F [s,q]

Dkill
F [p, p] = Din

F [p, p] Dgen
F [p, p] = Din

F [q,q]

Ikill
F [p,s] = I in

F [p,s] Igen
F [p,s] = I in

F [q,s]

Ikill
F [p, p] = I in

F [p, p] Igen
F [p, p] = I in

F [q,q]

4. p→f = null: This statement breaks the existing linkf emanating fromp, thus killing

relations ofp, that are due to the linkf . The statement does not generate any new rela-
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tions. The killed relationships involve breaking of the allthe direct links ofp, which is

manifested by settingfpq to 0, ∀q∈ H as well as the indirect links ofp, which is done

by updating theDF andIF matrices. Other links between pointers which come up due to

field f of p are conservatively approximated to exist even after the statement. The rela-

tion IF [p, p] is not much relevant to our analysis, so the corresponding kill information is

ignored.

pkill
Cycle = False, pkill

Dag = False

pgen
Cycle = False, pgen

Dag = False

∀q,s∈H ,s 6= p :

fpq = False

Dkill
F [p,q] = Din

F [p,q]⊲f Dkill
F [s,q] = /0

Ikill
F [p,s] = {(α,β) | (α,β) ∈ I in

F [p,q], α ≡ f ∗}

Ikill
F [q,s] = /0 if q 6= p Ikill

F [p, p] = /0

5. p→f = q: This statement first breaks the existing linkf and then re-links the the heap

object pointed to byp to the heap object pointed to byq. The kill effects are exactly same

as described in the case ofp→f = null. We only describe the generated relationships

here.

The fact that the shape of the variablep becomes DAG after the statement is captured by

the boolean functionspgen
Dag and fpq. The functions simply say that variablep reaches a

DAG because there are more than one paths (|IF [p,q]|> 1) from p to q. It also keeps track

of the pathfpq in this case. The functionqgen
Cycle (or pgen

Cycle) captures the fact that cycle onq

(or p) consists of fieldf from p to q ( fpq) and some path fromq to p (|DF [q, p]| ≥ 1). The

functionpgen
Cycle also captures the fact that cycle onp can be due to the linkfpq reaching an

already existing cycle onq. These are summarized as follows:

pgen
Cycle = ( fpq∧qin

Cycle)∨ ( fpq∧ (|DF [q, p]| ≥ 1)) pgen
Dag = fpq∧ (|IF [p,q]|> 1)

qgen
Cycle = fpq∧ (|DF [q, p]| ≥ 1) qgen

Dag = False

fpq = True
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For nodess∈ H other thanp or q, the functionsgen
Cycle captures the fact that cycle ons

consists of some path froms to p (or q) i.e. |DF [s, p]| ≥ 1 (or |DF [s,q]| ≥ 1) and the

fact that a Cycle onp (or q) has just created due to the statement. Again the function

sgen
Dag simply say that variables reaches a DAG because there are more than one way of

interference betweens andq i.e. |IF [s,q]| > 1. It also keeps track of the pathsfpq and

DF [s, p] in this case.

sgen
Cycle = ((|DF [s, p]| ≥ 1)∧ fpq∧qin

Cycle)

∨ ((|DF [s, p]| ≥ 1)∧ fpq∧ (|DF [q, p]| ≥ 1))

∨ ((|DF [s,q]| ≥ 1)∧ fpq∧ (|DF [q, p]| ≥ 1)) ∀s∈H ,s 6= p,s 6= q

sgen
Dag = (|DF [s, p]| ≥ 1)∧ fpq∧ (|IF [s,q]|> 1) ∀s∈H ,s 6= p,s 6= q

After the statement, all the nodes which have paths towardsp (includingp) will have path

towards all the nodes reachable fromq (includingq). Again all nodes having paths top

can potentially interfere with all the nodeq interferes with. Thus the relations generated

for DF andIF are as follows.

For r,s∈H :

Dgen
F [r,s] = |Din

F [q,s]|⋆Din
F [r, p], s 6= p, r 6∈ {p,q}

Dgen
F [r, p] = |Din

F [q, p]|⋆Din
F [r, p], r 6= p

Dgen
F [p, r] = |Din

F [q, r]|⋆ (Din
F [p, p]⊖{ε}∪{ f I1}), r 6= q

Dgen
F [p,q] = { f D} ∪ (|Din

F [q,q]−{ε}|⋆{ f I1}) ∪ (|Din
F [q,q]|⋆ (Din

F [p, p]⊖{ε}))

Dgen
F [q,q] = 1⋆Din

F [q, p]

