
Estimating Entropy over Data Streams

Lakshminath Bhuvanagiri and Sumit Ganguly

Indian Institute of Technology, Kanpur
{blnath,sganguly}@cse.iitk.ac.in

Abstract. We present an algorithm for estimating entropy of data streams con-
sisting of insertion and deletion operations using Õ(1) space.1

1 Introduction

Recently, there has been an emergence of monitoring applications in diverse areas,
including, network traffic monitoring, network topology monitoring, sensor networks,
financial market monitoring, web-log monitoring, etc.. In these applications, data is
generated rapidly and continuously, and must be analyzed very efficiently, in real-
time, to identify large trends, anomalies, user-defined exception conditions, etc.. The
data streaming model [1, 12] has gained popularity as a computational model for such
applications—where, incoming data (or updates) are processed very efficiently and in
an online fashion using space that is much less than what is needed to store the data in
its entirety.

A data stream S is viewed as a sequence of arrivals of the form (i, v), where, i is the
identity of an item that is a member of the domain {0, 1, . . . , N−1}, and v is the update
to the frequency of the item. v > 0 indicates an insertion of multiplicity v, while v < 0
indicates a corresponding deletion. The frequency of an item i, denoted by fi, is the sum
of the updates to i since the inception of the stream, that is, fi =

∑
(i,v) appears in S v. In

the strict update model, deletions are assumed to correspond to prior insertions, and,
therefore the frequency of an item is always non-negative. In the general update model,
item frequencies may be negative or positive. Let n denote the number of items with
non-zero frequencies in the stream and let m denote the sum of the absolute values of
the item frequencies.

The entropy H of a data stream is defined as H =
∑
i:fi>0

|fi|
m log m

|fi| . We study
the problem of continuously tracking the entropy of a data stream in low space. The
entropy of a data stream, or that of a frequency distribution, measures its information
theoretic randomness and incompressibility. A value of entropy close to logn, is indica-
tive that the frequencies in the stream are randomly distributed, whereas, low values are
indicative of “patterns” in the data. Further, monitoring changes in the entropy of a
network traffic stream has been used detect anomalies [8, 14, 15].

1 We use the Õ notation to simplify complexity expressions. If N is the domain size of the
stream items and m is the sum of the absolute values of the item frequencies, we say that
f(m,N) = Õ(g(m,N)), if f(m,N) = O

“
1

εO(1) (logO(1) m)(logO(1) n) g(m,N)
”

.

Prior Work. The work in [9] presents an algorithm for estimating H over insert-only
streams to within a factor of 1± ε using space Õ(n

1
1+ε). [9] also presents an algorithm

for estimating H using space Õ(1) bits in a random-streaming model, in which, the
order of arrival of items is assumed to be completely random. [3] presents an algo-
rithm for estimating entropy H over insert-only streams to within factors of 1± ε using
Õ(min(m2/3,m2(1−ε)) space.

Contributions. In this paper we present an algorithm that estimates the entropy of strict
update data streams to within factors of 1± ε using space Õ(1). We also show how the
algorithm can be generalized to the general update streaming model using space Õ(1).
We prove the following theorem.

Theorem 1. There exists an algorithm for strict update streams that returns an estimate
Ĥ of the entropy H of a stream such that |Ĥ −H| ≤ εH with probability 1− δ using

O
(

(log4 m)
ε3

(logm+log 1
ε)

(log 1
ε+log logm)

(log 1
δ)
)

bits.

Organization. The remainder of the paper is organized as follows. In Section 2, we
present an abstract algorithm called HSS for estimating a class of data stream metrics
and then use it in Section 3 to estimate entropy.

2 The HSS algorithm

We present a procedure for obtaining a representative sample over the input stream,
which we refer to as Hierarchical Sampling over Sketches (HSS) and use it for estimat-
ing a class of metrics over data-streams of the following form.

Ψ(S) =
∑

i:fi>0

ψ(fi) (1)

Section 3 specializes this procedure to yield a straight forward algorithm for estimating
the entropy of a data stream in Õ(1) space. The algorithm can be naturally adapted for
general update streams. A specialization of the HSS procedure was used in [2] to give
an algorithm for finding the kth frequency moment Fk =

∑
fki .

Preliminaries. Given a data stream, rank(r) returns an item with the rth largest
frequency (ties are broken arbitrarily). We say that an item i has rank r if rank(r) = i.
For a given value of k, 1 ≤ k ≤ N , the set top(k) is the set of items with rank ≤ k.
We use the COUNT-MIN algorithm [6] for estimating the frequency f̂i of an item i.
Its guarantees are summarized in Theorem 2 and are given in terms of the quantity
mres(k) =

∑
i6∈ top(k) fi =

∑
r>k frank(r).

