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Abstract

Programs in high level languages make intensive use of leeapport dynamic data structures.
Analyzing these programs requires precise reasoning dbelneap structures. Shape analysis
refers to the class of techniques that statically approtarttze run-time structures created on
the heap. In this work, we present a novel field sensitive slaayalysis technique to identify
the shapes of the heap structures. The novelty of our apprecin the way we use field
information to remember the paths that result in a particsifepe (Tree, DAG, Cycle). We
associate the field information with a shape in two ways: lfgdugh boolean functions that
capture the shape transition due to change in a particuldy fad (b) through matrices that
store the field sensitive path information among two poiaggrables. This allows us to easily
identify transitions from Cycle to DAG, from Cycle to Treechinom DAG to Tree, thus making
the shape more precise.
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Chapter 1

Introduction

1.1 A Brief Introduction

Shape analysis is the term for the class of static analysimigues that are used to infer useful
properties about heap data and the programs manipulagngedp. The shape information of
a data structure accessible from a heap directed pointebearsed for disambiguating heap
accesses originating from that pointer. This is useful fmiety of applications, for e.g. com-
pile time optimizations, compile-time garbage collectidebugging, verification, instruction
scheduling and parallelization.

In last two decades, several shape analysis techniquesbiesre proposed in literature.
However, there is a trade-off between speed and precisioinése techniques. Precise shape
analysis algorithms [SRW96, SYKS03, DOY06, HRO5] are neicfical as they do not scale
to the size of complex heap manipulating programs. To aelsealability, the practical shape
analysis algorithms [CWZ90, GH96, MKSHO06] trade precisionspeed.

In this report, we present a shape analysis technique teatinsited field sensitivity to infer
the shape of the heap. The novelty of our approach lies in thewe use field information to
remember the paths that result in a particular shape (TrA&, [Zycle). This allows us to
identify transitions from conservative shape to more m@ahape (i.e., from Cycle to DAG,
from Cycle to Tree and from DAG to Tree) due to destructiveaipd. This in turn enables us
to infer precise shape information.

The field sensitivity information is captured in two ways) (@ use field based boolean
variables to remember the direct connections between twuagrovariables, and (b) we com-
pute field sensitive matrices that store the approximate jpdbrmation between two pointer
variable. We generate boolean functions at each program hait use the above field sensitive
information to infer the shape of the pointer variables.
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1.2 Contributions of our Work

Our work contributes in the area of analysing pointers tr@ahts to dynamically allocated
objects (typically in the heap). Inferring the shape of tlaadstructure pointed to by heap
allocated objects can be used for disambiguating heap ses@siginating from that pointer.
We proposed a field sensitive shape analysis tecnique tipstingrecise inference of the shape
of the heap data structures. As any field sensitive shapgsasalgorithm must remember all
paths between pointers. Our analysis uses certain appatirins to remember such paths. They
include: (a) DF :Modified direction matrix that stores thatfifields of the paths between two
pointers; (b) IF : Modified interference matrix that storles pairs of first fields corresponding
to the pairs of interfering paths, and (c) Boolean Varialles remember the fields directly
connecting two pointer variables. *

1.3 Organization of the Thesis

We discuss some of the prior works on shape analysis in Cha@pt& motivating example
is used in Chapter 3 to explain the intuition behind our asialy The analysis is formalized
in Chapter 4 that describes the notations used and in Chapgteat gives the analysis rules.
We describe some properties of our analysis in Chapter 6.hapt@r 7 we show some of the
cases where our analysis performs better than the fieldsiisenapproaches. We conclude the
presentation in Chapter 8 and give directions for futurekwor
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Related Work

The shape-analysis problem was initially studied in theexdrof functional languages. Jones
and Muchnick [JM79] proposed one of the earliest shape arsalgchnique for Lisp-like lan-
guages with destructive updates of structure. They useddddinite shape graphs at each
program point to describe the heap structure. To keep theestwaphs finite, they introduced
the concept ok-limited graphs where all nodes beyokdlistance from root of the graph are
summarized into a single node. Hence the analysis resuitedriservative approximations.
The analysis is not practical as it is extremely costly battime and space .

Chase et al. [CWZ90] introduced the concept of limited refiee count to classify heap ob-
jects into different shapes. They also classified the nadesncrete and summary nodes, where
summary nodes were used to guarantee termination. Usimgfgrence count and concreteness
information of the node, they were able to kill relatiosr¢ng updatesfor assignments of the
form p— f = gin some cases. However, this information is not insufficierdompute precise
shape, and detects false cycle even in case of simple dguwriike destructive list reversal.

Sagiv et. al. [SRW96, SRW99, SRWO02] proposed generic, sedishape analysis al-
gorithms based offhree-Valuedogic. They introduce the concepts abstractionand re-
materialization Abstraction is the process of summarizing multiple nodés one and is used
to keep the information bounded. Re-materialization igttueess of obtaining concrete nodes
from summary node and is required to handle destructivetepdBy identifying suitable pred-
icates to track, the analysis can be made very precise. Hoywde technique has potentially
exponential runtime in the number of predicates, and tbeeaiot suitable for large programs.

Distefano et al. [DOYO06] presented a shape analysis teaenigr linear data structures
(linked-list etc.), which works on symbolic execution oktlwhole program using separation
logic. Their technique works on suitable abstract domaid, guarantees termination by con-
verting symbolic heaps to finite canonical forms, resultmg fixed-point. By using enhanced
abstraction scheme and predicate logic, Cherini et al. [ORBxtended this analysis to support
nonlinear data structure (tree, graph etc.).

Berdine et al. [BCC07] proposed a method for identifying composite data stmest using
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generic higher-order inductive predicates and paranzetspatial predicates. However, using
of separation logic does not perform well in inference offhpeoperties. Hackett and Rugina
in [HRO5] presented a new approach for shape analysis wigiabons about the state of a
single heap location independently. This results in peseisstractions of localized portions
of heap. This local reasoning is then used to reason abobélgh@ap using context-sensitive
inter-procedural analysis. Cherem et. al. [CR0O7] use tballabstraction scheme of [HRO05] to
generate local invariants to accurately compute shapenmaoon for complex data structures.

Jump and McKinley [JM09] give a technique for dynamic shapaysis that characterizes
the shape of recursive data structure in terms of dynamicedeagetrics which uses in-degrees
and out-degrees of heap nodes to categorize them into slaSaeh class of heap structure is
then summarized. While this technique is useful for detgotiertain types of errors; it fails to
visualize and understand the shape of heap structure andtaxpress the sharing information
in general.

Our work is closest to the work proposed by Ghiya et. al. [GH&& by Marron et.
al. [MKSHO6]. Ghiya et al. [GH96] keeps interference ancediron matrices between any two
pointer variables pointing to heap object and infer the shafghe structure as Tree, DAG or
Cycle. They have also demonstrated the practical apphieaf their analysis [Ghi96, GH98,
GHZ98] and shown that it works well on practical programswewer, the main shortcoming
of this approach is it cannot handle kill information. In fieular, the approach is unable to
identify transitions from Cycle to DAG, from Cycle to Treedafiom DAG to Tree. So it has to
to conservatively identify the shapes.

