
Deterministically estimating data stream
frequencies

Sumit Ganguly

Indian Institute of Technology, Kanpur, India

Abstract. We consider updates to an n-dimensional frequency vector
of a data stream, that is, the vector f is updated coordinate-wise by
means of insertions or deletions in any arbitrary order. A fundamental
problem in this model is to recall the vector approximately, that is to
return an estimate f̂ of f such that

∣f̂i − fi∣ < �∥f∥p, for every i = 1, 2, . . . , n,

where � is an accuracy parameter and p is the index of the ℓp norm used
to calculate the norm ∥f∥p. This problem, denoted by ApproxFreqp(�),
is fundamental in data stream processing and is used to solve a number
of other problems, such as heavy hitters, approximating range queries
and quantiles, approximate histograms, etc..

Suppressing poly-logarithmic factors in n and ∥f∥1, for p = 1 the problem
is known to have �̃(1/�) randomized space complexity [2, 4] and �̃(1/�2)
deterministic space complexity[6, 7]. However, the deterministic space
complexity of this problem for any value of p > 1 is not known. In this
paper, we show that the deterministic space complexity of the problem
ApproxFreqp(�) is �̃(n2−2/p/�2) for 1 < p < 2, and �(n) for p ≥ 2.

1 Introduction

In the data streaming model, computation is performed over a sequence of
rapidly and continuously arriving data in an online fashion by maintaining a
sub-linear space summary of the data. A data stream may be modeled as a se-
quence � of updates of the form (index, i, v), where, index is the position of the
update in the sequence, i ∈ [n] = {1, 2, . . . , n} and v is the update indicated by
this record to the frequency fi of i. The frequency vector f(�) of the stream �
is defined as:

f(�) =
∑

(index,i,v)∈�

v ⋅ ei

where, e1, . . . , en are the elementary n-dimensional unit vectors (i.e., ei has 1 in
position i and 0’s elsewhere).

The problem of estimating the item frequencies of a data stream is to approx-
imately recall the frequency vector of the stream. More precisely, the problem,
denoted by ApproxFreqp(�), is to design a data stream processing algorithm

that can return an n-dimensional vector f ′ satisfying errp(f
′, f(�)) ≤ �, for

p ≥ 1, where,

errp(f
′, f) =

∥f ′ − f∥∞
∥f∥p

.

This problem is fundamental in data stream processing. Solutions to this problem
are used to find approximate frequent items (also called heavy hitters) [4, 5, 12,
13, 15], approximate range queries and quantiles [9, 4], and approximately v-
optimal histograms [8, 10].

Review of algorithms for ApproxFreqp(�). The problem ApproxFreqp(�)
is widely studied for p = 1 and for p = 2. For p = 1 and for insert-only streams,
the algorithm of [15, 5, 12] uses space �((1/�) logm), where m = maxi fi. The
algorithm works only for insert-only streams (i.e., no decrement updates) and
has optimal O(1) time complexity for processing each stream update. Other
algorithms presented for this problem include the sticky sampling technique [14]
that uses space O((1/�)(log n)(logm)).

For general streams allowing arbitrary insertions and deletions, the random-
ized algorithms Count-Min [4] and Countsketch [3] are applicable for solving
the problems ApproxFreq1(�) and ApproxFreq2(�) respectively. These algo-
rithms are randomized. The Count-Min algorithm uses spaceO((1/�)(logmn)(log 1/�)),
where 1 − � is the confidence parameter of the randomized algorithm. The
Countsketch algorithm solves ApproxFreq2(�) using spaceO((1/�2)(logmn)(log(1/�))).
Both algorithms are space-optimal up to poly-logarithmic factors.