Theorem 2. [6] For 0 < ε < 1, the COUNT-MIN algorithm uses spaceO(kε log 1
δ logm)

bits and timeO(log 1
δ) to process each stream update. It returns an estimate f̂i that sat-

isfies fi ≤ f̂i ≤ fi + εmres(k)
k with probability 1− δ. ut

The HSS structure. Let T0 > T1 > . . . > TL (L will be fixed later) be a sequence
of exponentially decreasing thresholds that partition the elements of the stream into
groups G0 . . . GL, where, G0 = {i ∈ S : fi ≥ T0} and Gl = {i ∈ S : Tl ≤ fi <
Tl−1}, 1 ≤ l ≤ L. Intuitively, the HSS algorithm works as follows. From the input
stream S, we create sub-streams S0 . . .SL such that S0 = S and for 1 ≤ l ≤ L, Sl is
obtained from Sl−1 by sub-sampling each distinct item appearing in Sl−1 independently
with probability 1

2 (hence L = O(logm)). The sub-stream Sl is referred to as the
sub-stream at level l, for l = 0, 1, . . . , L. Let k be a space parameter. At each level
l, we keep a data-structure denoted by Dl, that takes as input the sub-stream Sl, and
returns an approximation to the top(k) items of its input stream and their frequencies.
This data-structure is typically instantiated using standard synopsis structures, such as,
COUNT-MIN (for estimating entropy), COUNTSKETCH [4] (for estimating frequency
moments [2] and for estimating entropy when frequencies may be negative), etc. We
posit the following invariant.

C1: All items of Gl present in Sl must be discovered as frequent items by Dl.

Approximating fi. We assume that frequent items discovery and frequency estimation
algorithms have an additive error of at most ∆ in the estimated frequencies (usually,
with high probability [4–6]), where ∆ is a function of the space parameter k and some
aggregate statistic of the input stream (e.g., mres(k) for the COUNT-MIN algorithm
and Fres2 (k) for the COUNTSKETCH algorithm). We use ∆l = ∆l(k) to denote the
error incurred by the estimates obtained from Dl operating on the sub-stream Sl.

Let Ql denote a frequency threshold defined as Ql = ∆l
ε̄ and let f̂i,l denote the

estimate of the frequency of i as obtained from the data structure Dl, assuming that
the item i has been sampled at level l. It follows that if f̂i,l > Ql, then, |f̂i,l − fi| ≤
ε̄fi with high probability. Lemma 1 establishes a relation between the values ∆l for
various l for a popular top(k) estimation algorithm, namely the COUNT-MIN sketch 2.
This relationship helps us to set the threshold Ql to ∆0(k)

ε̄·2l = Q0

2l
for l > 0.

Lemma 1. For COUNT-MIN sketch algorithm, ∆l(k) ≤ ∆0(2l−1k)
2l

with probability ≥
1− 2−Ω(k) for l ≥ 1 and k ≥ 36.

Proof. By Theorem 2, ∆l(k) = mres(k,l)
k , where, mres(k, l) is the (random) residual

first moment of Sl when the top-k ranked items have been removed from Sl. The ex-
pected number of the top-2l−1k ranked items in S appearing in Sl is 1

2l
2l−1k = k

2 .
By Chernoff’s bounds, the number of the top- 2lk

2 ranked items in S appearing in Sl
is no more than 3k

4 , with probability at least 1 − 2−Ω(k). In other words, the non-
top-k elements of Sl only includes the non-top-2l−1k elements of the original stream,
with probability 1 − 2−Ω(k). Therefore, E

[
mres(k, l)

]
≤ 1

2l
mres(2l−1k). By a sim-

ilar argument, the largest non-top-k frequency, ul, in Sl has rank at least 3·2lk
4 in

S. Thus, ul ≤ frank(3·2l−2·k) ≤ mres(2l−1s)
2l−2k

. Items with ranks between 3·2lk
4 and

2l−1k have frequencies at least ul, and their sum is at most mres(2l−1k). That is,
(3

4)(2lk)ul ≤ mres(2l−1k), or that, ul ≤ mres(2l−1k)
3·2l−2k

.

2 A similar result can also be shown for COUNTSKETCH .

Hence, with probability ≥ 1− δ, mres(k, l) ≤ max(2E
[
mres(k, l)

]
, 3ul log 1

δ)) ≤
max(2m

res(2l−1k)
2l

, 3m
res(2l−1k)

2l−2k
log 1

δ) (from Hoeffding’s bounds). Let δ = 2−
k
16 . Since

k ≥ 36, we get mres(k, l) ≤ mres(2l−1k)
2l

with probability > 1− 2−Ω(k). ut

Disambiguating estimated frequency. It is possible for the estimate f̂i,l of an item i
obtained from the sub-stream Sl to exceed the threshold Ql for multiple l. For exam-
ple, consider an item with actual frequency larger than Q0. It crosses the threshold at
level 0 and thus is estimated accurately at level 0. However, it may be sub-sampled at
level 1, and in this case, its frequency estimate also crosses the threshold Q1 (with high
probability). In this manner, this item may get estimated accurately at all the levels at
which it has been successfully sub-sampled. Each of these estimates f̂i,l may be differ-
ent, though they are all within factors of 1 ± ε̄ to the actual value. We therefore apply
the “disambiguation-rule” of using the estimate obtained from the lowest level at which
it crosses the threshold for that level. The estimated frequency after disambiguation is
denoted as f̂i.

Setting Tl. As per the invariant C1, all elements in Gl ∩ Sl must be discovered as
frequent items by Dl. Since, Ql defines the threshold for “good estimation”, fixing
Tl = Ql might seem a possibility. However, the elements of Gl with frequency close to
Tl(= Ql) might fail to even appear in the sample Ḡl due to errors in estimation, thereby
violating C1. One way to solve this problem is to choose Tl =

√
Ql ·Ql+1 = 21/2 ·Ql.