Marron et. al. [MKSHOG6] presents a data flow framework thasulseap graphs to model
data flow values. They presented an abstract heap modelahatepresent information on
aliasing, shape, logical data structures, sharing betwaeables, and sharing between data el-
ements in collections. They introduce a restricted versfaefinement, based on the ideas pre-
sented by Sagiv, Reps and Wilhelm. Using this restrictetbnaif refinement, they demonstrate
how this model can be used to accurately simulate importagrpm events such as list copy-
ing, sorting, reversal, and various other destructive ajp@ns. The analysis uses technique sim-
ilar to re-materialization, but unlike parametric shapalgsis techniques [SRW99, SRW02],
the re-materialization is approximate and may result is lmrecision.

Our method is also data flow analysis framework, that usedggratand boolean functions
as data flow values. We use field sensitive connectivity iwedrio store path information, and
boolean variables to record field updates. By incorpordteaid sensitivity information, we are
able to improve the precision without much impact on efficienThe next chapter presents a
simplified view of our approach before we explain it in fulltdis.

As our work is closest to the work of Ghiya et. al. [GH96] weg®et a brief summary of
their analysis in Appendix A.



Chapter 3
Motivation

For each pointer variable, our analysis computes the shaprige of the data structure pointed
to by the variable. Following the existing literature [GHI®RW96, Ghi96, MKSHO06], we
define the shape attribugeshape for a pointep as follows:

Cycle If acycle can be reached from
p.shape= Dag Else if a DAG can be reached from
Tree Otherwise

where the heap is visualized as a directed graph, and cydl®AG& have there natural graph-
theoretic meanings.

We use the code fragment in Fig. 3.1(a) to motivate the neea fiteld sensitive shape
analysis.

Example 3.1. Consider the code segment in the Fig. 3.1(a)SAta DAG is created that is
reachable fronp. At S5, a cycle is created that is reachable from bptandq. This cycle is
destroyed at lin€6 and the DAG is destroyed &t .

Field insensitive shape analysis algorithms use consegvdtl information and hence they
are, in general, unable to infer the shape transition froobecio DAG or from DAG to Tree.
For example, the algorithm by Ghiya et. al. [GH96] can cdiyeeport the shape transition
from DAG to cycle (atS5), but fails to infer the shape transition from cycle to DAG £8)
and from DAG toTree (at S7). This is evident from Fig. 3.1(b) that shows the Direction
(D) and Interferencel { matrices computed using their algorithm. We get conseeahape
information atS6 and S7 because the kill-effect of statemer88 and S7 are not taken into
account for computin® andl. O

We now show how we have incorporated limited field sensitigiteach program point in
our shape analysis. The details of our analysis will be pteselater (Chapter 5).

Example 3.2. The statement &4 creates a new DAG structure reachable frgrbecause there
are two pathsg — f andp — h) reachingg. Any field sensitive shape analysis algorithm must
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SI.

AREBY

S6.
S7.

p = malloc();

q = malloc();
p—f = q;
p—h = q;
g—g = p;
g—9g = NULL;
p—h = NULL;

(a) A code fragment

After Stmt D I
P q P q
S1 pll Ofp|1 O
q|0 O0lg|0 O
P q P q
S2 pi1 O|lp|1 O
q|0 1|lqg|0 1
P 9 P q
S3 pi1 1{p|1 1
g|0 1|qg|1 1
P q P q
4 pll 1|pll1l 1
g|0 1|qg|1 1
P q P q
S5, 86, ST|p|l1 1|p|1 1
q|l 1|lqg|1 1

(b) DirectionD) and Interfer-
ence () matrices as com-
puted by [GH96]

Figure 3.1: A motivating example

(b) Values for boolean variables corresponding to relepairiter fields.

Figure 3.2: Field Sensitive information for the code in kg3.1(a)

After De IS
Stmt
p a p !
st [p[{e 0 p | {e)] 0
q|0 0 ql|0 0
p q p q
S2 |piiegt O p|i(ee)} 0
q 0 {et [a]o0 {(e.e)}
p ! p !
3 |p e {f} [P |{(eE)} {(f.8)}
q 0 e} fal{ef) {(e.e)}
p a p a
4 |p e {f.h} [p|{(ee)} {(f.8),(h.e)}
q |0 & |al{Een e (o)
p a p a
S5 | p|{efht {f.h} | p|{(ee)} {(f.e),(h.€),(e,9)}
9 fot {9 [a]{Ef) (& .(Ge)iEe);)
p q p q
S6 | p|{er  Af,hp | p|{(e8)} {(f.e),(h,e)}
q 0 et Ja{EhEh {Eg)
p a p !
ST{plie  Af} | p|iEe)] i(f.e)}
q|0 et Ja[{Ef) {(ee)}
(a) Direction D) and Interferencel ) Matrices.
After Stmt S1 |S2 |S3 |4 |S5 |S6 | S7
Boolean Vars
fpg false | false| true | true | true| true | true
hpg false | false| false | true | true| true | false
Oqp false | false | false | false | true | false | false
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remember all paths from to g. Our analysis approximates any path between two varialyles b
the first field that is dereferenced on the path. Further, @®timay be an unbounded number
of paths between two variables, we Wskmiting to approximate the number of paths starting
at a given field.

Our analysis remembers the path information using thevatig: (a) De: Modified di-
rection matrix that stores the first fields of the paths betw®e pointers; (b)r: Modified
interference matrix that stores the pairs of first fields egponding to the pairs of interfer-
ing paths, and (c) Boolean Variables that remember the faildstly connecting two pointer
variables.

Figures 3.2(a) and 3.2(b) show the values computed by olysasdor the example pro-
gram. In this case, the fact that the shape of the variplilecomes DAG afte$4 is captured
by the following boolean functiods

Pog = (hpg/A([IF[P,dll > 1))V (foqA ([IF[P, 0| > 1)), hpg=True .

Wherehpq is a boolean variable that is truehffield of p points tog, fpq is a boolean variable
that is true iff field of p points toq, I is field sensitive interference matrifg[p, g]| is the
count of number of interfering paths betwegandg.

The functions simply say that variabjereaches a DAG because there are more than one
paths (Ig[p,q]| > 1) from p to g. It also keeps track of the path$y§ andhyq in this case).
Later, at statemer#7, the path due thyq is broken, causingg[p,g]| = 1. This causePp, to
become false. Note that wio notevaluate the boolean functions immediately, but associate
the unevaluated functions with the statements. When we tedimd out the shape at a given
statement, only then we evaluate the function usingheandlr matrices, and the values of
boolean variables at that statement.

Our analysis uses another attrib@fe-1e to capture the cycles reachable from a variable.
For our example program, assuming the absence of cyclesetf#fpthe simplified functions
for detecting cycle om afterS5 are:

Pocie = OqpA(|De[p,al| > 1), Jqp = True .

Here, the functions captures the fact that cyclepmonsists of fieldy from g to p (gqp) and
some path fronp to q (|Dg[p,q]| > 1). This cycle is broken either when the path frpro q is
broken (De[p,q]| = 0) or when the linky changesdqp = Falsg. The latter occurs aftes6 in
Fig. 3.2(a). 0O

In the rest of the report, we formalize the intuitions preedrabove and describe our anal-
ysis in details.

The functions and values shown in this example and in FigaBZimplified to avoid references to concepts
not defined yet.
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Chapter 4
Definitions and Notations

We view the heap structure at a program point as a directguhgtiae nodes of which represent
the allocated objects and the edges represent the conhetttrough pointer fields. Pictorially,
inside a node we show all the relevant pointer variablesdhatpoint to the heap object corre-
sponding to that node. The edges are labeled by the name odtressponding pointer field. In
this report, we only label nodes and edges that are relevdhétdiscussion, to avoid clutter.