Dgen
F [q, r] = |Din

F [q, r]|⋆Din
F [q, p], r 6∈ {p,q}

Igen
F [p,q] = {( f D,ε)}∪ ((1⋆ (Din

F [p, p]⊖{ε}))×{ε})

Igen
F [p, r] = (1⋆ (Din

F [p, p]⊖{ε}))×{β | (α,β) ∈ I in
F [q, r]}

∪ { f D}×{β | (ε,β) ∈ I in
F [q, r]}

∪ { f I1}×{β | (α,β) ∈ I in
F [q, r],α 6= ε}, r 6∈ {p,q}

Igen
F [s,q] = (1⋆Din

F [s, p])×{ε}, s 6∈ {p,q}

Igen
F [s, r] = (1⋆Din

F [s, p])×{β | (α,β) ∈ I in
F [q, r]}, s 6∈ {p,q}, r 6∈ {p,q}, s 6= r

6. p = q→f: The relations killed by the statement are same as that in case of p = NULL.

The relations created by this statement are heavily approximated by our analysis. After

this statementp points to the heap object which is accessible from pointerq through f

link. The only inference we can draw is thatp is reachable from any pointerr such thatr
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reachesq→ f before the assignment. This information is available becauseI in
F [q, r] will

have an entry of the form( f D,α) for someα.

As p could potentially point to a cycle(DAG) reachable fromq, we set:

pgen
Cycle = qin

Cycle pgen
Dag = qin

Dag

We record the fact thatq reachesp through the pathf . Also, any object reachable fromq

using field f is marked as reachable fromp through any possible field.

fqp = True hpr = |Din
F [q, r]⊲f | ≥ 1 ∀h∈ F ,∀r ∈H

The equations to compute the generated relations forDF andIF can be divided into three

components. We explain each of the component, and give the equations.

As a side-effect of the statement, any nodes that is reachable fromq through field f

before the statement, becomes reachable fromp. However, the information available is

not sufficient to determine the path fromp to s. Therefore, we conservatively assume that

any path starting fromp can potentially reachs. This is achieved in the analysis by using

a universal path setU for DF [p,s]. The setU is defined as:

U = {ε}∪
⋃

f∈F

{ f D, f I∞}

Because it is also not possible to determine if there exist a path fromp to itself, we safely

conclude a self loop onp in case a cycle is reachable fromq (i.e., q.shape evaluates to

Cycle). These observations result in the following equations:

D1[p,s] = U ∀s∈H ,s 6= p∧Din
F [q,s]⊲f 6= /0

D1[p, p] =

{

U q.shape evaluates toCycle

{ε} Otherwise

I1[p, p] = U×U

Any nodes (includingq), that has paths toq before the statement, will have paths top

after the statement. However, we can not know the exact number of pathss to p, and

therefore use upper limit (∞) as an approximation:

D2[s, p] = ∞⋆Din
F [s,q] ∀s∈H ,s 6= q

D2[q, p] = { f D}∪ (∞⋆ (Din
F [q,q]⊖{ε}))∪U

I2[s, p] = D2[s, p]×{ε} ∀s∈H
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The third category of nodes to consider are those that interfere with the node reachable

from q using direct pathf . Such a nodes will have paths top after the statement. Also

the nodes that interfere with the node reachable fromq using direct or indirect pathf will

interfere withp after the statement. Thus, we have:

D3[s, p] = {α | ( f D,α) ∈ I in
F [q,s]}

I3[s, p] = {α | ( f ∗,α) ∈ I in
F [q,s]}×U

Finally, we compute theIF andDF relations as:

Dgen
F [r,s] = D1[r,s]∪D2[r,s]∪D3[r,s] ∀r,s∈H

Igen
F [r,s] = I1[r,s]∪ I2[r,s]∪ I3[r,s] ∀r,s∈H

5.2 Inter-procedural Analysis

To handle procedure calls we use simple inter-procedural analysis that works by creating an

invocation graph of the program. To handle recursive calls,for which the invocation structure is

statically unknown, we use approximate summary for one of the nodes involved in the recursion

chain, and use it to break the cycle. At each call site, the twomatrices (DF andIF ) along with

the boolean functions are fed as input to the called procedure, after proper mapping between

formal and actual arguments. The called procedure is then analyzed to create the corresponding

output matrices and the boolean functions. This approach issimilar to the work by Ghiya

et. al. [GH96].
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Chapter 6

Properties of our Analysis

In this chapter we discuss some properties of our analysis. First we discuss the need of introduc-

ing boolean variables on the top of field sensitive matrices.We then discuss how we guarantee

termination of our analysis. We also give bounds corresponding to the storage requirement of

our analysis.