Since Ql(1 + ε̄) ≥ Ql+∆l (by definition of Ql), we choose ε̄ such that (1 + ε̄) < 21/2,
and hence Tl ≥ Ql+∆l. Thus, any i ∈ Gl appearing in Sl will be present in the top(k)
set returned byDl, and hence included into the sample Ḡl since it can suffer an additive
error of at most ±∆l.

2.1 Algorithm

Obtaining hierarchical samples. For every stream update (i, v), we use a hash-function
h : {1 . . .N} → {1 . . .N} to map the item onto level u = lsb(h(i)) 3. The update (i, v)
is then propagated to the frequent items data structures Dl for 0 ≤ l ≤ u, in effect, i
is included in the sub-streams from level 0 to level u. The hash function is assumed to
be chosen randomly from a fully independent family; later we reduce the number of
random bits required.

At inference time, the algorithm collects samples as follows. From each level l, the
set of items whose estimated frequency crosses the threshold Ql are identified, using
the frequent items structure Dl. If an item crosses the threshold at multiple levels, then,
the disambiguation rule is applied that sets f̂i to f̂i,l, where, l is the smallest of the
levels r such that f̂i,r ≥ Qr. Based on their disambiguated frequencies, the sampled
items are sorted into their respective groups. In order to maintain the invariant C1, we
include an item i in group Gl only if it hashes to level l. More, precisely, we form the
sampled groups, Ḡ0, Ḡ1, . . . , ḠL, as follows.

Ḡ0 = {i : f̂i ≥ T0} and Ḡl = {i : Tl−1 < f̂i ≤ Tl and i ∈ Sl}, 1 ≤ l ≤ L .

3 lsb(x) is the position of the least significant “1” in binary representation of x.

Note that any item belonging toGl and Sl is “discovered” at level l, with high probabil-
ity . However, if fi is close to the right or the left boundary of Gl, the ±ε̄fi estimation
error could cause i to be misclassified into its adjacent group. We consider this issue in
the next section.

Estimator. The sample is used to compute the estimate Ψ̂ . We also define an idealized
estimator Ψ̄ that assumes that the frequent items structure is an oracle that does not
make errors.

Ψ̂ =

L∑

l=0

∑

i∈Ḡl

ψ(f̂i) · 2l Ψ̄ =

L∑

l=0

∑

i∈Ḡl

ψ(fi) · 2l (2)

2.2 Analysis

Let xi,r denote a random variable which takes the value 1 iff i ∈ Sr and is also classified
by the algorithm into Ḡr. Thus, equation (2) can be written as follows.

Ψ̄ =
∑

i∈S
ψ(fi)

L∑

r=0

xi,r · 2r, Ψ̂ =
∑

i∈S
ψ(f̂i)

L∑

r=0

xi,r · 2r

Lemma 2 shows that the expected value of Ψ̄ is close to Ψ .

Lemma 2. Suppose that for 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi with
probability ≥ 1− 2−t. Then |E

[
Ψ̄
]
− Ψ | ≤ Ψ · 2−t+logL.

Proof. E
[
Ψ̄
]

=
∑
i∈S E

[
ψ(fi)

∑L
r=0 xi,r · 2r

]
=
∑
i∈S ψ(fi)

∑L
r=0 E

[
xi,r · 2r

]
,

where,
∑L
r=0 E

[
xi,r · 2r

]
=
∑L
r=0 Pr{xi,r = 1} · 2r.

Consider an item i ∈ Gl. The frequency group (or interval) Gl is partitioned into
three sub-regions, namely, lr(Gl) = [Tl, Tl + ε̄Ql], rr(Gl) = [Tl−1 − ε̄Ql, Tl−1] and
mr(Gl) = [Tl+ ε̄Ql, Tl−1− ε̄Ql], that, respectively denote the left-region, right-region
and middle-region of the group Gl. An item i is said to belong to one of these regions
if its true frequency lies in that region. As seen earlier, if i ∈ Gl and i ∈ Sl, then
f̂i,l > Ql, and hence, it is discovered by Dl (with high probability). We now consider
items that lie in the middle-region and the left-region respectively (the argument for
right-region is analogous to that of the left-region).

Let i ∈ mr(Gl). Then, Tl ≤ fi − ∆l ≤ f̂i,l ≤ fi + ∆l ≤ Tl−1, that is, the error
∆l is not large enough to cause f̂i,l to cross either Tl or Tl−1. Hence, with probability
1− 2−t, if i ∈ Sl, then, is correctly classified into group Ḡl. Therefore 1

2l
(1− 2−t) ≤

Pr{xi,l = 1} ≤ 1
2l

, and Pr{xi,r = 1} ≤ 1
2r · 2−t for r 6= l. Thus,

∑L
r=0 E

[
xi,r2

r
]
≤

1
2l
· 2l +

∑
r 6=l 2

−t · 1
2r · 2r ≤ 1 +L · 2−t, and

∑L
r=0 E

[
xi,r2

r
]
≥ 1

2l
· (1− 2−t) · 2l.

