Deterministically estimating data stream frequencies

Sumit Ganguly

Indian Institute of Technology, Kanpur, India

Abstract. We consider updates to an *n*-dimensional frequency vector of a data stream, that is, the vector f is updated coordinate-wise by means of insertions or deletions in any arbitrary order. A fundamental problem in this model is to recall the vector approximately, that is to return an estimate \hat{f} of f such that

 $|\hat{f}_i - f_i| < \epsilon ||f||_p$, for every i = 1, 2, ..., n,

where ϵ is an accuracy parameter and p is the index of the ℓ_p norm used to calculate the norm $||f||_p$. This problem, denoted by APPROXFREQ_p(ϵ), is fundamental in data stream processing and is used to solve a number of other problems, such as heavy hitters, approximating range queries and quantiles, approximate histograms, etc..

Suppressing poly-logarithmic factors in n and $||f||_1$, for p = 1 the problem is known to have $\tilde{\Theta}(1/\epsilon)$ randomized space complexity [2, 4] and $\tilde{\Theta}(1/\epsilon^2)$ deterministic space complexity[6, 7]. However, the deterministic space complexity of this problem for any value of p > 1 is not known. In this paper, we show that the deterministic space complexity of the problem APPROXFREQ_p(ϵ) is $\tilde{\Theta}(n^{2-2/p}/\epsilon^2)$ for $1 , and <math>\Theta(n)$ for $p \geq 2$.

1 Introduction

In the data streaming model, computation is performed over a sequence of rapidly and continuously arriving data in an online fashion by maintaining a sub-linear space summary of the data. A data stream may be modeled as a sequence σ of updates of the form (index, i, v), where, *index* is the position of the update in the sequence, $i \in [n] = \{1, 2, ..., n\}$ and v is the update indicated by this record to the frequency f_i of i. The frequency vector $f(\sigma)$ of the stream σ is defined as:

$$f(\sigma) = \sum_{(index, i, v) \in \sigma} v \cdot e_i$$

where, e_1, \ldots, e_n are the elementary *n*-dimensional unit vectors (i.e., e_i has 1 in position *i* and 0's elsewhere).

The problem of estimating the item frequencies of a data stream is to approximately recall the frequency vector of the stream. More precisely, the problem, denoted by APPROXFREQ_p(ϵ), is to design a data stream processing algorithm that can return an *n*-dimensional vector f' satisfying $err_p(f', f(\sigma)) \leq \epsilon$, for $p \geq 1$, where,

$$err_p(f', f) = \frac{\|f' - f\|_{\infty}}{\|f\|_p}$$

This problem is fundamental in data stream processing. Solutions to this problem are used to find approximate frequent items (also called heavy hitters) [4, 5, 12, 13, 15], approximate range queries and quantiles [9, 4], and approximately v-optimal histograms [8, 10].

Review of algorithms for APPROXFREQ_p(ϵ). The problem APPROXFREQ_p(ϵ) is widely studied for p = 1 and for p = 2. For p = 1 and for insert-only streams, the algorithm of [15, 5, 12] uses space $\Theta((1/\epsilon) \log m)$, where $m = \max_i f_i$. The algorithm works only for insert-only streams (i.e., no decrement updates) and has optimal O(1) time complexity for processing each stream update. Other algorithms presented for this problem include the sticky sampling technique [14] that uses space $O((1/\epsilon)(\log n)(\log m))$.

For general streams allowing arbitrary insertions and deletions, the randomized algorithms COUNT-MIN [4] and COUNTSKETCH [3] are applicable for solving the problems APPROXFREQ₁(ϵ) and APPROXFREQ₂(ϵ) respectively. These algorithms are randomized. The COUNT-MIN algorithm uses space $O((1/\epsilon)(\log mn)(\log 1/\delta))$, where $1 - \delta$ is the confidence parameter of the randomized algorithm. The COUNTSKETCH algorithm solves APPROXFREQ₂(ϵ) using space $O((1/\epsilon^2)(\log mn)(\log(1/\delta)))$. Both algorithms are space-optimal up to poly-logarithmic factors.

We now consider deterministic solutions to the problem APPROXFREQ_p(ϵ) for general streams. Deterministic algorithms have certain advantages, as is exemplified by the following scenario. Consider a service provider that wishes to give a discount to all its customers whose business with the company is a certain significant fraction (say 0.01%) of its revenue. The scheme is supposedly continuous, namely, that if a customer becomes a highly-valued customer then s/he gets the benefit immediately and vice-versa. For economy of space and time, the decision about whether a customer should be given a discount is done by a stream processing algorithm of the kind discussed earlier. If the algorithm is randomized, there is a chance, albeit small, that a highly valued customer is misclassified, resulting in an unhappy customer. Deterministic algorithms do not use random coin tosses and cannot lead to such grievances.