Let 4 denotes the set of all heap directed pointers at a partipugram point andr
denotes the set of all pointer fields at that program pointeiwo heap-directed pointeps
g € A, a path fromp to q is the sequence of pointer fields that need to be traversée indap
to reach fromp to q. The length of a path is defined as the number of pointer fieldsa path.
As the path length between two heap objects may be unbounaekeep track of only the first
field of a patH. To distinguish between a path of length one (direct patihfa path of length
greater than one (indirect path) that start at the same fieddjse the superscript for a direct
path and for an indirect path. In pictures, we use solid edges foraflipaths, and dotted edges
for indirect paths.

It is also possible to have multiple paths between two posnséarting at a given field,
with at most one direct path®. However, the number of indirect patfismay be unbounded.
As there can only be a finite number of first fields, we store fietdis of paths, including the
count for the indirect paths, between two pointer varialodles set. To bound the size of the
set, we put a limik on number of repetitions of a particular field. If the numbeeg beyond
k, we treat the number of paths with that fieldeas This approach is similar to the approach
ofk-limiting [JM79]. andsl-limiting [LH88].

Example 4.1.Figure 4.1(a) shows a code fragment and Fig. 4.1(b) showssilge heap graph
at a program point after lin85. In any execution, there is one path betwgeandq, starting
with field f, whose length is statically unknown. This information isret by our analysis as

1The decision to use only first field is guided by the fact thaiun language, a statement can use at most one
field, i.e.p—f = ... or...= p—f. While it is possible to use prefixes of any fixed length in aaiSanguages
using more than one fields, it does not make any fundamerdgalehto our analysis.
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SI. q=p;
S2.  while(...) {
S3. q—g = s;
4. q = q—f;
S5}
(a) A code fragment (b) A possible heap graph for code in (@liddges are

the direct paths, dotted edges are the indirect paths.

Figure 4.1: Paths in a heap graph

the set{ f'1}. Further, there are unbounded number of paths betyweends, all starting with
field f. There is also a direct path fromto s using fieldg, and 3 paths starting with field

h betweenp ands. Assuming the limitk > 3, this information can be represented by the set
{dP, f'* h'31. On the other hand, K < 3, then the set would bgP, f'* h'*}. 0

For brevity, we usd* for the cases when we do not want to distinguish betweentdirec
indirect path starting at the first field We now define the field sensitive matrices used by our
analysis.

Definition 4.1. Field sensitive Direction matrix P is a matrix that stores information about
paths between two pointer variables. Givem g #, f € F:

€ €Dglp,p| wheree denotes the empty path.
f® e Dg[p,q ifthereis a direct path f from p to q.

fiMm < Dg[p,q if there are m indirect paths starting with field f from p to q
and m< k.

f'° <cDg[p,q if there are m indirect paths starting with field f from p to q
and m> k.

Let A’ denote the set of natural numbers. We define the followintigbarder for approxi-
mate paths used by our analysis. Fag #, mne A, n<m:

e, fDEfD, floogfloo, f'mgfl“’, flngflm )
The partial order is extended to set of paghs Sp, as:
SLCS & VaoeS,PeS,stalP.

For pair of paths:

(a,B) E (a,B) < (@aEa)A(BCR)

Note that for our analysis, for a given fiefd these sets contain at most one entry of tjpeand at most one
entry of typef!
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Table 4.1: Determining shape from boolean attributes

Poye e Poag p-shape
True Don’t Care Cycle
False True DAG
False False Tree

For set of pairs of pathRp, , Rp,:
Re, C R, < V(a,B) € Rp, 3(0,B) € Re, st.(a,B) C (o', B)

Two pointersp, q € # are said to interfere if there exists # such that bottp andqg have
paths reaching. Note thats could bep (or q) itself, in which case the path from(from q) is
€.

Definition 4.2. Field sensitive Interference matrix between two pointers captures the ways
in which these pointers are interfering. For@s e #, p # q, the following relation holds for
Dr and k:

Dr[p,s| xDfla,s] T Ir[p.q .

Our analysis computes over-approximations for the matie and g at each program
point. While it is possible to compute onr and use above equation to compite com-
puting both explicitly results in better approximations fe. Note that interference relation is
symmetric, i.e.,

(a,B) € le[p,d] & (B,a) € Ig[a,p] -

While describing the analysis, we use the above relatiomdavshe computation of only one
of the two entries.

Example 4.2. Figure 4.2 shows a heap graph and the corresponding fieldigemsatrices as
computed by our analysis. =

As mentioned earlier, for each varialype= #, our analysis uses attribut@s,, and pyci e
to store boolean functions telling whethgcan reach a DAG or cycle respectively in the heap.
The boolean functions consist of the values from matrl@eslg, and the field connectivity
information. Forf € #,p,q e #, field connectivity is captured by boolean variables of the
form fpq, Which is true wherf field of p points directly tog. The shape opf, p.shape, can be
obtained by evaluating the functions for the attribytgs . and py, and using Table 4.1.

We use the following operations in our analysis. Batenote the set of approximate paths
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2 Oe[p[ a | s [ r |
TORN o [ (e} | (1P} | (L) | (15100
_,.@fs g o] {g | (P [{iah
o % s| 0] 0 | & | (D)
r| o 0 0 {e}
RO 4
(a) Heap graph (b) Direction Matrix
el p [ a [ s [ r |

p| {egr | {(1P.9). | {(fite), | {(fe),
(5419), | (fhe), | (fhe)}
(f3H fD} | (f1* 1)}
q | {&fD), | {eg} | {(12.e), | {(fi"e),
(19,131, (35 19)} | (f3h.e)}
(2, 121}
s | {efh, | {1D). | {eg} |{(iP.e)}
(e 9} | (19,131}
(g, f14)}
r e, | {E&8Y, | {0} | {eg
(e 5D} | (e 1H}

(c) Interference Matrix

Figure 4.2: A heap graph and its field sensitive path matrices

between two node® denote a set of pair of paths, akd A’ denotes the limit on maximum
indirect paths stored for a given field. Then,

e Projection: Forf € F, S>f extracts the paths starting at fieild

Sef =Sn{fP, 'L ... £k fl=1

e Counting: The count on the number of paths is defined as :

le| =1, 1P =1, '] = oo, 1fi=jforjen
1S = af
ogs

e Path removal, intersection and union over set of approx@mpaths : For singleton sets of
paths{a} and{B}, path removal{a} © {B}), intersection{a} N{B}) and union{a} U
{B}) operations are defined as given in Table 4.2. These defisitian be extended to set
of paths in a natural way. For example, for general sets ¢fp&t andS,, the definition
of removal can be extended as:

SoS=)(J{ato{B})

BeS, aesy
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Table 4.2: Path removal, intersection and union operatiwherey denotes any other path.