Hence, |∑L
r=0 E

[
xi,r2

r
]
− 1| ≤ 2−t+logL.

Let i ∈ lr(Gl). Then, with high probability, i will not be discovered at any level
l′ < l, since f̂i,l′ ≤ fi+ε̄Ql′ ≤ (1+ε̄)Tl+ε̄Ql′ < Ql′ . Therefore, the estimate f̂i = f̂i,l

is obtained from level l. However, by virtue of its true frequency (fi) being close to Tl,
the estimate f̂i,l might be on either side of Tl causing i to be classified into either Ḡl or
Ḡl+1. Let p be the probability that f̂i,l > Tl, that is, the item gets “correctly” classified
into group Ḡl. Therefore, (1−2−t)·p· 1

2l
≤ Pr{xi,l = 1} ≤ p· 1

2l
. The probability of the

same i getting classified into Ḡl+1 atDl is 1−p, resulting in (1−p)·(1−2−t)·2−(l+1) ≤
Pr{xi,l+1 = 1} ≤ (1− p) · 1

2l+1 . Note that this argument assumes that the random sub-
sampling choices for an item are made independent of the choices of the other items.
Therefore,

∑L
r=0 E

[
xi,r 2r

]
≤ (p 1

2l
) 2l + (1− p) 1

2l+1 2l+1 +
∑
r/∈{l,l−1}

1
2r 2r 2−t.

Therefore, 1 − 2−t ≤∑L
r=0 E

[
xi,r 2r

]
< 1 + L · 2−t. Therefore, |E

[∑L
r=0 xi,r 2r −

1
]
| ≤ 2−t+logL. A similar argument can be made for rr(Gl). Combining, we get

|E
[
Ψ̄
]
− Ψ(S)| =

∑

i∈S
ψ(fi) |E

[
xi,r 2r

]
− 1| ≤ Ψ(S) · 2−t+logL . ut

We now present a bound on the variance of the idealized estimator. For any item i with
non-zero frequency, we denote by l(i) the group index l such that i ∈ Gl.

Lemma 3. Suppose that for all 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi with
probability ≥ 1− 2−t. Then,

Var
[
Ψ̄
]
≤
∑

i∈S
2−t+L+2 · ψ2(fi) +

∑

i/∈(G0−lm(G0))

ψ2(fi) · 2l(i)+1 .

Proof. The proof is analogous to that of Lemma 2 and is given in Appendix A. ut
Corollary 1. If the function ψ(·) is increasing in the interval [0 . . . T0 + ∆0], then,
choosing t = L+ log 1

ε2 + 2 we get

Var
[
Ψ̄
]
≤
∑

i∈S
ε2ψ2(fi) +

L∑

l=1

∑

i∈Gl
ψ(Tl−1)ψ(fi)2

l+1 + 2
∑

i∈lm(G0)

ψ(Tl +∆0)ψ(fi)

(3)

Proof. If the monotonicity condition is satisfied, then ψ(Tl−1) > ψ(fi) for all i ∈ Gl,
l ≥ 1 and ψ(fi) ≤ ψ(T0 +∆0) for i ∈ lm(G0). Therefore, ψ2(fi) ≤ ψ(Tl−1) · ψ(fi),
in the first case and ψ2(fi) ≤ ψ(T0 + ∆0) in the second case. By Lemma 3 and the
chosen value for t gives the desired result. ut

2.3 Error in the estimate

The error incurred by our estimate Ψ̂ is |Ψ̂ − Ψ |, and can be written as the sum of two
error components using triangle inequality.

|Ψ̂ − Ψ | ≤ |Ψ̂ − Ψ̄ |+ |Ψ̄ − Ψ | = E1 + E2
Here, E1 = |Ψ − Ψ̄ | is the error due to sampling and E2 = |Ψ̂ − Ψ̄ | is the error due to
the estimation of the frequencies. By Chebychev’s inequality,

E1 = |Ψ − Ψ̄ | ≤ |E[Ψ̄]− Ψ |+ 3
√

Var
[
Ψ̄
]

with probability
8

9
.

Using Lemma 2 and Corollary 1, and choosing t = L + log 1
ε2 + 2, the expression for

E1 can be simplified as follows.

E1 ≤
ε2LΨ

m
+3
(∑

i∈S
ε2ψ2(fi)+

∑

i∈Gl,l≥1

ψ(Tl−1)ψ(fi)2
l+1+

∑

i∈lm(G0)

2ψ(Tl+∆0)ψ(fi)
)1/2

(4)
with probability 8

9 . We now present an upper bound on E2.

Lemma 4. Suppose that for 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi with
probability ≥ 1 − 2−t. Then, E2 ≤ 16 · ε̄ · Q0

∑L
l=0

∑
i∈Gl

|ψ′(ξi)|
2l

with probability
≥ 9

10 − 2−t, where for an i ∈ Gl, ξi lies between fi and f̂i, and maximizes ψ′().

