
d-dimensional Knapsack in the Streaming Model

Sumit Ganguly1 and Christian Sohler2

1 Indian Institute of Technology, Kanpur, India
2 Technical University Dortmund, Dortmund, Germany

Abstract. We study the d-dimensional knapsack problem in the data
streaming model. The knapsack is modelled as a d-dimensional integer
vector of capacities. For simplicity, we assume that the input is scaled
such that all capacities are 1. There is an input stream of n items, each
item is modelled as a d-dimensional integer column of non-negative inte-
ger weights and a scalar profit. The input instance has to be processed in
an online fashion using sub-linear space. After the items have arrived, an
approximation for the cost of an optimal solution as well as a template
for an approximate solution is output.

Our algorithm achieves an approximation ratio (2(1
2
+
√

2d+ 1
4
))−1 using

space O(2O(d) ⋅logd+1 d⋅logd+1�⋅logn) bits, where { 1
�
, 2
�
, . . . , 1}, � ≥ 2

is the set of possible profits and weights in any dimension, and P is the
ratio between the minimum and maximum profit. We also show that any
data streaming algorithm for the t(t− 1)-dimensional knapsack problem
that uses space o(

√
�/t2) cannot achieve an approximation ratio that

is better than 1/t. Thus, even using space �
 , for
 < 1/2, i.e. space
polynomial in �, will not help to break the 1/t ≈ 1/

√
d barrier in the

approximation ratio.

1 Introduction

The 0/1 knapsack problem is a popular and well-studied combinatorial problem
with applications in many different areas. Its basic form is as follows. Given n
items numbered i = 1, 2, . . . , n and their weights wi and profits pi, find a subset
of the items with maximum profit whose sum of weights does not exceed a given
sack size R. The problem is well-known to be an NP-hard problem [6] with a
classical FPTAS approximation algorithm by Ibarra and Kim [3].

A well-studied generalization is the d-dimensional knapsack problem, whose
input is the set of items indexed by {1, 2, . . . , n}, where the ith item is associated
with (a) a non-negative d-dimensional vector Ai = [A1,i, . . . , Ad,i]

T denoting the
weight of the item along each of the d dimensions, and, (b) a profit pi. The
knapsack dimensions is given by the column vector R with Rs being the sack
dimension along dimension s. The problem may be specified as follows.

max
S⊂{1,2,...,n}

∑
j∈S

pj

subject to
∑
j∈S

As,j ≤ Rs, s = 1, 2, . . . , d .

We consider the above problem in the data stream setting. For simplicity, we
assume that the knapsack capacities are scaled to be 1. This is equivalent to
assuming that the knapsack capacities are given as input to the algorithm instead
of being read from the stream. In this setting, the items arrive in a sequence
whose entries are of the form (item, profit, d-dimensional column of weights)=
(i, pi, Ai). The profits and weights are chosen from { 1

� ,
2
� , . . . , 1}, � ≥ 2. The

algorithm may only use a small amount of space, say s(n, d,�) bits, for storing
the input. In the streaming scenario we aim at s(n, d,�) being sublinear or
even polylogarithmic in the input length. Each item is processed in an online
fashion. After all the items have been processed, the streaming algorithm may
use its s(n, d,�)-bit state to report a template for a packing of the items into the
knapsack. The following constraints must be satisfied: (1) Any template packing
of items reported by the algorithm must be feasible for the original instance,
and, (2) the corresponding profit reported must not be higher than the sum of
the profits of the items in the sack.

The knapsack problem in the data stream setting is substantially different
than the online resource knapsack problem with resource augmentations, studied
by Iwama and Taketomi [4] and by Iwama and Zhang [5]. In the online knapsack
problem, each item may be seen only once, and a decision regarding whether to
include it in the knapsack must be made. Additionally, items arriving later may
cause a currently included item in the sack to be evicted; evicted items are not
recoverable. Iwama and Zhang show that the problem is not approximable (i.e.,
ratio is∞). However, if one allows resource augmentation, that is, the algorithm
is allowed to store a set of items whose weight is at most � ≥ 1 knapsacks, then,
a greedy algorithm attains a �− 1 approximation ratio and this is optimal [5].

The main difference between the online resource augmented version and the
streaming version is that the online version allows a set of items to be stored
as long as its weight is at most �R. Since items may have small weight, it is
possible that �(n) items are stored, which would not be allowed in the data
stream setting.

Contributions and Overview. In this work, we study deterministic solutions to
the d-dimensional knapsack problem in the streaming model. We assume that
the input is scaled such that the sack capacities are 1. We show that for � =

O(1/ log(d)), there is an algorithm that gives a (2(1
2 +
√

2d+ 1
4))−1-approximate

packing using space O(2O(d)�−(d+1)(logd+1�)(log n)), where weights and profits
are taken from { 1

� ,
2
� , . . . , 1}, � ≥ 2. Further, we show that for any d = t(t−1),

any algorithm that uses o(�/d) space has approximation ratio no better than
1/t. Thus, our technique yields an approximation ratio that is within a small
constant factor of the best possible. In fact, even using space polynomial in �
will not help to break the 1/t ≈ 1/

√
d barrier in the approximation ratio.