(a) Path removal (b) Intersection
o {BY {e& {f°} {9} {f'"} (v n By {er (P {1} {f'"} {y}
fa} {a}
{e} 0 {et {eg {egg Ag} {e} e 0 0 o 0
{f°y [ {2y 0 {7} {fP} {i%} {f°} o {fy o0 o 0
(" e {fm o (M) {fy o o ("™ (1} o
{f'=y [ {f"y o  {f'} {f'*} {f'"} {f'=} 0 o {f} {f*} ©
(c)Union_
u {B} {e} {f%} {f'} {f'=} {v}
{a}

(&} g8  {ef%} {ef} {ef™}  {ey}
{f°y [ {t%e} (P} {9} {fP. 1'%} {fPy}
{t"y | {tey {1010 {1 {1 {f"y}
{f'=y [ {f'=ep {f=Py  {f'}  {f'} {f"y)

o o o i+j ifi+j<k
I,JEN,m—max(l170),n—m1n(l,j)andt—{ © : Otherjwise'

Table 4.3: Multiplication by a scalar

* a 3 o fll fle
[

: I m ) ix] ifixj<k loo
! ¢ f N { o0 Otherwise :
o0 e\Z = fle fle

e Multiplication by a scalag): Leti, j € A/,i <k, <k. Then, for a pattw, the multipli-
cation by a scalarr, i x a is defined in Table 4.3. The operation is extended to set dispat
as:

ixS = 0 =0
| {ixa|aeS ieNU{wo}
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Chapter 5
Analysis

For{p,q} C #, f € F, ne Al andop € {+,—}, we have the following eight basic statements
that can access or modify the heap structures.

1. Allocations
@ p = mlloc();

2. Pointer Assignments

(@) p = NULL;
(b) p = q
©p=9q-—*
dp=8&qg —f);
(€)p =qopn

3. Structure Updates

@p—1f=aq

(b) p — f = NULL;

Our intend is to determine, at each program point, the fietditge matricedDg andlg, and
the boolean variables capturing field connectivity. We folate the problem as an instance of
forward data flow analysis, where the data flow values are Hteeces and the boolean variables
as mentioned above. For simplicity, we construct basickdaontaining a single statement
each. Before presenting the equations for data flow analysislefine the confluence operator
(merge) for various data flow values as used by our analyssigthe superscriptsandy to
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denote the values coming along two paths,

merge fX = fqVidefecF,pacH
Merge S e, Pyeie) = PyereV PoyaePEH
METgE Do, Plog) = Prag V Pag: PE H
mergéDy, DY) = Dr whereDg[p,q] = D§[p,q] UDY[p,q],Vp,q € H
I7)

= I wherelg[p,q] = IE[p,q] UI¥[p, 0], Vp,q € H

ooy fpo)
)

mergélf,

The transformation of data flow values due to a statersestcaptured by the following set of

equations:
D2{p,q = (DI[p,q/&DE!p,q)) UDEp,q]
10%p,q = (1Mp,qelE"p,q)ul2®p,q
p&%te = (p(,ycl e A _'pclf\)lcll e) \% pg/eclne
put = (pi A-ply v pge"

Field connectivity information is updated directly by thatement.

5.1 Analysis of Basic Statements

We now present the basic statements that can access or ntloelifyeap structures, and our
analysis of each kind of statements.

1. p = malloc(): After this statement all the existing relationshipspodet killed and it
will point to a newly allocated object. We will consider thatan have an empty path to
itself and it can interfere with itself using empty paths{graths).

p|(§/|!:lle = pq/cl e plD(;!;I = pDag
o = False poe = False
Vse H,s#p:
DK [p, g = D'”[p,S] DNp,s =0
DE![s, p| = DIs, p] DE*s, p| = 0
DK [p, p) = D'”[ D, pl D2*p, p| = {}
1K, = 1"[p, ] 12p, g =

k|II[p, pl =1"[p, pl 12 p, p] = {e,€}
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2. p = NULL: This statement only kills the existing relationspof

p|(§yi!:ll e picgcl e pID(aI!JI - p[lg';g
pdi. =False  pl; = False
Vsc H :
Df'[p,s =DF[p,s  DEFMp,s=0
DF'[s p]=DP[s,pl  DElsp/=0
I p.s =1"p.s  13Tp,g=0

3.p=4q, p=2&qg—f), p=q op n: Inour analysis we consider these three pointer

assignment statements as equivalent. After this stateafighe existing relationships of

p gets killed and it will point to same heap object as pointebyta. In caseqg currently
points to null,p will also points to null after the statement. $avill have the same field
sensitive Direction and Interference relationshipsg.abhe kill effect of this statement is
same as that of the previous statement. The generated hdaleaions for heap object

p corresponding to DAG or Cycle attribute will be same as that, avith all occurrences

of g replaced byp.

pglll e & piC!\:/]cI e pID(e:!;I = pgg
o e = O e[/ P PR = Giny[a/P)

whereX[qg/p| creates a copy of with all occurrences aoff replaced byp.

Vse H,s#pVfeF

fps: fq& 1:sp: fsq

DXl [p,§ = DI"[p, g D2Mp,s] = DI"[q,5]

DKl (s, p] = DIM[s, p] DZs, p| = DIM'[s, q

DX [p, p] = DIP[p, p] DE*p, p] = D{"[q,q]
1Kl [, g = 1IN, 12%Tp, g = 11"q, 5
K el =100 1 pp =10,

4. p—f = nul | : This statement breaks the existing lillemanating fronp, thus killing
relations ofp, that are due to the linik. The statement does not generate any new rela-
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tions. The killed relationships involve breaking of the thké direct links ofp, which is
manifested by settindpq to 0, Vg € # as well as the indirect links gf, which is done

by updating thddg andIg matrices. Other links between pointers which come up due to
field f of p are conservatively approximated to exist even after thest@nt. The rela-
tion Ig[p, p| is not much relevant to our analysis, so the correspondihipfarmation is

ignored.
p('fyi'c'l . = False p‘Dﬂ'g' = False
pas. = False pde" = False
Vg,s€ H,s# p:
fog = False
DEl[p,q) = DI[p,qof  DEl[sqg =0
IE'p,s = {(a,B)] (a,B) €1[p,gl o= *}
1Kllg,g = 0ifq#p 1K [p, p] = 0

5. p—f = @: This statement first breaks the existing lihkand then re-links the the heap
object pointed to by to the heap object pointed to loy The kill effects are exactly same
as described in the casepf>f = null. We only describe the generated relationships
here.

The fact that the shape of the varialplibecomes DAG after the statement is captured by
the boolean functiongdy" and fpq. The functions simply say that variabfereaches a
DAG because there are more than one path§g, q]| > 1) frompto g. It also keeps track

of the pathf,q in this case. The functiogg . (or pdes) captures the fact that cycle on

(or p) consists of fieldf from pto q (fpq) and some path fromto p (|Dg[q, p]| > 1). The
function pg/%ne also captures the fact that cycle pcan be due to the link,q reaching an

already existing cycle 0g. These are summarized as follows:

pg/eclne = (qu/\qg/]cle)\/(qu/\(‘DF[q?p”Zl)) pgaegn: qu/\(||F[p7q]|>1)
dee = fpa/A(IDE[a,pl|> 1) G2, = False
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For nodess € # other thanp or g, the functionsy s captures the fact that cycle an
consists of some path fromto p (or q) i.e. |Dg[s,p]| > 1 (or |[Dg[s,q]| > 1) and the

fact that a Cycle orp (or ) has just created due to the statement. Again the function
ﬁ%n simply say that variable reaches a DAG because there are more than one way of
interference betweesandqi.e. |Ig[s,q]| > 1. It also keeps track of the patlisq and
Dr[s, p] in this case.

?Ine = ((‘DF[S p” Z 1) A qu/\qi(gcle)

V ((IDF[s, pl| = 1) A fpq A (IDE (G, PI| > 1))
V ((IDr[s,glf > 1) A fpg A (IDF[g, p]| > 1)) Vse H,s#p,s#q
S = (Delspll=1)Afoqn (IE[s.cll > 1) Vs, s#p,s#q

After the statement, all the nodes which have paths towa(dluding p) will have path
towards all the nodes reachable franplincludingq). Again all nodes having paths o
can potentially interfere with all the nodginterferes with. Thus the relations generated
for D andlg are as follows.