6.1 Need for Boolean Variables

Because we compute approximations for field sensitive matrices under certain conditions (e.g.

for statementp= q→ f ), these matrices can result in imprecise shape. Boolean variables help

us retain some precision in such cases, as demonstrated next.

Example 6.1. Fig. 6.1(a) shows a program fragment, and Fig. 6.1(b) shows apossible heap

graph at a program point before statementS1. At S2, a DAG is created that is reachable from

r which gets destroyed afterS3. Fig. 6.1(c) shows the Direction (DF ) and Interference (IF )

matrices at various program points. After statementS2 we conservatively approximated the

entriesDF [r, p] andIF [r,q] using the universal pathU and as a consequence those entries will

not be affected by the kill-effects of statementS3. However, using boolean variables, the fact

that the shape of the variabler becomes DAG afterS2 is captured by the following boolean

functions:

rDag = ( fpq∧ (|IF [r,q]|> 1)) fpq= True

After S2, rDag becomestrue, thus implying thatr.shape == DAG. Later, at statementS3, the

path due tofpq is broken. Even though the inequality|IF [r,q]| > 1| still holds (because of

U), we can still infer the shape transition from DAG to Tree because the boolean variablefpq

becomesfalse thus settingrDag to false.
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...
S1. r = s→g;
S2. p→f = q;
S3. p→f = NULL;

...
p

s

q

g

f

g
h

After fpq IF [r,q] DF [r, p]
S1 false U×{h} U

S2 true U×{h,ε} U

S3 false U×{h,ε} U

(a) A code fragment (b) Heap Structure before
S1

(c) Values for boolean vari-
able,DF , and IF for rel-
evant pointer fields.

Figure 6.1: Using boolean variables to improve precision

gen(b): ψ

kill(b): γ

f

b

IN(b)

OUT(b)
Iteration IN(b) OUT(b)

1 f ( f ∧ γ)∨Ψ

2 f ∨ (( f ∧ γ)∨Ψ)

(( f ∨ (( f ∧ γ)∨Ψ))∧ γ)∨Ψ
= ((( f ∨ ( f ∧ γ))∨Ψ)∧ γ)∨Ψ
= (( f ∨Ψ)∧ γ)∨Ψ
= ( f ∨Ψ∨Ψ)∧ (γ∨Ψ)
= ( f ∨Ψ)∧ (γ∨Ψ)
= ( f ∧ γ)∨Ψ

3 f ∨ (( f ∧ γ)∨Ψ) ( f ∧ γ)∨Ψ

(a) Data Flow (b) Data flow values per iteration

Figure 6.2: The termination of computation of boolean functions

6.2 Termination

The computation ofDF andIF matrices follows from the fact that the data flow functions are

monotonic and the sets of approximate paths are bounded. Thetermination of computation of

boolean functions for Cycle and Dag can be proved using the associativity and distributivity of

the boolean operators (∨ and∧).

Consider Fig. 6.2(a) which shows a basic block b with its in and out sets, IN(b) and OUT(b)

respectively. The boolean formulasΨ andγ respectively denote the gen and kill sets correspond-

ing to basic block b. Let f denotes the boolean formula at a program point before executing b.

Figure 6.2(b) shows the in and out sets generated in each iteration of the data flow analysis. As

depicted in Fig. 6.2(b), the boolean functions acquire fixed-point after the second iteration.

6.3 Storage Requirement

The memory requirement of our analysis consists of the storage space for the matrices (DF and

IF ) and the boolean functions. Letn ∈ N denotes the cardinality of the setH at a program

point. Obviouslyn is bounded by the total number of pointer variables in the program. Let
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m∈N denotes the maximum number of possible distinct pointer fields emanating from a heap

directed pointer, which is again a bounded quantity. Between two pointer, for each field, we

only use: (a) the (k-limited) count of the number of indirect paths starting at that given field,

and (b) if there is a direct path using that field, the storage requirement for the matrices is

bounded as:

Space requirement forDF : O(n2∗m)

Space requirement forIF : O(n2∗m2)

The boolean functions at each program point are stored in an expression tree. As can be

seen from the equations for the boolean functions, the height and width of the expression tree

for a function is polynomial in the number of pointer instructions in the program. By carefully

reusing the trees for the subexpressions in an expression, it is possible to store the boolean

functions efficiently.
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Chapter 7

Comparison with Other Approaches

For comparison purpose the test-cases must involve shape transitions like Cycle to DAG, Cycle

to Tree, and DAG to Tree. The transition like Tree to DAG, DAG to Cycle, or Tree to Cycle

are not of much importance as these can be detected by any of the field insensitive approaches.