Our technique is as follows. We compress the input instance by rounding up
the weights3 and rounding down the profits, respectively, to the nearest power

3 The actual scheme for rounding up weights is slightly more involved.

of 1+�. The input instance is now approximated as a d+1-dimensional array H,
where there are d co-ordinates for each of the weight dimensions and one profit
coordinate. An entry H[w1, . . . , wd, p] in this array is the count of the number of
items that have profit p and weights w1, . . . , wd respectively in the d-dimensions,
after the rounding operation.

Our approach for the analysis is to take any given feasible solution F for the

original instance and show that it can be packed into at most 2(1
2 +

√
2d+ 1

4)

sacks using the modified weights. This is done using a 2-level hierarchical packing
method. The first level is obtained as the color classes of an optimal coloring of
a certain hypergraph. In the second stage, we use the probabilistic method to
prove that the items of each of the color classes can be packed into 2 sacks. We

show that the first level coloring has at most 1
2 +

√
2d+ 1

4 color classes. Since

each such class is packed using at most 2 sacks, we obtain a 2(1
2 +
√

2d+ 1
4)-sack

packing of the given feasible solution F . Therefore, one among these packings has

cost at least 1/(2(1
2 +

√
2d+ 1

4) of the original feasible solution F . By choosing

the feasible solution to be the optimal solution, we obtain a 1/(2(1
2 +

√
2d+ 1

4)-

approximate solution for the modified weights instance.
Our lower bound is obtained as a reduction from the t-party set disjointness

problem in one-way communication complexity.

2 Compressed representation

An instance � = (A, p) of the d-dimensional knapsack problem is a d × n-
dimensional weights matrix A and an n-dimensional row vector p. To simplify
notation, we will assume that the item weights along each dimension, namely
the Ai,j ’s are from { 1

� ,
1
� , . . . , 1}, � ≥ 2. The knapsack is assumed to have unit

capacity in each of its dimensions. Thus our problem is the following.

maxF⊂{1,2,...,n}
∑
j∈F

pj subject to
∑
j∈F

Aij ≤ 1, i = 1, 2, . . . d .

We will assume that a = 1/� is a lower bound on the smallest weight along
any dimension. In order to represent the input instance using compact space, we
discretize the weights and profits as follows. The interval [a, 1/2] is divided into
bins using a logarithmic scale:

(a, a(1 + �)], (a(1 + �), a(1 + �)2], . . . , (a(1 + �)j0 , 1/2] .

The last interval ends at 1/2. For x ∈ [a, 1/2], we map x to the right end of the
interval in powers of (1 + �) that contains x; however, we never cross 1/2. Call
this mapping x 7→ upa,�(x), that is,

upa,�(x) = min(a(1 + �)⌈log1+�(x/a)⌉, 1/2), a ≤ x ≤ 1/2 .

This gives ⌈log1+� 1/(2a)⌉ distinct discrete weights. Define the mapping x 7→
dna,�(x), where, dna,�(x) is the left end of the interval in the above list of intervals
that contains x, that is,

dna,�(x) = a(1 + �)⌊log1+�(x/a)⌋, a ≤ x ≤ 1/2 .

The mapping for the interval [1/2, 1 − a] is obtained by dividing the interval
backwards, that is, x 7→ upa,�(x), where,

upa,�(x) = 1− dna,�(1− x), 1/2 < x < 1− a .

In the interval [a, 1/2], upa,�(x) rounds x upwards to the nearest value of the

form a(1 + �)j .

a ≤ upa,�(x) ≤ 1/2, x ∈ [a, 1/2] and (1)

0 ≤ upa,�(x)− x ≤ �x, for x ∈ [a, 1/2] (2)

In the interval [1/2, 1], upa,�(x) rounds x upwards to 1−dna,�(1−x). Therefore,

(1 + �)/2 ≤ upa,�(x) ≤ 1− a, x ∈ (1/2, 1− a], and (3)

0 ≤ upa,�(x)− x ≤ �(1− x), for x ∈ (1/2, 1− a] . (4)

A round-down discretization is performed for profits by mapping pi to dnpmin,�(pi),
for the entire range of profit values, where, pmin is a lower bound on the smallest
profit and � is a parameter. This ensures that 0 ≤ pj − dnpmin,�(pj) ≤ �pj , which
is sufficient for our purposes.

Compressed instance. Let A′ be the d×n matrix obtained by mapping each entry
Aij to upa,�(Aij), for 1 ≤ i ≤ d, 1 ≤ j ≤ n. We represent A′ as a histogram H
in d+ 1-dimensions as follows, where, the first d dimensions are the weights and
the last dimension is the profit. H contains 2⌈log1+�(1/2a)⌉ + 2 entries in each
of first d dimensions and ⌈log1+�(�)⌉ + 1 entries for each the profit dimension,
where, P is an upper bound on profit of items. Each cell of H is initialized to 0.
When an item with profit pj and weight column Aj appears, we map Aj to the
vector

Aj 7→ A′j = upa,�(Aj) = [upa,�(A1,j), upa,�(A2,j), . . . , upa,�(Ad,j)]
T

and the profit pj to dnpmin,�(pj). The histogram entry corresponding to H[A′j , p
′
j]

is incremented by 1.
Space requirement. Each entry of the histogram stores a count of the number

of items with the same rounded weights and profit. It suffices to use log n bits
for each entry. Thus, the histogram requires space

O((⌈log1+�(2/a)⌉+2)d(log1+�(�)+1)(log n)) = O(2O(d)�−d+1 logd+1(�)(log n)) bits

where, n is the number of items and � ≥ 2.