Forr,sc H:

D2r,s = |DP[a,§|*DP[rpl, s#p, r & {p,a}

DEr,p] = |DI"[g,p)|xDP[r,pl, r #p

Dp,r] = |DP[a.r]|*(DF[p.ple{et U{f'}), r#q

D2Ip,a] = {f°} U (IDP[a.aq]—{e}|*{f'"}) U (IDP[a,q)|+ (D[P, pl © {e}))
D¥g.q] = 1+D{[q,p]

D2a.r] = |DP(a.r]|*DP[a,pl, r & {p,a}

1%Mp,q) = {(f° )} u((1(DP[p,ple{e})) x {e})

12%Mp.r] = (1« (DP[p, plo{e})) < {B] (a.B) € 1"[a.r]}

U{tP} < {B] (e.B) € 1"[a.r]}
U{f" < {B| (a,B) € 1M[a,1],a # e}, r & {p,q}
1*1s.q] = (1«DP[s p) x {e}, s¢ {p.q}
1P¥s.r] = (1xDP[s.p)) x {B] (a,B) € 1"[a, 1]}, s& {p.a}, r & {p.q}, S#T

6. p = gq—f: The relations killed by the statement are same as that mafs = NULL.
The relations created by this statement are heavily apprabed by our analysis. After
this statemenp points to the heap object which is accessible from poiqtrough f
link. The only inference we can draw is thats reachable from any pointersuch that
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reacheg) — f before the assignment. This information is available beedﬂ[q, r] will
have an entry of the forrif®, a) for somea.

As p could potentially point to a cycle(DAG) reachable fragynwe set:

pdie = . Pl =i,
We record the fact thaj reache through the path. Also, any object reachable from
using fieldf is marked as reachable fropthrough any possible field.

fqp = True  hpr = |DP[gr]>f|>1 Vhe FvreH

The equations to compute the generated relationBfoandlr can be divided into three
components. We explain each of the component, and give theieqs.

As a side-effect of the statement, any nahat is reachable frong through field f
before the statement, becomes reachable fporklowever, the information available is
not sufficient to determine the path frgoto s. Therefore, we conservatively assume that
any path starting fronp can potentially reachk. This is achieved in the analysis by using
a universal path setl for Dg[p,s]. The setl is defined as:

u = {gpu Y {f° '}

feF

Because it is also not possible to determine if there existla foomp to itself, we safely
conclude a self loop op in case a cycle is reachable frayi.e., g.shape evaluates to
Cycl e). These observations result in the following equations:

Dilp,g = U Vs€H,s#pADPqs]of #0

Dlp.p] = U g.shape evaluates ttycle
PP = {e} Otherwise
lifp,p] = UxU

Any nodes (including g), that has paths tq before the statement, will have pathsgo
after the statement. However, we can not know the exact nuofgeathss to p, and
therefore use upper limitd) as an approximation:

Dofs,p] = ««DP[sq VseH,s#q

D2g.p] = {fP}uU(eox(DP[g.qe {e})UU
Io[s,p] = Dg[s,p] x{€} VseH
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The third category of nodes to consider are those that ererkith the node reachable
from g using direct pathf. Such a nods will have paths top after the statement. Also
the nodes that interfere with the node reachable fgarsing direct or indirect pati will
interfere withp after the statement. Thus, we have:

Dsfs.p] = {a|(fPa)elq,9}
lafs.p] = {a](f"a)eclPgs}xu

Finally, we compute thé& andDk relations as:

DZr,§ = Dalr,UD2[r,gUDslrs Vrse
12rs = g ulargUlsrs Vrse s

5.2 Inter-procedural Analysis

To handle procedure calls we use simple inter-proceduralysis that works by creating an
invocation graph of the program. To handle recursive cadlsyhich the invocation structure is
statically unknown, we use approximate summary for one@htides involved in the recursion
chain, and use it to break the cycle. At each call site, themhatrices Dg andlg) along with
the boolean functions are fed as input to the called proegdhfter proper mapping between
formal and actual arguments. The called procedure is thalyzed to create the corresponding
output matrices and the boolean functions. This approadmsgar to the work by Ghiya
et. al. [GH96].
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Chapter 6
Properties of our Analysis

In this chapter we discuss some properties of our analysit.We discuss the need of introduc-
ing boolean variables on the top of field sensitive matri¥®s.then discuss how we guarantee
termination of our analysis. We also give bounds correspmnib the storage requirement of
our analysis.

6.1 Need for Boolean Variables

Because we compute approximations for field sensitive oegtnunder certain conditions (e.g.
for statemenp = q — f), these matrices can result in imprecise shape. Boolegables help
us retain some precision in such cases, as demonstrated next

Example 6.1. Fig. 6.1(a) shows a program fragment, and Fig. 6.1(b) shopssaible heap
graph at a program point before statem&ht At S2, a DAG is created that is reachable from
r which gets destroyed aft&3. Fig. 6.1(c) shows the DirectiorDg) and Interferencel)
matrices at various program points. After statenfgéhive conservatively approximated the
entriesDg[r, p| andlg[r,q] using the universal patidil and as a consequence those entries will
not be affected by the kill-effects of statemé&3t However, using boolean variables, the fact
that the shape of the variablebecomes DAG afte2 is captured by the following boolean
functions:

Mong = (fpg A ([IF[r 0] > 1)) fpq = True

After S2, r p,y becomesd r ue, thus implying that.shape == DAG. Later, at statemesg, the
path due tofyq is broken. Even though the inequalit: [r,q]| > 1| still holds (because of
), we can still infer the shape transition from DAG to Tree dugse the boolean variabfg,
becomed al se thus setting ,, tof al se. =
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e After [ f Ie[r,a] | De[r, p|
Sl. r =s—0; pq Flh )
2. p—f =q; e g ()0 Sl |false| Ux{h} u
S3. pof = NULL; O S2 [ true |[uxfhel | U
@ @ S3 | false | Ux{he} u
(a) A code fragment (b) Heap Structure before (c) Values for boolean vari-
S1 able, Dg, andIg for rel-

evant pointer fields.

Figure 6.1: Using boolean variables to improve precision

f

IN(b)

gen(b):llJ
kill(b): Y

[ Iteration | IN(b) | OUT(b) |

OUT(b) 1 f (fAy) VWY
fV(fAY) V) AY) VY

(fV(fAY)) VW) AY) VY

fvW)ny) vy

VYPVY)A(YVWY)

VY)A(YVW)

AY) VWY

3 fV((fAY) VW) (fAy) VW

2 fVv((fAy) VW)

[ R
~~ o~~~

(a) Data Flow (b) Data flow values per iteration

Figure 6.2: The termination of computation of boolean fiorcd

6.2 Termination

The computation oDg andIg matrices follows from the fact that the data flow functions ar
monotonic and the sets of approximate paths are boundedtefieation of computation of
boolean functions for Cycle and Dag can be proved using thecetivity and distributivity of
the boolean operators @ndA).