Following are the cases that meet our requirement and betterdemonstrate the accuracy of our

analysis as compared to field insensitive analysis (like Ghiya et. al. [GH96]).

7.1 Comparison with Ghiya et. al. [GH96]

7.1.1 Inserting an internal node in a singly linked list.

Consider the code fragment Fig. 7.1(a) that is a simplified version of insertion of an internal

node in a linked list. Field insensitive approach like that of Ghiya et. al. [GH96] cannot detect

the kill information due to the change of the fieldf of p atS4 and findsp to have an additional

path toq via r (which is now actually the only path). So they report the shape attribute of

p as DAG. Figure 7.1(c) shows theDF andIF matrices corresponding to our analysis at each

program point. Consider the following boolean function generated afterS4 using our approach.

pDag = ( fpq∧ (|IF [pq]|> 1))∨ ( fpr ∧ (|IF [pr]|> 1)),

fpr = True, fpq = False .

After S4, the condition|IF [p, r]|> 1 becomeFalseandpDag will get evaluated toFalse, and thus

correctly detects the shape attribute ofp as tree.

7.1.2 Swapping Two Nodes of a Singly Linked List.

Consider the code fragment Fig. 7.2(a) which swaps the two pointersp→ f (sayn1) andp→

f → f (sayn2) in a singly linked listL with link field as f , given the pointerp. Also let t

be the node following the heap objectn2 using f link. After S1, a temporary Cycle is created
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S1. p→f = q;
S2. r= malloc();
S3. r→f = q;
S4. p→f = r;

After Actual Shape Field Insensitive Analysis Field Sensitive Analysis

S1 Tree Tree Tree
S2 Tree Tree Tree
S3 Tree Tree Tree
S4 Tree DAG(at p) Tree

(a) A code fragment (b) Shape Inference

After DF IF
Stmt

S1

p r q
p /0 /0 { f D}
r /0 /0 /0
q /0 /0 /0

p r q
p /0 /0 {( f D,ε)}
r /0 /0 /0
q {(ε, f D) /0 /0

S2

p r q
p /0 /0 { f D}
r /0 {ε} /0
q /0 /0 /0

p r q
p /0 /0 {( f D,ε)}
r /0 {(ε,ε)} /0
q {(ε, f D) /0 /0

S3

p r q
p /0 /0 { f D}
r /0 {ε} { f D}
q /0 /0 /0

p r q
p /0 /0 {( f D,ε)}
r /0 {(ε,ε)} {( f D,ε)}
q {(ε, f D)} {(ε, f D)} /0

S4

p r q
p /0 { f D} { f I1}
r /0 {ε} { f D}
q /0 /0 /0

p r q
p /0 {( f D,ε)} {( f I1,ε)}
r {(ε, f D)} {(ε,ε)} {( f D,ε)}
q {(ε, f I1)} {(ε, f D)} /0

(c) Direction (DF ) and Interference (IF ) matrices

Figure 7.1: Insertion of an internal node in a singly linked list

on p,n1 andn2, which get destroyed after the statementS2. This temporary shape transition

is detected by our analysis. The table in Fig. 7.2(b) shows the comparison between the shape

decision given by our approach and the field insensitive approaches. Consider the following

boolean functions generated afterS1 using our approach.

n2Cycle = ( fn2,n1∧|DF [n1,n2]| ≥ 1)

n1Cycle = ( fn2,n1∧|DF [n1,n2]| ≥ 1)

pCycle = (|DF [p,n2]| ≥ 1∧ fn2,n1∧|DF [n1,n2]| ≥ 1)

pCycle = (|DF [p,n1]| ≥ 1∧ fn2,n1∧|DF [n1,n2]| ≥ 1)

fn2,n1 = True

As depicted in Fig. 7.2(c) which summarises theDF andIF matrices computed using our analy-

sis, beyondS2 the condition|DF [n1,n2]| ≥ 1 becomesFalseand thus the shape transition from

Cycle to Tree is reported.