Proof. Let yi,l denote the indicator random variable that is 1 if i ∈ Sl and is 0 otherwise.
Note that yi,l+1 is 1 only if yi,l is 1. Let i ∈ Gl. By arguing similarly to that of Lemma 2,
we have the following cases. Consider the set of items i such that i ∈ mr(Gl), for some
l ≥ 1, or, i ∈ G0 − lr(G0). If r = l, then, xi,r = yi,r , with probability 1 − 2−t,
and otherwise, xi,r = 0, with probability at most 2−t. Therefore, for such an item i ,∑L
r=0 xi,r2

r = yi,l2
l, with probability 1− 2−t.

Suppose i ∈ lr(Gl), for some l ≥ 0. Then, xi,l + xi,l+1 = yi,l, with probability
1 − 2−t, and xi,r = 0, with probability at most 2−t, for r 6∈ {l, l + 1}. Therefore, for
such items i,

∑L
r=0 xi,r2

r = xi,l2
l+xi,l+12l+1 ≤ (xi,l+xi,l+1)2l+1 = yi,l2

l+1, with
probability 1− 2−t.

Finally, consider those items i such that i ∈ rr(Gl) for some l ≥ 1. Using a similar
argument, we can show that xi,l + xi,l−1 = yi,l−1, with probability 1 − 2−t, and
xi,r = 0, with probability 2−t for r 6∈ {l, l − 1}. Therefore,

∑L
r=0 xi,r2

r ≤ yi,l−12l.
Since, yi,l is 1 only if yi,l−1 = 1, for l ≥ 1, in all cases, we have,

L∑

r=0

xi,r · 2r ≤ yi,l(i)−1 · 2l+1, with probability ≥ 1− 2−t, if l(i) ≥ 1 . (5)

By triangle inequality, E2 ≤
∑L
l=0

∑
i∈Gl |ψ(f̂i) − ψ(fi)| · (

∑L
r=0 xi,r · 2r). Using

Taylor’s expansion, E2 ≤
∑L
l=0

∑
i∈Gl |∆l ·ψ′(ξi)| · (

∑L
r=0 xi,r · 2r), where ξi is the

value between fi and f̂i at which ψ′() takes its maximum absolute value. Using (5)

E2 ≤ 2∆0

∑

i∈G0

|ψ′(ξi)|yi,0 +

L∑

l=1

∆l

∑

i∈Gl
|ψ′(ξi)| yi,l−1 2l+1.

Since S0 = S, we have yi,0 = 1, ∀i ∈ G0. Applying Hoeffding’s bounds to the second
term above , we obtain with probability ≥ 9

10 − 2−t,

E2 ≤ 2∆0

(∑

i∈G0

|ψ′(ξi)|
)

+ 2 ·
(
4

L∑

l=1

∆l

∑

i∈Gl
|ψ′(ξi)|+ 4 max

i∈S−G0

|∆l(i) ψ
′(ξi)|

)

≤ 16
L∑

l=0

∆l

∑

i∈Gl
|ψ′(ξi)| ≤ 16 · ε̄ ·Q0

L∑

l=0

∑

i∈Gl

|ψ′(ξi)|
2l

, since, ∆l =
ε̄Q0

2l
. ut

Reducing random bits. The number of random bits used by the algorithm can be re-
duced to O(s logm), where, s is the space used by the HSS structure, by using a
classical result of Nisan [13] on pseudo-generators for space bounded computation,
as adapted for use by data stream algorithms by Indyk [10]. Since, this approach has
been adequately treated in [10] and [11], we do not discuss it in greater detail.

3 Estimating Entropy

In this section, we apply the HSS algorithm to estimate the entropyH =
∑
i:fi>0

fi
m log m

fi
of a data stream. We assume that the stream follows the strict update model (i.e.,
fi ≥ 0). Later we remark how the algorithm can be modified for general update streams.
For any 0 ≤ x ≤ m, let h(x) denote x

m log m
x (we assume that h(0) = 0). In this sec-

tion, the function ψ(x) = h(x) and the statistic Ψ =
∑
i h(fi) = H .

We instantiate the HSS algorithm using COUNT-MIN sketch [6] as the frequent items
structure Dl with 8k

ε̄ buckets in each hash table, where ε̄ = ε itself. We also estimate
mres(k) to within accuracy factors of 1 ± ε with probability 1 − δ. This is done us-
ing an algorithm similar to that of estimating Fres2 (k) presented in [7], and uses space
O(kε log m

δ logm) bits. For brevity, we state the theorem without proof.

Theorem 3. For a given integer k ≥ 1 and 0 < ε < 1, there exists an algorithm for
strict update streams that returns an estimate m̂res(k) satisfying (1 − ε)mres(k) ≤
m̂res(k) ≤ mres(k) with probability 1− δ using O(kε (log k

δ)(logm)) bits. ut
We use the algorithm of Theorem 3 with δ = (20mL)−1 to obtain an estimate

m̂res(k) and use it to compute the thresholds Ql and Tl, for levels l = 0, 1, . . . , L,
as follows, where L = dlog m

k e: Q0 = m̂res(k)
k , Ql = Q0

2l
and Tl = 21/2Ql, for

0 ≤ l ≤ L. We now bound the errors E1 and E2.

Lemma 5. Let k = 4
√

2 logm
ε2(log 1

ε+log logm)
and 0 < ε < 1

2 . Then, E1 ≤ 5εH .