Consider Fig. 6.2(a) which shows a basic block b with its id ant sets, IN(b) and OUT(b)
respectively. The boolean formuld#sandy respectively denote the gen and kill sets correspond-
ing to basic block b. Let f denotes the boolean formula at giamm point before executing b.
Figure 6.2(b) shows the in and out sets generated in eachideiof the data flow analysis. As
depicted in Fig. 6.2(b), the boolean functions acquire figetht after the second iteration.

6.3 Storage Requirement

The memory requirement of our analysis consists of the géospace for the matrice®g and
I ) and the boolean functions. Late A denotes the cardinality of the sef at a program
point. Obviouslyn is bounded by the total number of pointer variables in thegram. Let
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m e A’ denotes the maximum number of possible distinct pointedtdiemanating from a heap
directed pointer, which is again a bounded quantity. Betwi®e pointer, for each field, we
only use: (a) thel-limited) count of the number of indirect paths startinglettgiven field,
and (b) if there is a direct path using that field, the storagirement for the matrices is
bounded as:

Space requirement f@g : O(n?xm)

Space requirement fog : O(n?xn?P)

The boolean functions at each program point are stored irxgression tree. As can be
seen from the equations for the boolean functions, the haiggh width of the expression tree
for a function is polynomial in the number of pointer insttioas in the program. By carefully
reusing the trees for the subexpressions in an expressiampossible to store the boolean
functions efficiently.
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Chapter 7
Comparison with Other Approaches

For comparison purpose the test-cases must involve shapsations like Cycle to DAG, Cycle
to Tree, and DAG to Tree. The transition like Tree to DAG, DASQycle, or Tree to Cycle
are not of much importance as these can be detected by ang fiélithinsensitive approaches.
Following are the cases that meet our requirement and logtapnstrate the accuracy of our
analysis as compared to field insensitive analysis (like/&hbt. al. [GH96]).

7.1 Comparison with Ghiya et. al. [GH96]

7.1.1 Inserting an internal node in a singly linked list.

Consider the code fragment Fig. 7.1(a) that is a simplifiediga of insertion of an internal
node in a linked list. Field insensitive approach like thiaGhiya et. al. [GH96] cannot detect
the kill information due to the change of the fieidf p atS4 and findsp to have an additional
path toq via r (which is now actually the only path). So they report the ghatiribute of

p as DAG. Figure 7.1(c) shows th&r andIg matrices corresponding to our analysis at each
program point. Consider the following boolean function gierted afte64 using our approach.

Peg = (fpgA ([IF[PAl] > 1))V (for A(lIF[PF]| > 1)),
for = True, fpq = False .

After $4, the conditionlg[p,r]| > 1 becomd-alseand py,, Will get evaluated td-alse and thus
correctly detects the shape attributepads tree.

7.1.2 Swapping Two Nodes of a Singly Linked List.

Consider the code fragment Fig. 7.2(a) which swaps the twat@sp — f (saynl) andp —
f — f (sayn2) in a singly linked listL with link field as f, given the pointep. Also lett
be the node following the heap objew@ usingf link. After S1, a temporary Cycle is created
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[ After ]| Actual Shapd Field Insensitive Analysis Field Sensitive Analysis

S.. p=»f =g S1 Tree Tree Tree
S2. r=malloc(); S2 Tree Tree Tree
S3. r—=f =q S3 Tree Tree Tree
4. pof o= 4 Tree DAG(at p) Tree
(a) A code fragment (b) Shape Inference
After De Ig
Stmt
P r q p r q
g [P0 0 {f’} [p|o0 0 {(P.e)}
r|o 0 0 r o 0 0
q|0 0 0 q | {(s,fP) 0 0
p r q p r q
s |Plo 0 {f°} [p|0 0 {(fP.e)}
r|o {e} 0 r o {(g,€)} 0
q |0 0 0 q | {( D) 0 0
p r q p r q
o [P0 0 (™ [p]o 0 )
r|o {e} {f°} |r |0 {(e,8)} {(fP,e)}
q|0 0 0 q | {(e ) {(e, %)} 0
p r q p r q
s | PO {f°y {f} [p]oO {(f°.e)} {(f"e)}
r|o {8 {7} |r [{)} {(e.8)} {(f°e)}
q0 0 0 q [{ ) {(&. ) 0

(c) Direction D) and Interferencd ) matrices

Figure 7.1: Insertion of an internal node in a singly linkesd |

on p,nl andn2, which get destroyed after the statem8t This temporary shape transition
is detected by our analysis. The table in Fig. 7.2(b) showstmparison between the shape
decision given by our approach and the field insensitive @ggres. Consider the following
boolean functions generated af§drusing our approach.

nzq/cl e (fnz,nl A |DF [nl, n2]| > l)

(frzm A [Dg[n1,n2]| > 1)

Pyae = (IDr[p,n2]| = 1A figm A [Dg[n1,n2][ > 1)
(

IDE[p,n1]| > 1A fran1 A [Dg[nl,n2]| > 1)

nlq/cl e —

pq/cl e —

fn27n1 - Tl’ue

As depicted in Fig. 7.2(c) which summarises Byeandl matrices computed using our analy-
sis, beyonds2 the conditionDg [n1,n2]| > 1 become$alseand thus the shape transition from
Cycle to Tree is reported.

7.1.3 Recursively Swapping Binary Tree.

Consider the code fragment Fig. 7.3(a) which creates a nmirage of a binary tree rooted at
T. While swapping the left and right sub-tree a temporary DAGreated (after statemesi),
which gets destroyed after the very next staterSénConsider the following boolean functions
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[ After | Actual Shape | Field Insensitive Analysi$ Field Sensitive Analysig
S1. n2—f = ni; S1 || Cycle (atp, n1, n2) Cycle (atp, n1, n2) Cycle (atp, n1,n2)
S2. nl-f =t; S2 Tree Cycle (atp, n1, n2) Tree
3. pof = n2; S3 Tree Cycle (atp, n1, n2) Tree
(a) A code fragment (b) Shape Inference
After De Ig
Stmt
nl n2 p t nl n2 p t
ni {7 (0 F9{f  {f5 |1 {(Te)} {(P.8).& ™)) {1} 0
st [n2[{f} {f} o ([ n2[ {(fPe). (e, T7)} {(fhe)} {e. ] 0
p | {fP.FT{f7} 0 (% [p [{(fPe)} {(e)} 0 0
t |0 0 0 0 t |0 0 0 0
nl n2 p t nl n2 p t
nll 0 0 0 {fP nll o {(,fP)} {(, D)} {(fP,¢)}
2 [n2[{f°} {f o {7 [n2[ (o)} 0 {& 1) (o)}
p | {2, (", f"%}0 2 o [ {(fPe)} {(fh o) 0 (o)}
t |0 0 0 0 t | {(c,P)} {(, ')} {(g, T'5)} 0
nl n2 p t nl n2 p t
nl 0 0 0 {fP} |ni|o0 {(g,fP)} {(, f™)1 {(fP,e)}
s3 [ n2[ {f°} {f"} 0 {1} [ n2] {(f°.¢)} 0 {(e,fP)} {(f"e)}
pl{f"} {f°f}0 (™ e [{(fhe)} {(f°.&)} 0 {(f™e)}
t |0 0 0 0 t | {(s,fP)} {(s, T} {(s, T'5)} 0

(c) Direction D) and Interference ¢) matrices
Figure 7.2: Swapping two nodes of a singly linked list

generated afte$5 using our approach.