We now consider deterministic solutions to the problem ApproxFreqp(�)
for general streams. Deterministic algorithms have certain advantages, as is ex-
emplified by the following scenario. Consider a service provider that wishes to
give a discount to all its customers whose business with the company is a cer-
tain significant fraction (say 0.01%) of its revenue. The scheme is supposedly
continuous, namely, that if a customer becomes a highly-valued customer then
s/he gets the benefit immediately and vice-versa. For economy of space and
time, the decision about whether a customer should be given a discount is done
by a stream processing algorithm of the kind discussed earlier. If the algorithm
is randomized, there is a chance, albeit small, that a highly valued customer is
misclassified, resulting in an unhappy customer. Deterministic algorithms do not
use random coin tosses and cannot lead to such grievances.

The algorithms in [5, 12, 15] are deterministic, however, these algorithms are
applicable only for insert-only streams. The CR-precis algorithm [7] is a de-
terministic algorithm for ApproxFreq1(�) for general streams with insertions
and deletions and uses space O(�−2(logm log n)2) bits, where, m = ∥f(�)∥∞.
The work in [6] shows that any total, deterministic algorithm for solving the
ApproxFreq1(�) problem requires

(
(logm)/�2

)
bits. Thus, the deterministic

space complexity of ApproxFreqp(�) is resolved to �̃(�−2) for p = 1, where, �̃
notation suppresses poly-logarithmic factors in n and m.

No results are known for space bounds for deterministic algorithms for ApproxFreqp(�),
for p > 1. The problem is fundamental, for instance, in the randomized case, the
Countsketch algorithm solves ApproxFreq2(�) using space �̃(�−2), and this

important result is the basis for a number of space-optimal algorithms for esti-
mating frequency moments [11, 1], approximate histograms [8], etc.. Therefore,
understanding the space complexity of a deterministic solution to the problem
ApproxFreqp(�) is of basic importance.

Contributions. We present space lower and upper bounds for deterministic
algorithms for ApproxFreqp(�) for p ≥ 1. We show that for p ≥ 2, solving
ApproxFreqp(�) requires
(n) space. For p ∈ [1, 2), the space requirement is

(n2−2/p(logm)/�2). Finally, we show that the upper bounds are matched by
suitably modifying the CR-precis algorithm. The formal statement of our result
is as follows.

Theorem 1. For � ≤ 1/8 and p ≥ 2, any deterministic algorithm that solves
ApproxFreqp(�) over general data streams requires space
(n logm). For 1 ≤
p < 2 and � ≥ 0.5n1/p−1/2, any deterministic algorithm that solves ApproxFreqp(�)

over general data streams requires space
(�−2 n2−2/p logm). Further, these
lower bounds can be matched by algorithms up to poly-logarithmic factors.

Organization. The remainder of the paper is organized as follows. Section 2
reviews work on stream automaton, which is is used to prove the lower bounds.
Sections 3 and 4 presents lower and upper bounds respectively, for the space
complexity of streaming algorithms for ApproxFreqp(�).

2 Review: Stream Automaton

We model a general stream over the domain [n] = {1, 2, . . . , n} as a sequence
of individual records of the form (index, a), where, index represents the po-
sition of this record in the sequence and a belongs to the set � = �n =
{e1,−e1, . . . , en,−en}. Here, ei refers to the n-dimensional elementary vector
(0, . . . , 0, 1 (ith position), 0 . . . , 0). The frequency of a data stream �, denoted by
f(�) is defined as the sum of the elementary vectors in the sequence. That is,

f(�) =
∑

(index,v)∈�

v .

The concatenation of two streams � and � is denoted by � ∘� . The size of a data
stream � is defined as follows.

∣�∣ = max
�′ sub-sequence of �

∥f(�′)∥∞ .