7.1.3 Recursively Swapping Binary Tree.

Consider the code fragment Fig. 7.3(a) which creates a mirror image of a binary tree rooted at

T. While swapping the left and right sub-tree a temporary DAG is created (after statementS5),

which gets destroyed after the very next statementS6. Consider the following boolean functions
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S1. n2→f = n1;
S2. n1→f = t;
S3. p→f = n2;

After Actual Shape Field Insensitive Analysis Field Sensitive Analysis

S1 Cycle (atp, n1, n2) Cycle (atp, n1, n2) Cycle (atp, n1, n2)
S2 Tree Cycle (atp, n1, n2) Tree
S3 Tree Cycle (atp, n1, n2) Tree

(a) A code fragment (b) Shape Inference

After DF IF
Stmt

S1

n1 n2 p t
n1 { f I1} { f D, f I1}{ f I1} { f I1}

n2 { f D} { f I1} /0 { f I1}

p { f D, f I1}{ f I2} /0 { f I2}
t /0 /0 /0 /0

n1 n2 p t
n1 {( f I1,ε)} {( f D,ε),(ε, f D)} {(ε, f D)} /0
n2 {( f D,ε),(ε, f D)} {( f I1,ε)} {(ε, f I1)} /0
p {( f D,ε)} {( f I1,ε)} /0 /0
t /0 /0 /0 /0

S2

n1 n2 p t
n1 /0 /0 /0 { f D

}

n2 { f D} { f I1} /0 { f I1}

p { f D, f I1}{ f D, f I3} /0 f I2

t /0 /0 /0 /0

n1 n2 p t
n1 /0 {(ε, f D)} {(ε, f D)} {( f D,ε)}
n2 {( f D,ε)} /0 {(ε, f I1)} {( f I1,ε)}
p {( f D,ε)} {( f I1,ε)} /0 {( f I1,ε)}
t {(ε, f D)} {(ε, f I1)} {(ε, f I1)} /0

S3

n1 n2 p t
n1 /0 /0 /0 { f D}

n2 { f D} { f I1} /0 { f I1}

p { f I1} { f D, f I1} /0 { f I1}
t /0 /0 /0 /0

n1 n2 p t
n1 /0 {(ε, f D)} {(ε, f I1)} {( f D,ε)}
n2 {( f D,ε)} /0 {(ε, f D)} {( f I1,ε)}
p {( f I1,ε)} {( f D,ε)} /0 {( f I1,ε)}
t {(ε, f D)} {(ε, f I1)} {(ε, f I1)} /0

(c) Direction (DF ) and Interference (IF ) matrices

Figure 7.2: Swapping two nodes of a singly linked list

generated afterS5 using our approach.

TDag = (le f tT,R∧|IF [T,R]|> 1)

le f tT,R = True

Figure 7.3(c) shows theDF andIF matrices corresponding to our analysis at each program

point. Due to the inclusion of the approximation (U) for the statementsS1 andS2, the condition

|IF [T,R]|> 1 still holds beyondS6 and thus the analysis reports shape ofT as DAG, which is

actually a Tree. Considering the fact that shape attribute of T is a Tree, and thus statementsS1

andS2 must include just one path betweenT andL or T andR, we obtain Figure 7.3(d) which

shows the refinedDF andIF matrices at each program point, using which we can infer the shape

of T afterS6 as Tree because the condition|IF [T,R]| > 1 evaluated toFalseafter S6. Figure

7.3(b) shows the shape transition at each program point using this refined analysis.

7.2 Comparison with Marron et. al. [MKSH06]

Using the property as mentioned in Appendix B, we inferred the shape of the data structure

corresponding to each region for the test-cases that we havechosen, and concluded that their

shape inferencing comply exactly with the actual shapes that should be reported.

To eliminate the state explosion that is possible with refinement, they apply refinement to

only those cases where there exist a unique way of materializing new nodes. This limits the

amount of precision that can be achieved as there exists cases where refinement into multiple
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mirror(tree T) {
S1. L = T->left;
S2. R = T->right;
S3. mirror(L);
S4. mirror(R);
S5. T->left = R;
S6. T->right = L;
}

After Actual Shape Field Insensitive Analysis Field Sensitive Analysis

S1 Tree Tree Tree
S2 Tree Tree Tree
S5 Dag (at T) Dag (at T) Dag (at T)
S6 Tree Dag (at T) Tree