A simple but important property of the rounding procedure is that, (a) a
feasible solution for the modified (i.e., the rounded) instance is a feasible solution
for the original instance–this is a consequence of the rounding up of the weights,
and, (b) the profit of a feasible solution of the modified instance is at most
the profit of the same solution for the original instance–this is a consequence of
rounding down of the profits. The profit of a feasible solution of the modified
instance is at least 1/(1 + �) of the profit of the same solution for the original
instance.

Definition 1. Let � = (A, p) be an instance of the d-dimensional knapsack
problem. A pair-wise non-intersecting family of subsets S1, . . . , Sk is called a
feasible packing using k knapsacks or, in short, a feasible k-sack solution, if∑

l∈Sj

Ai,l ≤ 1, for each j = 1, 2, . . . , k and 1 ≤ i ≤ d .

We use feasible k-sack solutions as follows. Given an instance � of a knapsack
problem, let OPT(�) denote the optimal profit feasible.

Lemma 1. Let g be a function that maps an instance � of the knapsack to
another instance g(�) that does not change the profit vector p but may change
the weight matrix A to A′. Suppose that for every instance � and every feasible
solution F of �, there is a feasible k-sack solution for g(�) whose union of sets
is F . Then, OPT(g(�)) ≥ OPT(�)/k, for all instances �.

Proof. There is a k-sack feasible solution for g(�) whose union is OPT(�). One
of these k-sacks has profit at least OPT(�)/k. Thus OPT(g(�)) ≥ OPT(�)/k.

Lemma 1 guides our approach towards obtaining a bound of k on the approxima-
tion ratio of the original versus the compressed instance. The bound is obtained
by showing that for each feasible solution of the original instance there is a
k-sack feasible solution of the compressed instance. It then follows that the op-
timal solution for the compressed instance is 1/k-approximation. The problem
now reduces to making k as small as possible.

3 Conflict Hypergraph and its Coloring

Given an instance � of the knapsack problem, we denote by � ′ the instance
that replaces all input weights At,j by A′t,j := upa,�(At,j) and profits pj by
p′j := dnpmin,�(pj). Let F be an arbitrary feasbile solution for �. We define a
conflict hypergraph that captures all sets of items of F that violate the sack size
in any dimension for instance � ′.

Definition 2. The hypergraph HF = (V,EF) with V := F and EF := {ℎ ⊆ V :
∃s, 1 ≤ s ≤ d,

∑
j∈ℎA

′
s,j > 1} is called conflict hypergraph of a feasible solution

F . An edge ℎ has label s, if
∑
j∈ℎA

′
s,j > 1. Note that an edge can have different

labels.

A hypergraph k-coloring is an assignment � : V → {1, . . . , k} of the vertices
to one of the k colors. We call the sets �−1(i) the color classes of the coloring.
A hyperedge ℎ is called monochromatic (under a k-coloring �), if there exists a
color c, 1 ≤ c ≤ k such that �(v) = c for all v ∈ ℎ. A coloring is called proper, if
there are no monochromatic edges. A hypergraph is called k-colorable, if it has
a proper k-coloring. A hypergraph has chromatic number k, if it is k-colorable
but not k − 1-colorable. We can now formulate a relationship between the error
introduced by our rounding procedure and the problem of coloring the conflict
hypergraph.

Lemma 2. Let F be a feasible solution for � = (A, p). A feasible k-sack solution
S′1, . . . , S

′
k for � ′ = (A′, p′) with F =

∪
i∈{1,...,k} S

′
i exists, iff HF is k-colorable.

Proof. Let S′1, . . . , S
′
k be a feasible k-sack solution for � ′ = (A′, p′). We define a

k-coloring � for HF by setting �−1(j) = S′j for 1 ≤ j ≤ k. The coloring is well-
defined since by definition of a k-sack solution the sets S′j do not intersect and
since F =

∪
j∈{1,...,k} S

′
j . By the definition of a feasible k-sack solution we have

that
∑
l∈S′

j
A′i,l ≤ 1, for each j = 1, 2, . . . , k and 1 ≤ i ≤ d . Now assume

that there is a hyperedge ℎ and a color c with �(v) = c for all v ∈ ℎ. Then we
have that v ∈ S′c for all v ∈ ℎ and so

∑
l∈ℎA

′
i,l ≤

∑
l∈S′

c
A′i,l ≤ 1 for 1 ≤ i ≤ d.

But this is a contradiction to the fact that ℎ ∈ EF , which states that for some
dimension s we have

∑
l∈ℎA

′
s,l > 1.

Now let us assume that there is a proper coloring of HF . Then we define
S′j := �−1(j). By definition of a proper coloring, there is no edge ℎ ⊆ S′j . Hence,∑
l∈S′

j
A′i,l ≤ 1 for each 1 ≤ j ≤ k and 1 ≤ i ≤ d. Thus S1, . . . , Sk is a feasible

k-sack solution. ⊓⊔

Our approach will be to show that for every feasible solution F , the conflict

hypergraph HF has chromatic number at most k := 2(1
2 +

√
2d+ 1

4). By the

above lemma this implies that a k-sack feasible solution exists. By Lemma 1 this
will give a 1/k-approximate solution.