Proof. We use (4) to bound E1. For l ≥ 1, h(Tl−1) · 2l+1 =
(
Tl−1

m log m
Tl−1

)
· 2l+1 =

(√
2m̂res(k)

m·(k·2l−1)
log m

Tl

)
· 2l+1 ≤ 4

√
2mres(k)
mk logm. Further, since the frequency of a non-

top k item is at most m
k , we have, m̂res(k) =

∑
i/∈ top(k) fi ≤ 1

log k

∑
i/∈top(k) fi ·

log m
fi

< mH
log k . Therefore, h(Tl) · 2l+1 ≤ 4

√
2H logm
k log k , for l ≥ 1. Further, 2h(T0 +

∆0) ≤ 2(T0+∆0)
m log

(
m

T0+∆0

)
≤ 2(1+ ε√

2
)T0

m (logm) ≤ 4mres(k) logm
mk ≤ 4H logm

k log k , by
the argument above. Therefore, the following summation from the expression for E1 in
(4) is,

∑

i∈Gl,l≥1

h(Tl−1)h(fi)2
l+1 +

∑

i∈lm(G0)

2h(Tl +∆0)h(fi)

≤ 4
√

2H logm

k log k

 ∑

i∈Gl,l≥1

h(fi) +
∑

i∈lm(G0)

h(fi)

 ≤ 4

√
2H logm

k log k

∑

i

h(fi)

≤ 4
√

2H2 logm

k log k
≤ ε2H2

by the choice of k as given in the statement. Substituting in (4), and using L = log m
k ,

we obtain that E1 ≤ ε2(logm)H
m + 3(ε2H2 + ε2H2)1/2 < 5εH . ut

Lemma 6. If 0 < ε ≤ 1 and k ≥ d8ee, then E2 ≤ 8
√

2εH .

Proof. Since, ε̄ = ε, by Lemma 4, E2 ≤ 16εQ0

∑L
l=0

∑
i∈Gl

|h′(ξi)|
2l

, with probabil-
ity ≥ 9

10 − 2−t. Since we are using COUNT-MIN sketch , for an i ∈ Gl, ξi is the
value which maximizes |h′()| in the interval (fi, fi + ∆l). By Theorem 3, m̂res(k) <

mres(k), and therefore, Q0 = m̂res(k)
k < mres(k)

k . Let hi denote h(fi), that is, the con-

tribution of i to H . Let θi denote the contribution of i to E2, that is, θi = 16εQ0|h′(ξi)|
2l(i)

.
Thus, E2 =

∑
i:fi>0 θi.

Case 1: fi ≤ m
e −∆0. Since h′() is positive and non-increasing in [1, me], the value of

ξi maximizing |h′()| in [fi, fi+∆0] is fi. Therefore h′(ξi) ≤ h′(fi) = 1
m

(
log m

fi
−1
)
<

1
m log m

fi
= hi

fi
< hi

Tl(i)
. Therefore, θi ≤ 16εQ0hi

2l(i)Tl(i)
≤ 8
√

2εhi, since, 2l(i)Tl(i) = T0 and

T0 = Q0

√
2.

Case 2: m
e −∆0 < fi ≤ m

e . Since, k ≥ d8ee, T0 ≤ m
k ≤ m

8e and therefore, i ∈ G0.
In this case, we consider two possibilities. First, if f̂i < m

e , then the value of ξi ∈
{fi, f̂i} maximizing h′() will be fi, and the analysis proceeds as in Case 1. The second
possibility is: f̂i > m

e . In this case, note that |h′(fi−y)| > |h′(fi+y)| for 0 < y < ∆0.
Hence, |h′(ξi)| < |h′(fi − ∆0)| < 1

m log m
fi−∆0

= 1
m (log m

fi
− log(1 − ∆l

fi
)) <

hi
fi

+ 2∆0

mfi
= hi

fi
(1 + 2∆0

mhi
). Since mhi = fi log m

fi
> fi, and ∆0

fi
< ∆0

T0
= ε√

2
we can

write h′(ξi) < hi
fi

(1+ε
√

2) ≤ hi(1+
√

2)
fi

, since ε ≤ 1. Also, fi ≥ m
e −∆0 = m

e − εT0√
2
≥

m
e −T0. Since, T0 ≤ m

k ≤ m
8e , therefore, fi ≥ 7T0. Thus, h′(ξi) < hi

7T0
(1+
√

2) ≤ hi
2T0

.
Therefore, θi ≤ 8εhi.

Case 3: fi >
m
e . As argued in Case 2, i ∈ G0. Also |h′()| is increasing in the

range (me ,m). Let fi = (1 − αi)m, where, 0 ≤ αi < 1 − 1
e . Therefore hi = (1 −

αi) log 1
(1−αi) > αi(1−αi). Further, |h′(ξi)| < |h′(fi+∆0)|. Let fi+∆0 = (1−α′i)m,

that is, α′i = αi − ∆0

m . Then, |h′((1 − α′i)m)| = 1
m (1 − log 1

1−α′i
) <

1−α′i
m . Fur-

ther, Q0 ≤ mres(k)√
2k

≤ αim√
2k

, which gives, θi = 16εQ0h
′(ξi) < 16εαimk

(1−α′i)
m =

16ε(1−α′i)αi
k ≤ 32ε(1−αi)αi

k , since, f̂i = (1 − α′)m ≤ fi + ∆0 = fi(1 + ∆0

fi
) =

(1− α)m(1 + εQ0

T0
) < 2(1− α)m. Therefore, θi ≤ 32εhi

k ≤ 2εhi, for the given k.
In all cases, θi ≤ 8

√
2εhi. Therefore, E2 =

∑
i:fi>0 θi ≤ 8

√
2ε
∑
i:fi>0 hi =

8
√

2εH . ut

We can now prove the main theorem.