(a) A code fragment (b) Shape Inference

After DF IF
Stmt

S1

T L R
T /0 {lD}∪U /0
L /0 /0 /0
R /0 /0 /0

T L R
T /0 ({lD}∪U)×{ε} /0
L {ε}× ({lD}∪U) /0 /0
R /0 /0 /0

S2

T L R
T /0 {lD}∪U {rD}∪U
L /0 /0 /0
R /0 /0 /0

T L R
T /0 ({lD}∪U)×{ε} ({rD}∪U)×{ε}
L {ε}× ({lD}∪U) /0 /0
R {ε}× ({rD}∪U) /0 /0

S5

T L R
T /0 U {rD, lD}∪U
L /0 /0 /0
R /0 /0 /0

T L R
T /0 U×{ε} ({rD, lD}∪U)×{ε}
L {ε}×U /0 /0
R {ε}×({rD, lD}∪U) /0 /0

S6

T L R
T /0 {rD}∪U {lD}∪U
L /0 /0 /0
R /0 /0 /0

T L R
T /0 ({rD}∪U)×{ε} ({lD}∪U)×{ε}
L {ε}× ({rD}∪U) /0 /0
R {ε}× ({lD}∪U) /0 /0

(c) Direction (DF ) and Interference (IF ) matrices

After DF IF
Stmt

S1

T L R
T /0 {lD} /0
L /0 /0 /0
R /0 /0 /0

T L R
T /0 {(lD,ε)} /0
L {(ε, lD)} /0 /0
R /0 /0 /0

S2

T L R
T /0 {lD} {rD}
L /0 /0 /0
R /0 /0 /0

T L R
T /0 {(lD,ε)} {(rD,ε)}
L {(ε, lD)} /0 /0
R {(ε, rD)} /0 /0

S5

T L R
T /0 /0 {rD, lD}
L /0 /0 /0
R /0 /0 /0

T L R
T /0 /0 {(rD,ε),(lD,ε)}
L /0 /0 /0
R {(ε, rD),(ε, lD)} /0 /0

S6

T L R
T /0 {rD} {lD}
L /0 /0 /0
R /0 /0 /0

T L R
T /0 {(rD,ε)} {(lD,ε)}
L {(ε, rD)} /0 /0
R {(ε, lD)} /0 /0

(d) Refined Direction (DF ) and Interference (IF ) matrices

Figure 7.3: Computing mirror image of a binary tree. “l ” and “r” denotes respectively the left
and right fields of tree.
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possibilities is needed to get results with the desired accuracy.
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Chapter 8

Conclusion and Future Work

In this report we proposed a field sensitive shape analysis technique. We demonstrated how

boolean functions along with field sensitive matrices help in inferring the precise shape of the

data structure. While field sensitive matrices help in generating the kill information for strong

updates, boolean functions help in remembering the shape transition history with respect to each

heap-directed pointer. We have shown some example scenarios that can be handled more pre-

cisely by our analysis as compared to an existing field insensitive analysis. Our shape analysis

can be utilized by an optimizing compiler to disambiguate memory references.

We use a very simple inter procedural framework to handle function calls, that computes

safe approximate summaries to reach fix point . Our next challenge is to develop a better inter

procedural analysis to handle function calls more precisely. Further, we plan to extend our

shape analysis technique to handle more of frequently occurring programming patterns to find

precise shape for these patterns. We are developing a prototype model using GCC framework

to show the effectiveness on large benchmarks. However, this work is still in very early stages,

and requires manual intervention. We plan to automate the prototype in near future.
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Appendix A

Analysis of Ghiya et. al. [GH96]1

Most of the definitions and technical terms used in this chapter are borrowed from the afore-

mentioned paper. The proposed shape analysis composed of three store-less abstractions that

are computed together at each program point. For each heap directed pointer they approximated

the attribute shape and for each pair of heap directed pointers they approximated the direction

and interference relationships between them. These three abstractions are defined formally as

follows:

Definition A.1. Given any heap-directed pointer p, the shape attribute p.shape is Tree, if in

the data structure accessible from p there is a unique (possibly empty) access path between any

two nodes (heap objects) belonging to it. It is considered tobe DAG (directed acyclic graph),

if there can be more than one path between any two nodes in thisdata structure, but there is

no path from a node to itself (i. e, it is acyclic). If the data structure contains a node having a

path to itself, p.shape is considered to be Cycle. Note that as lists are special case of tree data

structures, their shape is also considered as Tree.

Definition A.2. Given two heap directed pointers p and q, the direction matrix D captures the

following relationships between them:

• D[p,q] = 1 : An access path possibly exists in the heap, from the heap object pointed to

by p, to the heap object pointed to by q. In this case we simply say that the pointer p has

a path to pointer q.

• D[p,q] = 0 : No access path exists from the heap object pointed to by p to the heap object

pointed to by q.

Definition A.3. Given two heap directed pointers p and q, the direction matrix I captures the

following relationships between them:

• I [p,q] = 1 : A common heap object can be possibly accessed starting from pointers p and

q. In this case we state that pointers p and q can interfere.