We first give a folklore result that any hypergraph with E edges can be

colored using 1
2 +
√

2∣E∣+ 1
4 colors. The result follows from the observation that

a coloring with minimum number of colors must have a hyperedge for every
pair of colors. The proof for the graph version (see, for example, [2], page 124)
extends immediately to hypergraphs.

Lemma 3 (folklore). Let H = (V,E) be a hypergraph. Then, H is 1
2+
√

2∣E∣+ 1
4 -

colorable. ⊓⊔

Lemma 3 will prove useful in obtaining desirable packings. However, an im-
mediate application of Lemma 3 is not useful, since, the number of conflict
edges could be exponential in the number of vertices. Thus, the number k of
sacks required to obtain a k-feasible packing by Lemma 3 may be exponential.
It is therefore necessary to apply a two step approach to construct a proper

(2(1
2 +

√
2d+ 1

4))-coloring of HF . Our first step will be to construct a restricted

conflict graph H ′F over vertex set F and obtain a 1
2 +

√
2d+ 1

4 -coloring of H ′F .

This coloring is later refined to a (2(1
2 +

√
2d+ 1

4))-coloring of HF .

Definition 3. Let

ZF,s =
∩

g∈EF : g has label s

g .

The hypergraph H ′F = (F,E′F) with E′F := {ZF,s : ∣ZF,s∣ > 1} is called restricted
conflict hypergraph.

An immediate motivation for Definition 3 is to reduce the number of hy-
peredges. Corresponding to any feasible solution F of the original instance, by
construction, H ′F has at most one hyperedge per dimension. Hence, ∣E′F ∣ ≤ d,

and by Lemma 3, there exists a 1
2 +

√
2d+ 1

4 -coloring � of H ′F . However, not

all conflicts in HF are reflected in H ′F and thus, there may be monochromatic
edges in HF under the coloring �. However, an edge with label s can only be
monochromatic, if ∣ZF,s∣ ≤ 1.

Therefore we revise our strategy to a 2-level hierarchical packing. Given a
feasible packing of the original instance, we first obtain a decomposition of the
vertices into color classes that are a proper coloring of the restricted conflict
hypergraph H ′F . In the second stage, we take the items in each of the color
classes obtained and show that these items can be packed into 2 sacks. In order
to prove this, we only have to show that for every dimension s with ∣ZF,s∣ ≤ 1
the items can be packed into two sacks. We use the probabilistic method to
show this, namely, we show that a random packing is a feasible packing with
constant probability. This implies that there exists a refined coloring that has
no monochromatic edges.

From now on, let us assume that we are given a subset S of items that forms
a color class of the restricted conflict hypergraph H ′F corresponding to some
given feasible packing F of the original instance of the knapsack problem. By
construction, we only have to consider dimensions s with ∣ZF,s∣ = 0 or 1. Clearly,
in the worst case we have S = F and so we will show that even in this case,
our random packing will succeed with large probability. We will first analyze
consequences of ∣ZF,s∣ being 0 or 1. To simplify notation, let Ai,J :=

∑
j∈J Ai,j .

Lemma 4. Let � < 1/3. Suppose that we are given a feasible solution F for
the original instance of the knapsack problem and a dimension s ∈ {1, 2, . . . , d}
such that ∣ZF,s∣ = 1 and ZF,s = {us}. Let g = {us} ∪ I and ℎ = {us} ∪ J are
hyperedges in the conflict hypergraph HF corresponding to F with label s.

1. If As,us > 1/2 then, As,I∩J >
1−3�
1+� (1−As,us).

2. If As,us ≤ 1/2, then, As,I∩J >
1−�
1+� −As,us .

Proof. Case 1 : As,us > 1/2. Since, g is not feasible for the modified weights,
A′s,g > 1. So,

1 < A′s,g = A′s,us +A′s,I ≤ �(1−As,us) +As,us + (1 + �)As,I .

Therefore, we get,

(1 + �)As,I > (1− �)�s, where, �s = (1−As,us) .

Applying the above inequality to the hyperedge ℎ, we obtain similarly that
(1 + �)As,J > (1− �)�s . Adding, we have,

(1 + �)(As,I +As,J) = (1 + �)(As,I∩J +As,I∪J) > 2(1− �)�s .

However, since F is a feasible set, the set of elements {us}∪ I ∪ J fit in the sack
along dimension s. Thus,

As,us +As,I∪J ≤ 1 or, As,I∪J ≤ 1−As,us = �s

and therefore,
(1 + �)(As,I∩J + �s) > 2(1− �)�s

or,

As,I∩J >
2(1− �)�s

1 + �
− �s =

(1− 3�)�s
1 + �

.

Case 2: As,us ≤ 1/2. We have

1 < A′s,g = A′s,us +A′s,I ≤ (1 + �)As,us + (1 + �)As,I , and

1 < A′s,ℎ = A′s,us +A′s,J ≤ (1 + �)As,us + (1 + �)As,J

Adding, we obtain

2 < 2(1 + �)As,us + (1 + �)(As,I∪J +As,I∩J)

= (1 + �)(As,us +As,I∩J) + (1 + �)(As,us +As,I∪J) .