Proof. [Of Theorem 1] The estimation error is bounded by E1 + E2. By Lemmas 5 and
6, the total error is (5 + 8

√
2)εH ≤ 17εH . Replacing ε by ε

17 and returning the median
Ĥmed ofO(log 1

δ) independent estimates gives |Ĥmed−H| ≤ εH with probability 1−δ.

Let k = O
(

logm
ε2(log 1

ε+log logm)

)
. The space used by the COUNT-MIN sketch sub-

structure at each level of the HSS structure is O(kε (logm + log 1
ε)(logm)) bits. This

is calculated as follows. The height of the COUNT-MIN structure is O(kε), width =
O(logm+log 1

ε), since, confidence of inference per item is 1−2−t and t = O(logm+

log 1
ε) and there are O(kε) items retrieved at each level.4 Finally, each counter requires

O(logm) bits for storage. The number of levels is L = log m
k = O(logm). The

use of the pseudo-random generator contributes an additional factor of logm to the
space requirement. A collection of O(log 1

δ) copies are kept to return the median esti-
mate. Therefore, the total space requirement isO

(
k
ε (logm+log 1

ε)(log3m)(log 1
δ)
)

=

O
(

(log4 m)
ε3

(logm+log 1
ε)

(log 1
ε+log logm)

(log 1
δ)
)

bits. ut

Generalizing to streams with negative frequencies. We briefly outline how the algo-
rithm can be applied to the general update streaming model. First, the COUNTSKETCH al-
gorithm for finding frequent items is used instead of COUNT-MIN sketch algorithm. The
role ofmres(k) is replaced by Fres2 (k); otherwise, the algorithm and its analysis is quite
similar. The space complexity of the algorithm is polynomial in 1

ε and (logF2 +logN).

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Models and Issues in Data
Stream Systems”. In Proceedings of ACM PODS, 2002.

2. L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. “Simpler algorithm for estimating fre-
quency moments of data streams”. In Proceedings of ACM SODA, 2006.

3. A. Chakrabarti, D.K. Ba, and S. Muthukrishnan. “Estimating Entropy and Entropy Norm on
Data Streams”. In Proceedings of STACS, 2006.

4. M. Charikar, K. Chen, and M. Farach-Colton. “Finding frequent items in data streams”. In
Proceedings of ICALP, 2002.

5. G. Cormode and S. Muthukrishnan. “What’s Hot and What’s Not: Tracking Most Frequent
Items Dynamically”. In Proceedings of ACM PODS, May 2003.

6. G. Cormode and S. Muthukrishnan. “An improved data stream summary: The Count-Min
sketch and its applications”. In Proceedings of LATIN, Springer LNCS Vol. 2976, 2004.

7. S. Ganguly, D. Kesh, and C. Saha. “Practical Algorithms for Tracking Database Join Sizes”.
In Proceedings of FSTTCS, 2005.

8. Y. Gu, A. McCallum, and D. Towsley. “Detecting Anomalies in Network Traffic Using
Maximum Entropy Estimation”. In Proceedings of of Internet Measurement Conference,
2005.

9. S. Guha, A. McGregor, and S. Venkatsubramanian. “Streaming and Sublinear Approxima-
tion of Entropy and Information Distances”. In Proceedings of ACM SODA, 2006.

10. P. Indyk. “Stable Distributions, Pseudo Random Generators, Embeddings and Data Stream
Computation”. In Proceedings of IEEE FOCS, 2000.

11. P. Indyk and D. Woodruff. “Optimal Approximations of the Frequency Moments”. In Pro-
ceedings of ACM STOC, 2005.

4 For efficient retrieval of frequent items, a COUNT-MIN structure can be kept for each of the
logm dyadic levels; this would obviate the need for a sequential scan of the domain, at the
expense of an additional factor of O(logm) space.

12. S. Muthukrishnan. “Data Streams: Algorithms and Applications”. Foundations and Trends
in Theoretical Computer Science, Vol. 1, Issue 2, 2005.

13. N. Nisan. “Pseudo-Random Generators for Space Bounded Computation”. In Proceedings
of ACM STOC, 1990.

14. A. Wagner and B Plattner. “Entropy based worm and anomaly detection in fast IP networks”.
In 14th IEEE WET ICE, STCA Security Workshop, 2005.

15. K. Xu, Z. Zhang, and S. Bhattacharyya. “Profiling internet backbone traffic: behavior models
and applications”. SIGCOMM Comput. Commun. Rev., 35(4), 2005.

A Proof of Lemma 3

Proof.