1The contents of this section are borrowed from [GH96]
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N N

L R

L R

L R

p

q

u

r

t

s

(a) Heap Structure

D p q r s t u

p 1 1 0 0 0 0
q 0 1 0 0 0 0
r 0 0 1 0 0 0
s 0 0 1 1 1 0
t 0 0 0 0 1 0
u 0 0 1 0 0 1

I p q r s t u

p 1 1 0 0 0 0
q 1 1 0 0 0 0
r 0 0 1 1 0 1
s 0 0 1 1 1 1
t 0 0 0 1 1 0
u 0 0 1 1 0 1

(b) Direction Matrix (c) Interference Matrix

Figure A.1: Example Direction and Interference Matrices

• I [p,q] = 0 : No common heap object can be accessed starting from pointersp and q. In

this case we state that pointers p and q do not interfere.

Direction relationships are used to actually estimate the shape attributes, where the interfer-

ence relationships are used for safely calculating direction relationships.

Illustrative Example

The direction and interference matrices are illustrated inFig. A.1. Part (a) represents a heap

structures at a program point, while parts (b) and (c) show the direction and interference matri-

ces for it.

We now demonstrate how direction relationships help estimate the shape of the data struc-

tures. In Fig. A.2, initially we have bothp.shape andq.shape as Tree. FurtherD[q, p] == 1,

as there exists a path fromq to p throughnext link. The statementp→prev = q, sets up a

path fromp to q through theprev link. From direction matrix information we already know

that a path exists fromq to p, and now a path is being set fromp to q. Thus after the statement,

D[p,q] = 1, D[q, p] = 1, p.shape = Cycle andq.shape = Cycle.
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q

p

next

q

p

next

D[q,p] = 1 D[p,q] = 0

p.shape = Tree

q.shape =Tree

D[q,p] = 1 D[p,q] = 1

p.shape = Cycle

q.shape = Cycle

p−>prev = q
prev

Figure A.2: Example Demonstrating Shape Estimation

Analysis of Basic Statements

They have considered eight basic statements that can accessor modify heap data structures

as listed in Fig. A.3(a). Variablesp andqand the fieldf are of pointer type, variablek is of

integer type, andop denotes the+ and− operations. The overall structure of the analysis is

shown in Fig. A.3(b). Given the direction and the interference matricesD andI at a program

point x, before the given statement, they compute the matricesDn and In at a program point

y. Additionally, we have the attribute matrix A, where for a pointer p, A[p] gives its shape

attribute. The attribute matrix after the statement is presented asAn.

For each statement they compute the set of direction and interference relationships it kills

and generates. Using these sets, the new matricesDn andIn are computed as shown in Fig. A.3(c).

Note that the elements in the gen and kill sets are denoted asD[p,q] for direction relationships,

andI [p,q] for interference relationships. Thus a gen set of the form{D[x,y],D[y,z]}, indicates

that the corresponding entries in the output direction matrix Dn[x,y] andDn[y,z] should be set

to one. We also compute the set of pointersHs, whose shape attribute can be modified by the

given statement. Another attribute matrixAc is used to store the changed attribute of pointers

belonging to the setHs. The attribute matrixAn is then computed using the matricesA andAc

as shown in Fig. A.3(c).

Let H be the set of pointers whose relationships/attributes are abstracted by the matricesD.

I andA. Further assume that updating an interference matrix entryI [q, p], implies identically

updating the entryI [p,q].

The actual analysis rules can be divided into three groups: (1) allocations, (2) pointer as-

signments, and (3) structure updates. Figure A.4 shows the gen and kill sets corresponding to

each statement.
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Allocation
1. p = malloc();

Pointer Assignments
2. p = q;
3. p = &(q→f);
4. p = q op k;
5. p = NULL;
6. p = q→f;

Structure Updates
7. p→f = q;
8. p→f = NULL;

x

y

D   I   A

Statement

D   I   An n n

Build the new matrices
∀r,s∈ H, Dn[r,s] = D[r,s], In[r,s] = I [r,s]
∀s∈ H, An[s] = A[s]

Delete Killed relationships
∀entries D[r,s] ∈ D_kill _set, Dn[r,s] = 0
∀entries I[r,s] ∈ I_kill _set, In[r,s] = 0

Add generated relationships
∀entries D[r,s] ∈ D_gen_set, Dn[r,s] = 1
∀entries I[r,s] ∈ I_gen_set, In[r,s] = 1

Update shape attributes of affected pointers
ComputeHs andAs

∀s∈ Hs, An[s] = A[s]
(a) Basic statements (b) Analysis Structure (c) General Form of Analysis Rules

Figure A.3: The Overall Struture of the Analysis
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1. p = malloc();

D_kill _set = {D[p,s]|s∈ H ∧D[p,s]} ∪
{D[s, p]|s∈ H ∧D[s, p]}

I_kill _set = {I [p,s]|s∈ H ∧ I [p,s]}
D_gen_set = {D[p, p]} I_gen_set= {I [p, p]}
Hs = {p} Ac[p] = Tree