Since F is a feasible packing, the elements {s}∪ I ∪J all fit in the sack in terms
of their original weights, that is, As,us +As,I∪J ≤ 1. Thus,

2 < (1 + �)(As,us +As,I∩J) + (1 + �), or, As,I∩J >
1− �
1 + �

−As,us . ⊓⊔

Lemma 5. Let � < 1/3 and F be a feasible solution for the original instance of
the knapsack problem. Let s be a dimension s ∈ {1, 2, . . . , d} such that ∣ZF,s∣ = 1
and ZF,s = {us}. Suppose j is a member of some hyperedge in HF with label
s.Then, the following holds.

1. For j ∕= us and As,us > 1/2, As,j ≤ (1−As,us)(4�)/(1 + �).
2. For j ∕= us and As,us ≤ 1/2, As,j ≤ 2�/(1 + �).

If j is not a member of any hyperedge in HF with label s, then, As,j ≤ �/(1 + �).

Proof. Let �s = 1 − As,us . We will consider two cases with regard to an item
j ∕= us; Case 1 when an item j is a member of some hyperedge in HF with label
s, and, Case 2 when an item j is not a member of any hyperedge in HF labeled
s.

Case 1 : Suppose j ∕= us and j is a member of some hyperedge {us} ∪ I in HF .
Since, j ∕∈ Zs, there exists another hyperedge ℎ = {us} ∪ J in HU such that
j ∕∈ ℎ. We get As,j ≤ �s −As,I∩J .

Case 1.1 : As,us > 1/2. By Lemma 4 part (1), As,I∩J ≥ �s(1−3�)/(1+�). Thus,

As,j ≤ �s − �s
1− 3�

1 + �
=

4��s
1 + �

.

Case 1.2 : As,us ≤ 1/2. By Lemma 4 part (2), As,I∩J ≥ 1−�
1+� −As,us . Therefore,

As,j ≤ 1−As,us −
1− �
1 + �

+As,us =
2�

1 + �
.

Case 2 : Suppose j is not a member of any hyperedge in HF with label s. Then,
for any hyperedge g with label s (and there is at least one since ∣Zs∣ = 1),

1 < A′s,g ≤ (1 + �)As,g ≤ (1 + �)(1−As,j)

or, As,j <
�

1+� . ⊓⊔

Lemma 5 implies that for the case when ∣ZF,s∣ = 1, all elements except the
largest element are of size O(�). This follows from Lemma 5 by noting that
As,j ≤ (1−As,us)(4�)/(1 + �) ≤ 4�/(1 + �), since, 0 ≤ 1−As,us ≤ 1.

Lemma 6. Given a feasible solution F for the original instance of the knapsack
problem and a dimension s ∈ {1, 2, . . . , d} such that ∣ZF,s∣ = 0. Then, either
there are no conflicting edges along dimension s, or, all items have weight at
most �/(1 + �) along dimension s.

Proof. If there are no conflicting edges in HF with label s then there is nothing
to prove. So suppose there exists at least one conflicting edge g in HF with label
s.

Case 1: Suppose j ∈ g. Since ZF,s = �, it follows that there is at least one
other conflicting edge ℎ ∈ HF such that j ∕∈ ℎ. Therefore,

A′s,ℎ > 1, or, 1 < A′s,ℎ ≤ (1 + �)As,ℎ ≤ (1 + �)(1−As,j) .

Simplifying, we obtain As,j ≤ �
1+� .

Case 2: Suppose j does not appear in any hyperedge of HF with label s,
then, the argument of Lemma 5 can be used to show that As,j ≤ �/(1 + �). ⊓⊔

Packing Items in a Color Class

In this section, we consider the remaining portion of the strategy of the 2-level
hierarchical packing outlined above. In the hierarchical packing strategy, given a
feasible solution F for the original knapsack instance, we first form the conflict
hypergraph HF and then derive the restricted conflict hypergraph H ′F from it

as explained earlier. The vertex set F of the restricted conflict hypergraph H ′F
is partitioned into the color classes of a proper coloring. The final step is to
pack the items comprising each color class using as few sacks as possible. In this
section, we present this step.

We will pack the items in an independent set of H ′F using a random strategy.
The random packing strategy picks items at random with probability p and
attempts to place them in the sack. If the sack overflows, a new sack is opened,
and the process continues until there are no more items to be packed.

Lemma 7. Let p = 1/2 and � ≤ min(1/24, 1/(64 log(4d))) and F be a feasible
solution to the original knapsack instance. Let S be a set of items that forms an
color class of the restricted conflict hypergraph H ′F . Then, the probability that
the sack overflows along any given dimension is at most 1/(4d).