A deterministic stream automaton [6] is an abstraction for deterministic
algorithms for processing data streams. It is defined as a two tape Turing ma-
chine, where the first tape is a one-way (unidirectional) input tape that contains
the sequence � of updates that constitutes the stream. Each update is a member
of �, that is, it is an elementary vector or its inverse, ei or −ei. The second tape
is a (bidirectional) two way work-tape. A configuration of a stream automaton

is modeled as a triple (q, ℎ, w), where, q is a state of the finite control, ℎ is the
current head position of the work-tape and w is the content of the work-tape.
The set of configurations of a stream automaton A that are reachable from the
initial configuration o on some input stream is denoted as C(A). The set of con-
figurations of an automaton A that is reachable from the origin o for some input
stream � with ∣�∣ ≤ m is denoted by Cm(A). A stream automaton may be viewed
as a tuple (n,C, o,⊕,), where, ⊕ : C × � → C is the configuration transition
function and : C → O is the output function. The transition function, written
as s⊕ t, where, s ∈ C and t is a stream update, denotes the configuration of the
algorithm after it starts from configuration s and processes the stream record
t. We generally write the transition function in infix notation. The notation is
generalized so that a ⊕ � denotes the current configuration of the automaton
starting from configuration and processing the records of the stream � in a left
to right sequence, that is,

s⊕ (� ∘ �)
def
= (s⊕ �)⊕ � .

After processing the input stream �, the stream automaton prints the output

outputA(�) = (o⊕ �) .

The automaton A is said to have space function Space(A,m), provided, for all
input streams � such that ∣�∣ ≤ m, the number of cells used on the work-tape
during the processing of input is bounded above by Space(A,m). It is said to
have communication function Comm(A,m) = log∣Cm(A)∣. The communication
function can be viewed as a lower bound of the effective space usage of an
automaton. The space or communication function does not include the space
used by the automaton A to print its output. This allows the automaton to
print outputs of size
(Space(A,m)).

The approximate computation of a function g : ℤn → O of the frequency
vector g(f(�)) is specified by a binary approximation predicate Approx : E ×
E → {true, false} such that an estimate â ∈ O is considered an acceptable
approximation to the true value a ∈ O provided Approx(â, a) = true and is
not considered to be an acceptable approximation if Approx(â, a) = false. A
stream automaton A is said to compute a function g : ℤn → O of the frequency
vector f(�) of its input stream � with respect to the approximation predicate
Approx, provided

Approx((�), g(f(�))) = true

for all feasible input streams �. A stream automaton is said to be total if the
feasible input set is the set of all input streams over the domain [n] and is said to
be partial otherwise. The class STRfreq represents data streaming algorithms
for computing approximation of (partial or total) functions of the frequency
vector of the input stream. The notation ℤ2m+1 denotes the set of integers
{−m, . . . , 0, . . . ,m}.

A stream automaton is said to be path independent if for any reachable config-
uration a ∈ C(A), the configuration obtained by starting from a and processing

any input stream � is dependent only on a and f(�). That is, a ⊕ � depends
only on a and f(�). The kernel of a path independent automaton is defined as

K(A) = {a ∈ C(A) ∣ ∃� s.t. o⊕ � = o and f(�) = 0} .

It is shown in [6] that the kernel of a path independent automaton is a sub-
module of ℤn. A stream automaton is said to be free if it is path-independent and
its kernel is a free module. We present the basic theorem of stream automaton.

Theorem 2 ([6]). For every stream automaton A = (n,CA, oA,⊕A, A), there
exists a path-independent stream automaton B = (n,CB , oB ,⊕B , B) such that
the following holds.

(1.) For any Approx predicate and any total function g : ℤn → O, Approx(B(�), g(�))
holds if
Approx(A(�), g(�)) holds.

(2.) Comm(B,m) ≤ Comm(A,m).

(3.) There exists a sub-module M ⊂ ℤn and an isomorphic map ' : CB →
ℤn/M where, (ℤn/M,

⊕
) is viewed as a module with binary addition operation⊕

, such that for any stream �,

'(a⊕ �) = '(a)
⊕

[f(�)]

where, x 7→ [x] is the canonical homomorphism from ℤn to ℤn/M (that is, [x]
is the unique coset of M to which x belongs).

(4.) Comm(B,m) = O((n− dimM) logm), where, dimM is the dimension of
M .