2. p = q;
3. p = &(q→f);
4. p = q op k;

Kill set same as that ofp = malloc();
D_gen_set_ f rom = {D[s, p]|s∈ H ∧s 6= p∧D[s,q]}
D_gen_set_to = {D[p,s]|s∈ H ∧s 6= p∧D[q,s]}
I_gen_set = {I [p,s]|s∈ H ∧s 6= p∧ I [q,s]} ∪

{I [p, p]|I [q,q]}
D_gen_set = D_gen_set_f rom ∪D_gen_set_to
Hs = {p} Ac[p] = A[q]

5. p = NULL;
Kill set same as that ofp = malloc();
D_gen_set = {} I_gen_set= {}
Hs = {p} Ac[p] = Tree

6. p = q→f;

Kill set same as that ofp = malloc();
D_gen_set_ f rom = {D[s, p]|s∈ H ∧s 6= p∧ I [s,q]}
D_gen_set_to = {D[p,s]|s∈ H ∧s 6= p∧s 6= q∧

D[q,s]} ∪{D[p,q]|A[q] =Cycle} ∪
{D[p, p]|D[q,q]}

D_gen_set = D_gen_set_ f rom ∪D_gen_set_to
I_gen_set = {I [p,s]|s∈ H ∧s 6= p∧ I [q,s]} ∪

{I [p, p]|I [q,q]}
Ac[p] = A[q]

7. p→f = NULL;
D_kill _set = {} I_kill _set= {}
D_gen_set = {} I_gen_set= {}
Ac[p] = A[p] ∀p∈ H

7. p→f = q;

Kill set same as that ofp→f = NULL;
D_gen_set = {D[r,s]|r,s∈ H ∧D[r, p]∧D[q,s]}
I_gen_set = {I [r,s]|r,s∈ H ∧D[r, p]∧ I [q,s]}

Pointer q already has a path to p, D[q,p] = 1
Hs = {s|s∈ H ∧ (D[s, p]∨D[s,q])}
D[q, p] ⇒ Ac[s] =Cycle∀s∈ Hs

A[q] = Tree
Hs = {s|s∈ H ∧ (D[s, p]∨ I [s,q])}
(¬D[q, p]∧ (A[q] = Tree)) ⇒ Ac[s] = A[s]1 Dag∀s∈ Hs

A[q] 6= Tree
Hs = {s|s∈ H ∧D[s, p]}
(¬D[q, p]∧ (A[q] 6= Tree)) ⇒ Ac[s] = A[s]1 A[q] ∀s∈ Hs

Figure A.4: Analysis Rules
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Appendix B

Analysis of Marron et. al. [MKSH06] 1

Most of the technical terms used in this chapter are borrowedfrom the aforementioned paper.

The proposed analysis followed the abstract heap graph model that uses nodes to represent sets

of concrete cells (heap allocated objects and arrays) and edges to represent sets of pointers. Each

node in the abstract heap graph can be viewed as a region in memory on which certain layout

predicates can be defined (Tree Layout, List Layout, Singleton Layout, Multi-Path or Cycle

Layouts) which signifies what types traversal patterns a program can use to navigate through

the data structures in the region. To track the concrete Structure Layout, they introduce a simple

domain of layout types = {Singleton, List, Tree, Multi-Path, Cycle}. The abstract layouts can

be given a simple total order: Singleton < List < Tree < Multi-Path < Cycle. This order can

be interpreted as: if a node n has abstract layoutζ then the concrete region,R = γ(n), where

γ is the concreatization operator, may have any of the layout properties less than or equal toζ.

For example, if we have a node with layout type List the concrete region may have the List or

Singleton layout properties. If the node has Cycle as the layout then the concrete domain may

have any of the layout properties. The abstract layout for a node n represents the most general

concrete layout that may be encountered by a program traversing the region that is represented

by the node n.

In their analysis, sometimes refinement is necessary (aftersummarization the abstract heap

graph) whose purpose is to transform summary representations into forms that make certain

relationships explicit, so that the information in these relationships can be utilized more easily.

During refinement they turn summary nodes into a number of nodes of size one so that strong

updates can be performed and exact relations between variables can be maintained.

In order to eliminate the state explosion that is possible with refinement, they adopt the

approach of only doing refinement in those cases in which we can be sure that there is a unique

way in which new nodes can be materialized. This limits the level of details that can be achieved,

but it is easy to demonstrate scenarios where refinement intomultiple possibilities is needed to

get results with the desired accuracy.

1The contents of this section are borrowed from [MKSH06]
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