Proof. Consider a random packing that chooses each item with probability p.
Define an indicator variable xj to be 1 if item j is selected and 0 otherwise.
Let ut be an item with the maximum weight along dimension t, that is At,ut =
maxiAt,i. Let �′t = 1−A′t,ut and for j ∕= ut, let

w′t,j =
A′t,j

maxk ∕=ut A
′
t,k

xj , j ∈ {1, 2, . . . , n} − {ut}

and let Xt =
∑
j ∕=ut w

′
t,j . Thus, E [Xt] =

∑
j ∕=ut

A′
s,j

maxk ∕=ut A
′
t,k
p

Case 1.1: ∣ZF,t∣ = 1 and At,ut > 1/2. By Lemma 5, if ∣ZF,t∣ = 1 then,
maxk ∕=ut A

′
t,k ≤ 4�(1 − At,ut)/(1 + �). We wish to obtain an upper bound for

the probability that the items selected do not fit into the sack along dimension
t, while leaving room for ut. A sufficient condition for this is∑

j ∕=ut

A′t,jxj ≤ �′t, or, equivalently, Xt ≤
�′t

maxk ∕=ut A
′
t,k

.

Pr {Overflow along dimension t} = Pr
{
Xt >

�′
t

maxk ∕=ut A
′
t,k

}
. By Hoeffding’s bound

applied to the sum Xt of random variables w′t,j , with p ≥ 1/2, by Lemma 5 this
is

Pr

{
Xt >

�′t
maxk ∕=ut A

′
t,k

}
≤ exp

{
−(1/6)

((1− �)− (1 + �)p)2

�(1 + (1 + �)p)

}
. (5)

The details of the application of Hoeffding’s inequality are presented in Ap-
pendix A.

Case 1.2: ∣ZF,t∣ = 1 and At,ut ≤ 1/2. By Lemma 5, maxk ∕=ut A
′
t,k ≤ (1+�)At,k ≤

2�.

Pr

{
Xt >

�′t
maxk ∕=ut A

′
t,k

}
< exp

{
−(1/3)

((1− �)− (1 + �)p)2

�(1 + (1 + �)p)

}
. (6)

Equation (6) is derived in Appendix A.

Case 2: ∣ZF,t∣ = 0. By Lemma 6, if ∣ZF,t∣ = 0, then, maxk A
′
t,k ≤ (1 +

�) maxk At,k ≤ �. Applying Hoeffding’s bound yields,

Pr

{
Xt >

�′t
maxk ∕=ut A

′
t,k

}
< exp

{
−(2/3)

((1− �)− (1 + �)p)2

�(1 + (1 + �)p)

}
. (7)

Combining (5), (6) and (7), we have under all cases,

Pr

{
Xt >

�′t
maxk ∕=ut A

′
t,k

}
≤ exp

{
−(1/6)

((1− �)− (1 + �)p)2

�(1 + (1 + �)p)

}
. (8)

Therefore, Pr
{
Xt >

�′
t

maxk ∕=ut A
′
t,k

}
≤ 1/(4d) provided

((1− �)− (1 + �)p)2

�(1 + (1 + �)p)
> 6 log(4d) (9)

Equation (9) is satisfied if p = 1/2 and � = min(1/24, 1/(64 log(4d))). ⊓⊔

We can now use Lemma 7, to prove that a 2-sack packing of the items in each
color class can be obtained.

Lemma 8. Let p = 1/2 and � = min(1/24, 1/(64 log(4d))) and F be a feasible
solution to the original knapsack instance. Let S be a set of items that forms a
color class of the restricted conflict hypergraph H ′F . Then, there exists a 2-sack
feasible packing of the items in S.

Proof. Suppose we sample items with probability 1/2. In this case, the probabil-
ity that an item is not sampled is also 1/2. Thus, we can also apply the previous
analysis (Lemma 7) to the set of items that were not selected in the sample.
The packing of this set of items succeeds with probability 1− d/(4d). Thus, by
the union bound, the probability that for every dimension and both the sets of
selected and not selected items are feasible is at least 1 − (2d)/(4d) = 1/2 > 0
by the union bound. Thus a 2-sack feasible packing of the items in S exists. ⊓⊔

We can now state the resulting property of our hierarchical packing analysis.

Theorem 1. For � ≤ min(1/24, 1/(64 log(4d))), our algorithm computes a rounded

instance such that this instance has a (2(1
2 +
√

2d+ 1
4))−1-approximate solution.

Our rounded instance is stored in a histogram that requires O(2O(d) logd+1(d) logd+1(�)(log n))
bits of space, for some constant c.

Proof. The algorithm for filling the knapsack is as follows. We round up the
weights as explained in Section 2 and round down the profits. In this manner
we create a histogram of multi-dimensional weights. The size of this histogram
is O(2O(d)(�−(d+1)) logd(�) log n) bits. From the histogram we can obtain a so-
lution using exhaustive search.

The approximation factor is derived as follows. Let F be any feasible solution
for the original instance. Let HF be the conflict hypergraph and let H ′F denote
the restricted conflict hypergraph (Definition 3. We then color H ′F using the
smallest number of colors. Lemma 3 shows that this can be done using at most
1
2 +

√
2d+ 1

4 colors. Since, there are at most d edges in H ′F , we obtain at most

1
2 +

√
2d+ 1

4 color classes with no hyperedges from H ′F .

By Lemma 8 each color class S can be packed using t = 2 sacks, where,
� = O(1/(log(d)). This means that the set of items in F can be packed into at

most 2(1
2 +

√
2d+ 1

4) sacks. By Lemma 1, this implies that there is a 1/(t(1
2 +√

2d+ 1
4))-approximation solution. The final two statements of the theorem are

special cases obtained from the corresponding special cases of Lemma 8. ⊓⊔

4 Lower Bounds: Space versus Approximation Ratio

In this section, we present a lower bound on space versus approximation ratio
of streaming algorithms for the d-dimensional knapsack problem.