Conversely, given any sub-module M ⊂ ℤn, a stream automaton A = (n,CA, oa,⊕A, A)
can be constructed such that there is an isomorphic map ' : CA → ℤn/M such
that for any stream �,

'(a⊕ �) = '(a)
⊕

[f(�)] .

where,
⊕

is the addition operation of ℤn/M , and

Comm(A,m) = log
⌈∣∣{[x] : x ∈ ℤn2m+1}

∣∣⌉
= �((n− dimM) logm) ⊓⊔

3 Lower bounds for ApproxFreqp

In this section, we establish deterministic space lower bounds for ApproxFreqp(�)
Theorem 2 enables us to restrict attention to path independent automata in

general, for all frequency-dependent computation. Lemma 1 further allows us to
restrict our attention to free automata, for the problem of ApproxFreqp(�),
while incurring a factor of 4 relaxation.

Lemma 1. Suppose A is a path independent stream automaton for solving ApproxFreqp(�)
over domain [n] and has kernel M . Then, there exists a free automaton B with
kernel M ′ such that M ′ ⊃M , ℤn/M ′ is free, and errp(minp(x+M ′), x) ≤ 4� .

The proof is similar in spirit to a corresponding Lemma in [6] and is given
in the Appendix for completeness.

Consider a free automaton A over domain [n] with kernel M that is a free
module and let Me denote the unique smallest dimension subspace of ℝn that
contains M . Let V be a n×k matrix whose columns are orthonormal and form a
basis of ℝn/Me. Let U denote an orthonormal basis of Me, so that [V U] forms
an orthonormal basis of ℝn. For x ∈ ℝn, the coset x+Me = {y : V T y = V Tx}.
For a given coset x+Me, let x̄ denote the element y ∈ x+Me with the smallest
value of ∥y∥2. Clearly, x̄ is the element in x + Me whose coordinates along U
are all 0. Therefore,

x̄ = [V U]

[
V Tx

0

]
= V V Tx . (1)

Lemma 2. If err2(x̄, x) ≤ � for all x, then, rank(V) ≥ n(1− �).

Proof. Let rank(V) = k. The condition err2(x̄, x) ≤ � is equivalent to

∥(V V T − I)x∥∞ ≤ �∥x∥2 .

In particular, this condition holds for the standard unit vectors x = e1, e2, . . . , en
respectively. Thus, ∥V V T ei − ei∥∞ ≤ �, for i = 1, 2, . . . , n. This implies that
∣(V V T)ii − 1∣ ≤ �. Thus,

trace(V V T) ≥ n(1− �) .

Since V has rank k and has k orthonormal columns, the eigenvalues of V V T

are 1 with multiplicity k and 0 with multiplicity n− k. Thus, trace(V V T) = k.
Therefore, n(1− �) ≤ trace(V V T) = k. ⊓⊔

The lower bound proof for 1 ≤ p < 2 is slightly more complicated. We first
prove the following lemma.

Lemma 3. For any orthonormal basis [V U] of ℝn such that rank(V) = k and
for any 1 < p < 2, there exists i ∈ [n] such that ∥V V T ei∥2 ≤ 2k/n and
∥V V T ei∥p ≤ 2n1/p−1

√
k.

Proof. Since, V has orthonormal columns

∥V V T ei∥22 = ∥V T ei∥22 = (V V T ei)i . (2)

Therefore,

trace(V V T) =

n∑
i=1

(V V T ei)i =

n∑
i=1

∥V V T ei∥22 (3)

The trace of V V T is the sum of the eigenvalues of V V T . Suppose rank(V) = k.
Since, V has orthonormal columns and has rank k, V V T has eigenvalue 1 with
multiplicity k and eigenvalue 0 with multiplicity n− k. Thus, trace(V V T) = k.
By (3)

k = trace(V V T) =

n∑
i=1

∥V V T ei∥22 . (4)

Further, since, ∥x∥p ≤ ∥x∥2 ⋅ n1/p−1/2

n∑
i=1

∥V V T ei∥p ≤
n∑
i=1

∥V V T ei∥2(n1/p−1/2)

≤
√
n

(
n∑
i=1

∥V V T ei∥22

)1/2

n1/p−1/2

{by Cauchy-Schwartz inequality }

= n1/p
√
k by (4) . (5)

Let

J = {i : ∥V V T ei∥22 ≤ 2k/n}, and

K = {i : ∥V V T ei∥p ≤ 2n1/p−1
√
k} .