E
[
Ψ̄
]2

= E
[(∑

i

ψ(fi)

L∑

r=0

xi,r · 2r
)2]

= E
[∑

i

ψ2(fi)
(L∑

r=0

xi,r · 2r
)2

+
∑

i6=j
ψ(fi) · ψ(fj)

L∑

r1=0

xi,r1 · 2r1
L∑

r2=0

xi,r2 · 2r2
]

= E
[∑

i

ψ2(fi)
(L∑

r=0

xi,r · 2r
)2]

+ E
[∑

i6=j
ψ(fi) · ψ(fj)

L∑

r1=0

xi,r1 · 2r1
L∑

r2=0

xj,r2 · 2r2
]

= E
[∑

i

ψ2(fi)
L∑

r=0

x2
i,r · 22r

]
+ E

[∑

i

ψ2(fi)
∑

r1 6=r2
xi,r1 · xi,r2 · 2r1+r2

]

+ E
[∑

i6=j
ψ(fi) · ψ(fj)

L∑

r1=0

xi,r1 · 2r1
L∑

r2=0

xj,r2 · 2r2
]

We note that: (a) x2
i,r = xi,r. (b) an item i is classified into a unique group Gr, and

therefore, xi,r1 ·xi,r2 = 0, for r1 6= r2, and, (c) for i 6= j, xi,r1 and xj,r2 are independent
of each other, regardless of the values of r1 and r2. Thus,

E
[
Ψ̄
]2

=
∑

i

E
[
ψ2(fi)

L∑

r=0

xi,r·22r
]
+
∑

i6=j
E
[
ψ(fi)

L∑

r1=0

xi,r1 ·2r1
]
E
[
ψ(fj)

L∑

r2=0

xj,r2 ·2r2
]

As a result, the expression for Var
[
Ψ̄
]

simplifies to

Var
[
Ψ̄
]

= E
[
Ψ̄2
]
− E

[
Ψ̄
]2

=
∑

i

E
[
ψ2(fi)

L∑

r=0

xi,r · 22r
]
−
∑

i

E
[
ψ(fi)

L∑

r=0

xi,r · 2r
]2

E
[
ψ(fi)

∑L
r=0 xi,r · 2r

]
is given by Lemma 2. E

[
ψ2(fi)

∑L
r=0 xi,r · 22r

]
is calculated

in an almost similar manner; we briefly outline the calculation. Let i ∈ Gl. We decom-
pose groups into the left-region (lr), middle-region (mr) and right regions (rr) as in
Lemma 2.

Suppose i ∈ G0 \ lr(G0): Then, 1 − 2−t < Pr{f̂i > T0} ≤ 1 and probability of i
being classified into any otherGr, r 6= 0 is at most 2−t· 1

2r . Therefore,
∑
r E
[
xi,r2

2r
]
<

1 +
∑
r>0 2−t · 2r < 1 + 2−t+L+1.

Suppose i ∈ lr(G0): In this case, i can get classified into either Ḡ0 or Ḡ1, with
probability at least 1 − 2−t. Given that i is classified into one of Ḡ0 or Ḡ1, let p be
the conditional probability that Pr{i ∈ Ḡ0 | i ∈ Ḡ0 ∪ Ḡ1}. Therefore Pr{xi,0} ≤ p,
Pr{xi,1} ≤ (1−p)

2 and Pr{xi,r} ≤ 2−t for r /∈ {0, 1}. Therefore,
∑
r E
[
xi,r2

2r
]
<

p+ 1−p
2 · 22 +

∑
r>1 2−t · 2r < 2 + 2−t+L+1.

Suppose i ∈ lr(Gl) for l > 1: The analysis for this case is similar to that of i ∈
lr(G0), except that Pr{xi,l} ≤ p

2l
, Pr{xi,l+1} ≤ 1−p

2l+1 . Therefore,
∑
r E
[
xi,r2

2r
]
<

p
2l
· 22l + 1−p

2l+1 · 22(l+1) +
∑
r/∈{l,l+1} 2−t · 2r < 2l+1 + 2−t+L+1.

Suppose i ∈ mr(Gl) for l > 1: Such elements will be classified into Ḡl with
probability ≥ 1 − 2−t, resulting in

∑
r E
[
xi,r2

2r
]
< 1

2l
· 22l +

∑
r 6=l 2

−t · 2r <

2l + 2−t+L+1.
Suppose i ∈ rr(Gl) for l > 1: Using an argument similar to that for ll(Gl), we get∑
i E
[
xi,r2

2r
]
< 2l + 2−t+L+1. Combining the above cases, we obtain

∑

i

E
[
ψ2(fi)

L∑

r=0

xi,r · 22r
]
≤

∑

i∈G0\lr(G0)

(1 + 2−t+L+1) · ψ2(fi)

+
∑

i/∈G0\lr(G0)

ψ2(fi) · (2l+1 + 2−t+L+1) .

In conjunction with Lemma 2, we get

Var
[
Ψ̄
]
≤

∑

i∈G0\lr(G0)

(1 + 2−t+L+1) · ψ2(fi) +
∑

i/∈G0\lr(G0)

ψ2(fi) · (2l+1 + 2−t+L+1)

−
∑

i

(1− 2−t+logL) · ψ2(fi) ≤
∑

i∈S
2−t+L+2 · ψ2(fi) +

∑

i/∈G0\lr(G0)

ψ2(fi) · 2l+1.

ut