Theorem 2. For t ≥ 1, any streaming algorithm for the t(t − 1)-dimensional
knapsack problem with items from the universe { 1

� ,
2
� , . . . , 1} that uses o(

√
�/t2)

bits has an approximation ratio of at most 1/t.

Let t be a positive integer such that d = t(t − 1)/2. We reduce the t-party set
disjointness problem to 2d-dimensional knapsack problem. An instance of the
t-party set disjointness problem consists of subsets S1, . . . , St of [n] provided
to each of t players. It is given that the sets are either pair-wise disjoint, or,
there is exactly one element in the common intersection. The players follow a
pre-specified communication protocol at the end of which a designated player
can distinguish between the two kinds of input. If the protocol is randomized,
then, the final answer must be correct with probability say 7/8. The commu-
nication complexity of a protocol is the maximum over all legal inputs, of the
total number of bits communicated during the execution of the protocol. The
communication complexity of the problem is the complexity of the best possible
protocol for this problem. It was shown by Chakrabarti, Khot and Sun [1] that
the randomized communication complexity of this problem is
(n/(t log t)). As-
suming the one-way communication model, where, the players communicate in
a certain order, that is, player 1 sends to player 2, player 2 to player 3 and so
on, the communication complexity is
(n/t) [1].

Proof. Consider an input instance of the t-player set disjointness problem, namely,
t subsets S1, . . . , St of the universe {1, 2, . . . , n} that is provided to each of the t-
parties, together with the promise that either, (a) the sets are pair-wise disjoint,
or, (b) they have exactly one common intersection element and are otherwise
pair-wise disjoint. We view the set {1, . . . , t(t − 1)} as being isomorphic to the
set of triples {(a, b, 0/1)}, where 1 ≤ a < b ≤ t. Let d = t(t − 1). For each

c = 1, 2, . . . , t, player c maps each element x of Sc to a d-dimensional vector
denoted by x(c) and whose coordinates are referred to as

[x
(c)
a,b,e], 1 ≤ a < b ≤ t and e ∈ {0, 1} .

The vector x(c) is constructed as follows.

1. x
(c)
c,b,0 = 2x, x

(c)
c,b,1 = 2(4n− x)

2. x
(c)
a,c,0 = 2(4n− x), x

(c)
a,c,1 = 2x

3. x
(c)
a,b,0 = x

(c)
a,b,1 = �, if a ∕= c and b ∕= c .

� is chosen to be a sufficiently small number, say 1/(2n), so that n� < 1. Suppose
that the knapsack size is 8n+ 1 along each dimension.

Case: non-empty intersection. Suppose there is a common element x in each

of the Sc’s. Then, x
(a)
a,b,0 = 2x, x

(b)
a,b,0 = 2(4n−x) and x

(t)
a,b,0 = �, for all t ∕= a, t ∕= b.

So the sum of coordinate (a, b, 0) of the d-dimensional vectors corresponding to
x across the t parties is

2x+ 2(4n− x) + (n− 2)� < 8n+ 1 .

Similarly, the coordinate (a, b, 1) of the sum of the d-dimensional vectors cor-
responding to x across the t parties is less than 8n + 1. That is, the vectors
{x(1), . . . , x(t)} form a feasible packing into one knapsack.

Case: empty intersection. Choose a pair of distinct elements x ∈ Sc and
y ∈ Sc′ , and suppose that c < c′. Then,

x
(c)
c,c′,0 + y

(c′)
c,c′,0 = 2x+ 2(4n− y)

x
(c)
c,c′,1 + y

(c)
c,c′,1 = 2(4n− x) + 2y

Both 2x + 2(4n − y) and 2(4n − x) + 2y cannot be at most 8n unless x = y,
hence, at least one of the two is at least 8n+ 2 (being even), and therefore does
not fit in the knapsack of size 8n+ 1.

We also note that no two items from the same set Sc can fit in one sack. Let
x, y ∈ Sc. Then, for any c′ with c < c′,

x
(c)
c,c′,0 + y

(c)
c,c′,0 = 2x+ 2y

x
(c)
c,c′,1 + y

(c)
c,c′,1 = 2(4n− x) + 2(4n− y)

Both 2x+ 2y and 2(4n−x) + 2(4n− y) cannot be at most 8n unless x+ y = 4n.
[If 2x + 2y ≤ 8n, then, x + y ≤ 4n, and 2(4n − x) + 2(4n − y) ≤ 8n implies
that x + y ≥ 4n, or, x + y = 4n.] However, x, y are each at most n, and hence
x+y < 2n−1. Thus, no two items from the same set Sc can fit in one knapsack.

So, in the case of a common intersection {x} of the sets, the d elements x(c),
c = 1, 2, . . . , t fit together in a sack. Assuming all profits of all items to be 1, the
total profit is t. In case when the sets are disjoint, then, at most one element
from any of the sets may be placed in the sack, with resulting profit 1.