Therefore, by (4) and (5), ∣J ∣ > n
2 and ∣K∣ > n

2 . Hence, J ∩ K ∕= �, that is,
there exists i such that

∥V V T ei∥2 ≤ (2k/n)1/2 and ∥V V T ei∥p ≤ 2n1/p−1
√
k .

⊓⊔

Lemma 4. Let A be a free automaton that solves the problem ApproxFreqp(�)
over the domain [n] for some 1 ≤ p < 2 and has kernel M . Let Me be the smallest
dimension subspace of ℝn containing M . Let V,U be a collection of vectors that
forms an orthonormal basis for ℝn such that U spans Me and V spans ℝn/Me.

Then, for � ≥ 2n1/2−1/p, rank(V) ≥ n2−2/p

16�2 .

Proof. By Lemma 3, there exists i such that

∥V V T ei∥22 ≤
2k

n
and

∥V V T ei∥p ≤ 2n1/p−1
√
k . (6)

Since, ei − V V T ei = UUT ei ∈Me, therefore,

� ≥ errp(ei − V V T ei, 0)

=
∥ei − V V T ei∥∞
∥ei − V V T ei∥p

.

Therefore,

∥ei − V V T ei∥∞ ≤ �∥V V T ei − ei∥p . (7)

By (2),

(V V T ei)i = ∥V V T ei∥22 ≤
2k

n
.

Therefore,

∥ei − V V T ei∥∞ ≥ ∣(ei − V V T ei)i∣ = 1− ∥V V T ei∥22

≥ 1− 2k

n
, by (6).

Substituting in (7),

1− 2k

n
≤ ∥ei − V V T ei∥∞

≤ �∥V V T ei − ei∥p
≤ �
(
∥V V T ei∥p + 1

)
≤ �(2n1/p−1

√
k + 1)

where, the second to last inequality follows from using triangle inequality over
pth norms and the last inequality follows from (6). Simplifying, we obtain that

k ≥ n2−2/p

16�2
, provided, � ≥ 2n1/2−1/p .

⊓⊔

We recall that as shown in [6], Comm(A,m) ≥ rank(V) log(2m+ 1).

Proof (Of Theorem 1). We first consider the case p = 2 and p > 2. By Theo-
rem 2, it follows that corresponding to any stream automaton An, there exists
a path independent stream automaton Bn that is an output restriction of An
and such that Comm(Bn,m) ≤ Comm(An,m). By Lemma 1, it follows that
if Bn solves ApproxFreqp(�), then, there exists a free automaton Cn that
solves ApproxFreqp(4�). Thus, by Theorem 2, it follows that if Bn solves
ApproxFreq2(�) for 4� ≤ 1, then,

Comm(An,m) ≥ Comm(Bn,m) ≥ Comm(Cn,m) ≥ rank(VCn
logm

and
rank(VCn) ≥ n(1− 4�) log(2m+ 1), by Lemma 2 .

Here VCn is the vector space ℝn/Me(Cn), where, Me(Cn) is the kernel of Cn.

Further, for p > 2, ∥f∥p ≤ ∥f∥2, for any f ∈ ℝn. Therefore, errp(f̂ , f) ≤ �

implies that err2(f̂ , f) ≤ �. Thus, the space lower bound for err2 as given by
Lemma 2 holds for errp, for any p > 2.

By Lemma 4, it follows that ifBn solves ApproxFreqp(�), for 4� ≥ 2n1/2−1/p,
then,

Comm(An,m) ≥ Comm(Bn,m) ≥ Comm(Cn,m) ≥ rank(VCn
) logm

≥ n2−2/p

64�2
logm .