Toag (IeftT,R/\|I,:[T,RH > l)

leftr r True

Figure 7.3(c) shows thBr andlg matrices corresponding to our analysis at each program
point. Due to the inclusion of the approximatiofi) for the statementSl andS2, the condition
[Ie[T,R]| > 1 still holds beyond6 and thus the analysis reports shap& ais DAG, which is
actually a Tree. Considering the fact that shape attribLiieis a Tree, and thus statemeSBis
andS2 must include just one path betwe&randL or T andR, we obtain Figure 7.3(d) which
shows the refine®r andlg matrices at each program point, using which we can infertthpes
of T afterS6 as Tree because the conditipp[T,R]| > 1 evaluated td-alseafter S6. Figure
7.3(b) shows the shape transition at each program poing tisis refined analysis.

7.2 Comparison with Marron et. al. [MKSHO06]

Using the property as mentioned in Appendix B, we inferregl shape of the data structure
corresponding to each region for the test-cases that wedtagen, and concluded that their
shape inferencing comply exactly with the actual shapesstiauld be reported.

To eliminate the state explosion that is possible with refieet, they apply refinement to
only those cases where there exist a unique way of maténigli'ew nodes. This limits the
amount of precision that can be achieved as there exists vdssre refinement into multiple



30 Comparison with Other Approaches

mrror(tree T) {
S1. L = T->left;
S2. R = T->right;

S3. mrror(L); [ After || Actual Shape Field Insensitive Analysi$ Field Sensitive Analysis
4. mrror(R); S1 Tree Tree Tree
S5, T->left = R 32 Tree Tree Tree
S6. T->right = L; S5 Dag (atT) Dag (atT) Dag (atT)
} S6 Tree Dag (at T) Tree
(a) A code fragment (b) Shape Inference
After De Ie
Stmt
T L R T L R
s1 T|O {IPluu 0 T|O ({IPYu 1) x {e} 0
L]0 0 0 L | {e} x({IP}u) 0 0
R|O 0 0 R|O 0 0
T L R T L R
9 T[]0 {I°yuau {Pluu T|0O ({I°PYu 1) x {e} ({rPyu ) x {¢}
L]0 0 0 L | {esx({IP}u) 0 0
R|O 0 0 R [ {e} x ({rP}u) 0 0
T L R T L R
s T|0 u {PPuu|T]0 Ux{e} ({rP,1I°}uU) x {e}
() 0 0 L | {e}xu 0 0
R|O 0 0 R [ {e} x{P,1IPtuu) 0 0
T L R T L R
6 T|0 {rPyua {IPYuu T|O ({rP}uU) x {e} ({I°}uU) x {e}
L]0 0 0 L [ {efx{rP}u) 0 0
) 0 0 R | {e} x ({IP}U) 0 0
(c) Direction D) and Interference ¢) matrices
After De Ie
Stmt
T L R T i R
sl T[]0 {I°’} 0 T|0 {(IP,&)} 0
L]0 0 0 L [ {(eIP)} 0 0
R|O 0 0 RO 0 0
T L R T L R
o [0 (°y ("} [T]0 ()] {(GO);
L]0 0 0 L [ {(e, ™)} 0 0
R|O 0 0 R [ {(s,rP)} 0 0
T L R T L R
s T[]0 0 {PIPT |0 0 {(rP,¢e),(IP,e)}
L]0 0 0 L0 0 0
R|O 0 0 R | {(s,rP),(,IP)} © 0
T L R T L R
% [T10 ™y {7 [T G} {(°.e)y
L]0 0 0 L [ {(s,rP)} 0 0
R|O 0 0 R | {(IP)} 0 0

(d) Refined Direction@g) and Interferencd§) matrices

Figure 7.3: Computing mirror image of a binary tre€’ &nd “r” denotes respectively the left
and right fields of tree.
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possibilities is needed to get results with the desiredraoyu
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Chapter 8
Conclusion and Future Work

In this report we proposed a field sensitive shape analysisiigue. We demonstrated how
boolean functions along with field sensitive matrices halmferring the precise shape of the
data structure. While field sensitive matrices help in gatireg the kill information for strong
updates, boolean functions help in remembering the shapsition history with respect to each
heap-directed pointer. We have shown some example scenhabcan be handled more pre-
cisely by our analysis as compared to an existing field inseasnalysis. Our shape analysis
can be utilized by an optimizing compiler to disambiguatermogy references.

We use a very simple inter procedural framework to handletfan calls, that computes
safe approximate summaries to reach fix point . Our nextehgd is to develop a better inter
procedural analysis to handle function calls more pregis€urther, we plan to extend our
shape analysis technique to handle more of frequently doguprogramming patterns to find
precise shape for these patterns. We are developing a ypetotodel using GCC framework
to show the effectiveness on large benchmarks. Howevemibik is still in very early stages,
and requires manual intervention. We plan to automate thiype in near future.
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Appendix A

Analysis of Ghiya et. al. [GH96T

Most of the definitions and technical terms used in this atragte borrowed from the afore-

mentioned paper. The proposed shape analysis composegkefdiore-less abstractions that
are computed together at each program point. For each hesgpedi pointer they approximated
the attribute shape and for each pair of heap directed psittiey approximated the direction

and interference relationships between them. These tinseaations are defined formally as
follows:

Definition A.1. Given any heap-directed pointer p, the shape attributegpshs Tree, if in
the data structure accessible from p there is a unique (pbseimpty) access path between any
two nodes (heap objects) belonging to it. It is considerede®AG (directed acyclic graph),
if there can be more than one path between any two nodes imlatésstructure, but there is
no path from a node to itself (i. e, itis acyclic). If the dateusture contains a node having a
path to itself, p.shape is considered to be Cycle. Note théists are special case of tree data
structures, their shape is also considered as Tree.

Definition A.2. Given two heap directed pointers p and g, the direction mddricaptures the
following relationships between them:

e D[p,g] = 1: An access path possibly exists in the heap, from the heaptgiiéted to
by p, to the heap object pointed to by g. In this case we singyiytsat the pointer p has
a path to pointer g.

e D[p,qg] =0:No access path exists from the heap object pointed to by [ tioetap object
pointed to by q.

Definition A.3. Given two heap directed pointers p and g, the direction mdtdaptures the
following relationships between them:

e I[p,gq =1:Acommon heap object can be possibly accessed starting fsorteps p and
g. In this case we state that pointers p and g can interfere.

1The contents of this section are borrowed from [GH96]
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[Dfplafr[s[t|u] (1 [plafr[s]t|u]
p1({1/0|0|0|0 pl1/1/{0/0|0]|0
qg|0|1/0/0|0|0 g1/1/0|0(0|0
r{{ojoj1/,0/0/0 rf{ojoj1/1(01
s|fofoj1|1/1/|0 s|{0oj0|1/1|1]|1
t{0j0|0|0|1|0 t|{0j/0|0Oj1]|1]|0
ujoj0|1/0/01 ufjojoj1/1(oj1

(b) Direction Matrix (c) Interference Matrix

Figure A.1: Example Direction and Interference Matrices

e I[p,g = 0: No common heap object can be accessed starting from poiptersl g. In
this case we state that pointers p and g do not interfere.

Direction relationships are used to actually estimate tiag@s attributes, where the interfer-
ence relationships are used for safely calculating dweattlationships.

[llustrative Example

The direction and interference matrices are illustrateBign A.1. Part (a) represents a heap
structures at a program point, while parts (b) and (c) sh@ndtrection and interference matri-
ces for it.