Suppose there is a streaming algorithm for the t(t−1)-dimensional knapsack
problem with approximation ratio less than 1/t and that uses s bits. Player 1
presents the input {x(1) : x ∈ S1} to this algorithm with all profits set to 1. The
state of the algorithm is then sent to player 2, which in turn inserts its input
{x(2) : x ∈ S2} to the state of the algorithm, relays it to player 3 and so on.
Finally, player t calls the profit function of the streaming knapsack algorithm.
If this profit is 1 or less, it concludes that the sets are disjoint, otherwise, it
concludes that the sets have unique common intersection. This protocol cor-
rectly determines set disjointness, since, as argued above, for the disjoint case
the optimal profit is 1 and is reported as no more than 1 by the streaming knap-
sack solution. For the unique intersection case, the optimal profit is t and is
reported to be greater than 1, since, the approximation ratio is 1/t. The total
communication is (t−1) times the space requirement of the streaming algorithm,
namely, s bits. Note that the entries of the vector x(c) are at most 8n and at least
epsilon = 1/(2n) and the sack size of 8n+1. Therefore, we can scale the input in
such a way that the entries come from { 1

� ,
2
� , . . . , 1} by setting � = 2n ⋅(8n+1).

By the lower bound of the t-party set disjointness problem, (t−1)s =
(n/t)
or, s =
(n/t2) =
(

√
�/t2). Thus any streaming algorithm for the t(t − 1)-

dimensional knapsack problem that uses o(
√
�/t2) bits must have an approxi-

mation ratio at best 1/t. ⊓⊔

References

1. A. Chakrabarti, S. Khot, and X. Sun. “Near-Optimal Lower Bounds on the Multi-
Party Communication Complexity of Set Disjointness”. In Proceedings of Interna-
tional Conference on Computational Complexity (CCC), Aarhus, Denmark, 2003.

2. R. Diestel. Graphentheorie. Springer-Verlag, Heidelberg, 2006.

3. Oscar H. Ibarra and Chul E. Kim. “Fast Approximation Algorithms for the Knap-
sack and the Sum of Subset Problems”. JACM, 22(4), October 1975.

4. Kazuo Iwama and S. Taketomi. “Removable online knapsack problems”. In Pro-
ceedings of International Conference on Automata, Languages and Programming,
(ICALP), 2002.

5. Kazuo Iwama and Guochuan Zhang. “Optimal Resource Augmentations for Online
Knapsack”. In Proceedings of International Workshop on Approximation Algorithms
(APPROX), pages 180–188, 2007.

6. Richard Karp. “Reducibility among Combinatorial Problems”. In Complexity of
Computer Computations, by Miller and Thatcher (eds.) Plenum Press, New York
and London, pages 85–103, 1972.

A Application of Hoeffding’s bound in Lemma 7

In this section, we complete the steps in the application of Hoeffding’s inequality
for the cases used in Lemma 7.

We consider the derivation of (5), (6) and (7).

Case 1. Consider the scenario of (5), where, ∣ZF,t∣ = 1 and ZF,t = {ut}
with At,ut ≥ 1/2. Hoeffding’s inequality states that for independent variables
Y1, . . . , Yn with each Yi ∈ [0, 1],

Pr {Y1 + Y2 + . . .+ Yn > a} ≤

{
exp{−(a− �)2/(3�)}, � ≤ a ≤ 2�

exp{−(a− �)2/(a+ �)}, a > 2�
(10)

where, � = E [Y1 + . . . ,+Yn].
In the given scenario, w′t,j = A′t,j/maxi∕=ut A

′
t,i, which lies between 0 and 1.

Hence, we can define Yj := w′t,j ⋅xj , where, xj is the indicator variable indicating
that j has been picked in the sample. . Let Xt =

∑
j ∕=us w

′
t,jxj . Since, the

sampling is done with probability p, it follows that

E [Xt] =
∑
j ∕=ut

A′t,jp

maxi∕=ut A
′
t,i

.

We are interested in the probability of no overflow–which is the event∑
j ∕=ut

A′t,jxj < 1−A′t,ut = �′t

or, equivalently,

Xt <
�′t

maxi ∕=ut A
′
t,i

.

We will use the following combined version of Hoeffding’s bound from (10) by
slightly relaxing one of the cases.

Pr {Y1 + Y2 + . . .+ Yn > a} ≤ exp{−2(a− �)2/3(a+ �)} . (11)

Using (11), we have

Pr

{
Xt > �′t/(max

j ∕=ut
A′t,j)

}
< exp

{
−(2/3)

(�′t −
∑
j ∕=ut A

′
t,utp)

2

(maxj ∕=ut A
′
t,j)(�

′
t +
∑
j ∕=ut A

′
t,utp)

}

≤ exp

{
−(2/3)

((1− �)(1−At,ut)− (1 + �)(1−At,ut)p)2

4�(1−At,ut)((1−At,ut) + (1 + �)(1−At,ut)p)

}
{ since, �′t ≥ (1− �)(1−At,ut) and

by Lemma 5, At,j ≤ 4�(1−At,ut)/(1 + �); so A′t,j ≤ 4�(1−At,ut)}

≤ exp

{
−(1/6)

((1− �)− (1 + �)p)2

�(1 + (1 + �)p)

}
.

This proves the inequality in (5). The inequalities in (6) and (7) are obtained
similarly–in these cases, maxj ∕=ut A

′
t,j ≤ 2� and maxj ∕=ut A

′
t,j ≤ �, respectively.