Finally, we note that for any stream automaton An, Comm(An,m) is a lower
bound on the effective space usage Space(An,m).

This proves the lower bound assertion of Theorem 1. ⊓⊔

4 Upper Bound

Lemma 5 presents a (nearly) matching upper bound for the ApproxFreqp(�)
problem, for 1 ≤ p < 2.

Lemma 5. For any 1 < p < 2 and 1 > � > 1√
n

, there exists a total stream

algorithm for solving ApproxFreqp(�) using space O(�−2n2−2/p(log∥f(�)1∥)
(p/(p− 1 + p(log(1/�)/ log n)))2).

Proof. By a standard identity between norms, for any vector f ∈ ℝn, ∥f∥1 ≤
n1−1/p∥f∥p. Therefore,

err1(f̂ , f) ≤ �

n1−1/p
implies errp(f̂ , f) ≤ � .

So let �′ = �/n1−1/p, and use the CR-precis algorithm with accuracy parameter
�′. This requires space

O((�′)−2(log∥f(�)∥1)(log2 n)/(log2(1/�′)) .

Substituting the value of �′, we obtain the statement of the lemma. ⊓⊔

The statement of the lemma is equivalent to the assertion of Theorem 1 for
upper bounds. This completes the proof of Theorem 1.

References

1. L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. “Simpler algorithm for esti-
mating frequency moments of data streams”. In Proceedings of ACM Symposium
on Discrete Algorithms (SODA), pages 708–713, 2006.

2. P. Bose, E. Kranakis, P. Morin, and Y. Tang. “Bounds for Frequency Estimation
of Packet Streams”. In Jop F. Sibeyn (Ed.) Proceedings of the 10th Internaltional
Colloquium on Structural Information Complexity, June 18-20, 2003, Ume Sweden.
Informatics 17 Carleton Scientific 2003, ISBN 1-894145-16-X, pages 33–42, 2003.

3. Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items
in data streams”. In Widmayer, P. Ruiz, F.T., Bueno, R.M., Hennessy, M., Eiden-
benz, S. Conejo, R. (Eds.): ICALP 2002, LNCS, Vol. 2380 Springer 2002, pages
693–703.

4. Graham Cormode and S. Muthukrishnan. “An Improved Data Stream Summary:
The Count-Min Sketch and its Applications”. J. Algorithms, 55(1):58–75, April
2005.

5. E. D. Demaine, A. López-Ortiz, and J. I Munro. “Frequency estimation of internet
packet streams with limited space”. In Möhring, R.H., Raman, R. (Eds.): ESA
2002, LNCS Vol. 2461 Springer 2002 , pages 348–360.

6. S. Ganguly. “Lower bounds for frequency estimation over data streams”. In Hirsch,
E.A, Razborov, A. A., Semenov, A.L., Slissenko, A (Eds.): CSR 2008, June 7-12,
2008, LNCS Vol. 5010 Springer 2008, , pages 204–215,

7. S. Ganguly and A. Majumder. “CR-precis: A Deterministic Summary Structure
for Update Streams”. In Chen, B, Paterson, M., Zhang, G. (Eds.): ESCAPE 2007,
LNCS Vol. 4614 Springer 2007, pages 48–59.

8. Anna Gilbert, Sudipto Guha, Piotr Indyk, Y. Kotidis, S. Muthukrishnan, and
Martin Strauss. “Fast Small-space Algorithms for Approximate Histogram Main-
tenance”. In Proceedings of ACM STOC, pages 152–161, 2002.

9. Anna C. Gilbert, Y. Kotidis, S. Muthukrishnan, and Martin J. Strauss. “Surfing
Wavelets on Streams: One-pass Summaries for Approximate Aggregate Queries”.
In Proceedings of VLDB, pages 79–88, Roma, Italy, September 2001.

10. Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin Strauss. “Histogram-
ming Data Streams with Fast Per-Item Processing”. In Widmayer, P. Ruiz,
F.T., Bueno, R.M., Hennessy, M., Eidenbenz, S. Conejo, R. (Eds.): ICALP 2002,
LNCS, Vol. 2380 Springer 2002, pages 681–692, 2002.

11. Piotr Indyk and David Woodruff. “Optimal Approximations of the Frequency
Moments”. In Proceedings of ACM Symposium on Theory of Computing STOC,
pages 202–298, Baltimore, Maryland, USA, June 2005.

12. R.M. Karp, S. Shenker, and C.H. Papadimitriou. “A Simple Algorithm for Finding
Frequent Elements in Streams and Bags”. ACM Trans. Data. Syst., 28(1):51–55,
2003.

13. L.K. Lee and H.F. Ting. “A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows”. In Proceedings of ACM International
Symposium on Principles of Database Systems (PODS), pages 263–272, 2006.

14. G. Manku and R. Motwani. “Approximate Frequency Counts over Data Streams”.
In Proceedings of VLDB, pages 346–357, August 2002.

15. J. Misra and D. Gries. “Finding repeated elements”. Sci. Comput. Programm.,
2:143–152, 1982.

A Proofs

Let M be the kernel of An and let M ′ be defined as follows.

M ′ = {x ∣ ∃a ∈ ℤ, ax ∈M} (8)

It follows that M ′ is torsion-free.

Fact 3 Let b1, b2, . . . , br be a basis of M ′. Then, ∃ �1, . . . , �r ∈ ℤ − {0} such
that �1b1, . . . , �rbr is a basis for M . Hence, Me = (M ′)e.

Proof (Of Fact 3). It follows from standard algebra that the basis of M is of the
form �1b1, . . . , �rbr. It remains to be shown that the �i’s are non-zero. Suppose

that �1 = 0. For any a ∈ ℤ, a ∕= 0, suppose ax ∈ M and x ∈ M ′. Then, x has
a unique representation as x =

∑r
j=1 xjbj . Thus, ax =

∑r
j=1(axj)bj ∈ M and

has the same representation in the basis {�jbj}j=1,...,n. Therefore, ax1 = 0 or
x1 = 0 for all x ∈M ′, which is a contradiction.

Let {b1, b2, . . . , br} be a basis for M ′. Then, by the above paragraph, there
exist non-zero elements �1, . . . , �r such that {�1b1, �2b2, . . . , �rbr} is a basis for
M . Therefore, over reals, (b1, . . . , br) = (�1b1, . . . , �rbr). Thus, Me = (M ′)e. ⊓⊔

Lemma 6. Let M be a sub-module of ℤn. (1) if there exists ℎp such that errp(ℎp,M) ≤
�, then, errp(0,M) ≤ �, and, (2) if errp(0,M) ≤ � then errp(0,M

e) ≤ �.

Proof. Part (1). For any yi ∈ ℤ,

max(∣(ℎp)i − yi∣, ∣(ℎp)i + yi∣) ≥ ∣yi∣.

Therefore,

max(∥ℎp − y∥∞, ∥ℎp + y∥∞) ≥ ∥y∥∞ .

Let y ∈M . Since, M is a module, −y ∈M . Thus,

errp(0, y) = errp(0,−y)

=
∥y∥∞
∥y∥p

≤ 1

∥y∥p
max(∥ℎp − y∥∞, ∥ℎp + y∥∞)

= max(errp(ℎp, y), errp(ℎp,−y))

≤ � ⊓⊔

Part 2. Let z ∈ Me. Let b1, b2, . . . , br be a basis of the free module M . For
t > 0, let tz be expressed uniquely as tz = �1b1 + . . .+ �rbr, where, �i’s belong
to ℝ. Consider the vertices of the parallelopiped Ptz whose sides are b1, b2, . . . , br
and that encloses tz.