We now demonstrate how direction relationships help esértiee shape of the data struc-
tures. In Fig. A.2, initially we have botp.shape and).shape as Tree. FurthBiq, p| == 1,
as there exists a path fromto p throughnext link. The statemenp—prev = (, sets up a
path fromp to gq through thepr ev link. From direction matrix information we already know
that a path exists fromg to p, and now a path is being set fropto g. Thus after the statement,
D[p,q = 1,D[q, p| = 1, p.shape = Cycle and.shape = Cycle.
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q : q ' 2
p—>prev = (
neXt —_— next preV
p \\ p \
AR AR
D[q.p] = 1 D[p,a] =0 D[a.p] =1 D[p,a] =1

p.shape = Tree p.shape = Cycle
g.shape =Tree g.shape = Cycle

Figure A.2: Example Demonstrating Shape Estimation

Analysis of Basic Statements

They have considered eight basic statements that can agcessdify heap data structures
as listed in Fig. A.3(a). Variableg andqgand the fieldf are of pointer type, variablk is of
integer type, an@p denotes thet and — operations. The overall structure of the analysis is
shown in Fig. A.3(b). Given the direction and the interfaematriceD and| at a program
point X, before the given statement, they compute the nestblg andl, at a program point

y. Additionally, we have the attribute matrix A, where for aipter p, A[p] gives its shape
attribute. The attribute matrix after the statement is @nésd a\,.

For each statement they compute the set of direction andengace relationships it kills
and generates. Using these sets, the new mai¢and|,, are computed as shown in Fig. A.3(c).
Note that the elements in the gen and kill sets are denotBd@s] for direction relationships,
andl [p, g] for interference relationships. Thus a gen set of the féB{x, y|, D[y, 7}, indicates
that the corresponding entries in the output direction xdF[x,y] andDy[y,z] should be set
to one. We also compute the set of pointeles whose shape attribute can be modified by the
given statement. Another attribute matAx is used to store the changed attribute of pointers
belonging to the sdts. The attribute matriA, is then computed using the matrickaind A¢
as shown in Fig. A.3(c).

Let H be the set of pointers whose relationships/attributesiastacted by the matricés.
| andA. Further assume that updating an interference matrix efgry|, implies identically
updating the entry[p, q].

The actual analysis rules can be divided into three groupsal(ocations, (2) pointer as-
signments, and (3) structure updates. Figure A.4 showsehegd Kill sets corresponding to
each statement.
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Allocation
1.p = malloc();

Pointer Assignments DI A
2.p = q; .
3.p = &q—f);
4.p =q op k; (Statermen)
5.p = NULL; y
6.p = q—f;

D, I, Ay

Structure Updates
7.p—f = q;
8. p—f = NULL;

(a) Basic statements

(b) Analysis Structure

Build the new matrices
vr,se H, Dp[r,§ =DJr,g, In[r,g =1]r,9
VseH, Ans|=A[

Delete Killed relationships
Ventries Or,s) € D_kill_set Dp[r,§ =0
Ventries [r,s] € |_kill_set  Iy[r,s]=0

Add generated relationships
Ventries Or,5] € D_gen set Dplr,5 =1
Ventries [r,s] € |_genset Iy, =1

Update shape attributes of affected pointers
ComputeHs andAg
VseHs, Anlg =A[g

(c) General Form of Analysis Rules

Figure A.3: The Overall Struture of the Analysis
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1.p = malloc();

D_kill_set = {D[p,s||s€e HAD[p,g} U
{D[s,pl|[se HADIs, pl}

|_kill_set = {l[p,s|]|]se HAIl[p,s}

D _genset = {D[p,p|} |_genset={l[p,p|}

Hs = {p} Acp]=Tree

&(q—t);
q op k;

PN
T T o

Kill set same as that gf = mal | oc();

D_genset from = {D[s p]lse HAs# pAD[sq|}

D_gen set to = {D[p,sl|se HAs# pAD|q,s]}

|_gen set = {l[p,sl|lse HAs# pAlg,s} U
{I[p, p[l[a,q]}

D_gen set = D_gen set from UD_gen set to

Hs = {p} Afpl=Al

5.p = NULL;

Kill set same as that gf = mal | oc();
D genset = {} I|_genset={}
Hs = {p} Acp]=Tree

Kill set same as that gf = mal | oc();

D_gen set from = {D[s p]ls€ HAs# pAl[sqd|}

D _gen set to = {D[p,g|se HAS# pAS#QA
Dlg,s]} U{D[p,q]|A[q] =Cycle} U
{D[p, pl[D[a,q]}

D_gen set = D_genset from UD_gen set to

|_gen set = {l[p,s]|se HAs# pAl[qg,9} U
{Ip,pi[1[q,q]}

Aclp] = Al

7. p—f NULL;

D_kill_set = {} |_Kkill_set={}
D genset = {} I|_genset={}
Ac[p) = AlplvpeH

7.p—f = q;

Kill set same as that gf—f = NULL;
D_genset = {D[r,g|r,s€ HADIr,p]AD[q,9}
|_genset = {l[r,g||r,se HADIr,p|Al[q,s]}

Pointer g already has a path to p, D[g,p] =1
Hs = {slse HA(DIs,p]vVDI[s,q))}
Dla.p] = Ac[s|=CycleVse Hs

A[q] = Tree
Hs = {gseHA(D][s p|VI[sq)}
(—Dla, p] A (Ald)=Treg)) = Acfs=A[g X DagVse Hs

A[q] # Tree
Hs = {9seHAD[s p|}
(—Dla, pl A (Alg] # Treg)) = Acfs| =Als| X A[g] Vs€ Hs

Figure A.4: Analysis Rules
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Appendix B

Analysis of Marron et. al. [MKSHO06] *

Most of the technical terms used in this chapter are borrdwed the aforementioned paper.
The proposed analysis followed the abstract heap graphittateises nodes to represent sets
of concrete cells (heap allocated objects and arrays) agebdd represent sets of pointers. Each
node in the abstract heap graph can be viewed as a region imem which certain layout
predicates can be defined (Tree Layout, List Layout, Singlétayout, Multi-Path or Cycle
Layouts) which signifies what types traversal patterns gnamm can use to navigate through
the data structures in the region. To track the concretetire Layout, they introduce a simple
domain of layout types = {Singleton, List, Tree, Multi-Patlycle}. The abstract layouts can
be given a simple total order: Singleton < List < Tree < Mi&th < Cycle. This order can
be interpreted as: if a node n has abstract layaihien the concrete regio®® = y(n), where

y is the concreatization operator, may have any of the laympgsties less than or equal o
For example, if we have a node with layout type List the corgcregion may have the List or
Singleton layout properties. If the node has Cycle as theutthen the concrete domain may
have any of the layout properties. The abstract layout fasdem represents the most general
concrete layout that may be encountered by a program tiagdise region that is represented
by the node n.

In their analysis, sometimes refinement is necessary @iteamarization the abstract heap
graph) whose purpose is to transform summary represengaitndo forms that make certain
relationships explicit, so that the information in theslatienships can be utilized more easily.
During refinement they turn summary nodes into a number oésad size one so that strong
updates can be performed and exact relations between kegrizdn be maintained.

In order to eliminate the state explosion that is possibli wefinement, they adopt the
approach of only doing refinement in those cases in which wéeasure that there is a unique
way in which new nodes can be materialized. This limits thellef details that can be achieved,
but it is easy to demonstrate scenarios where refinemeninattiple possibilities is needed to
get results with the desired accuracy.

1The contents of this section are borrowed from [MKSHO06]
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