Ptz = [�1]b1 + [�2]b2 + . . .+ [�n]bn

+ {�1b1 + �2b2 + . . .+ �rbr ∣ �j ∈ {0, 1}, j = 1, 2, . . . , r}

where, [�] denotes the largest integer smaller than or equal to �. Since, ℓ∞ is
a convex function ∥tz∥∞ ≤ ∥y∥∞ for some y ∈ Ptz. Let y =

∑r
j=1 �jbj , for

�j ∈ {0, 1}, j = 1, 2, . . . , r.

∥y − tz∥1 = ∥
r∑
j=1

(�j − [�j])bj∥1 ≤
r∑
j=1

∥(�j − [�j])bj∥1 ≤
r∑
j=1

∥bj∥1

or, ∥tz∥1 ≥ ∥y∥1 −
r∑
j=1

∥bj∥1

Therefore,

errp(0, tz) =
∥tz∥∞
∥tz∥1

≤ ∥y∥∞
∥y∥1 −

∑r
j=1∥bj∥1

≤

(
∥y∥1
∥y∥∞

−
∑r
j=1∥bj∥1
∥y∥∞

)−1
≤

(
1

�
−
∑r
j=1∥bj∥1
∥y∥∞

)−1

where, the last step follows from the assumption that y ∈ M and therefore,

errp(0, y) = ∥y∥∞
∥y∥1 ≤ �. The ratio

∑r
j=1∥bj∥1
∥y∥∞ can be made arbitrarily small by

choosing t to be arbitrarily large. Thus, limt→∞ errp(0, tz) ≤ �. Since, errp(0, tz) =
∥tz∥∞
∥tz∥1 = ∥z∥∞

∥z∥1 = errp(0, z), for all t, we have, errp(0, z) ≤ �. ⊓⊔

Proof (Of Lemma 1.). By construction, M ′ is the smallest module that contains
M as a sub-module and M ′ is free. This also implies that ℤn/M ′ is free. For
x ∈ ℤn, define

ℎp(x+M ′) = min
ℓp

(x+M ′) .

That is, ℎp(x+M ′) is the element with the smallest ℓp norm among all vectors
in x+M ′.

Let y ∈ x + M ′. Then, y ∈ xp + M for some xp. Let ŷ = outputA(xp + M)
denote the output of A for an input stream with frequency in xp +M (they all
return the same value, since, A is path independent and has kernel M) and let

y′p = minℓp(xp +M). Let ℎp denote ℎp(x+M ′) and let ℎ̂ = outputA(ℎp +M).
Therefore,

err(ℎp, y) =
∥y − ℎp∥∞
∥y∥p

≤ ∥y − ŷ∥∞
∥y∥p

+
∥ŷ − y′p∥∞
∥y∥p

+
∥y′p − ℎp∥∞
∥y∥p

(9)

The first and the second terms above are bounded by � as follows. The first term
∥y−ŷ∥∞
∥y∥p = errp(ŷ, y) ≤ �, since, y ∈ xp + M and ŷ is the estimate returned by

An for this coset. The second term

∥ŷ − y′p∥∞
∥y∥p

≤
∥ŷ − y′p∥∞
∥y′p∥p

= err(ŷ, y′p) ≤ �

since, ∥y′p∥p ≤ ∥y∥p and y′p lies in the coset xp +M . The third term in (9) can
be rewritten as follows. Since, M ′ is a free module, y′p−ℎp ∈M ′ and M ′ ⊂Me.

Therefore,

∥y′p − ℎp∥∞
∥y∥p

≤
∥y′p − ℎp∥∞
∥y′p − ℎ∥p

⋅
∥y′p − ℎp∥p
∥y′p∥p

, since, ∥y′p∥p ≤ ∥y∥p

≤ � ⋅
∥y′p∥p + ∥ℎp∥p
∥y′p∥p

by Lemma 6 and by triangle inequality

≤ 2�, since, ∥ℎp∥p ≤ ∥y′p∥p

By (9), err(ℎ, y) ≤ � + � + 2� = 4�. The automaton Bn with kernel M ′ is
constructed as in Theorem 2. ⊓⊔