The algorithms in [5, 12, 15] are deterministic, however, these algorithms are applicable only for insert-only streams. The CR-precis algorithm [7] is a deterministic algorithm for APPROXFREQ₁(ϵ) for general streams with insertions and deletions and uses space $O(\epsilon^{-2}(\log m \log n)^2)$ bits, where, $m = ||f(\sigma)||_{\infty}$. The work in [6] shows that any total, deterministic algorithm for solving the APPROXFREQ₁(ϵ) problem requires Ω ((log m)/ ϵ^2) bits. Thus, the deterministic space complexity of APPROXFREQ_p(ϵ) is resolved to $\tilde{\Theta}(\epsilon^{-2})$ for p = 1, where, $\tilde{\Theta}$ notation suppresses poly-logarithmic factors in n and m.

No results are known for space bounds for deterministic algorithms for APPROXFREQ_p(ϵ), for p > 1. The problem is fundamental, for instance, in the randomized case, the COUNTSKETCH algorithm solves APPROXFREQ₂(ϵ) using space $\tilde{\Theta}(\epsilon^{-2})$, and this

important result is the basis for a number of space-optimal algorithms for estimating frequency moments [11, 1], approximate histograms [8], etc.. Therefore, understanding the space complexity of a deterministic solution to the problem APPROXFREQ_p(ϵ) is of basic importance.

Contributions. We present space lower and upper bounds for deterministic algorithms for APPROXFREQ_p(ϵ) for $p \geq 1$. We show that for $p \geq 2$, solving APPROXFREQ_p(ϵ) requires $\Omega(n)$ space. For $p \in [1, 2)$, the space requirement is $\Omega(n^{2-2/p}(\log m)/\epsilon^2)$. Finally, we show that the upper bounds are matched by suitably modifying the CR-precis algorithm. The formal statement of our result is as follows.

Theorem 1. For $\epsilon \leq 1/8$ and $p \geq 2$, any deterministic algorithm that solves $APPROXFREQ_p(\epsilon)$ over general data streams requires space $\Omega(n \log m)$. For $1 \leq p < 2$ and $\epsilon \geq 0.5n^{1/p-1/2}$, any deterministic algorithm that solves $APPROXFREQ_p(\epsilon)$ over general data streams requires space $\Omega(\epsilon^{-2} n^{2-2/p} \log m)$. Further, these lower bounds can be matched by algorithms up to poly-logarithmic factors.

Organization. The remainder of the paper is organized as follows. Section 2 reviews work on stream automaton, which is is used to prove the lower bounds. Sections 3 and 4 presents lower and upper bounds respectively, for the space complexity of streaming algorithms for APPROXFREQ_p(ϵ).

2 Review: Stream Automaton

We model a general stream over the domain $[n] = \{1, 2, ..., n\}$ as a sequence of individual records of the form (index, a), where, *index* represents the position of this record in the sequence and a belongs to the set $\Sigma = \Sigma_n =$ $\{e_1, -e_1, ..., e_n, -e_n\}$. Here, e_i refers to the *n*-dimensional elementary vector $(0, ..., 0, 1 \ (ith \text{ position}), 0 ..., 0)$. The *frequency* of a data stream σ , denoted by $f(\sigma)$ is defined as the sum of the elementary vectors in the sequence. That is,

$$f(\sigma) = \sum_{(index,v)\in\sigma} v$$

The concatenation of two streams σ and τ is denoted by $\sigma \circ \tau$. The size of a data stream σ is defined as follows.

$$|\sigma| = \max_{\sigma' \text{ sub-sequence of } \sigma} ||f(\sigma')||_{\infty}$$

A deterministic **stream automaton** [6] is an abstraction for deterministic algorithms for processing data streams. It is defined as a two tape Turing machine, where the first tape is a one-way (unidirectional) input tape that contains the sequence σ of updates that constitutes the stream. Each update is a member of Σ , that is, it is an elementary vector or its inverse, e_i or $-e_i$. The second tape is a (bidirectional) two way work-tape. A configuration of a stream automaton is modeled as a triple (q, h, w), where, q is a state of the finite control, h is the current head position of the work-tape and w is the content of the work-tape. The set of configurations of a stream automaton A that are reachable from the initial configuration o on some input stream is denoted as C(A). The set of configurations of an automaton A that is reachable from the origin o for some input stream σ with $|\sigma| \leq m$ is denoted by $C_m(A)$. A stream automaton may be viewed as a tuple (n, C, o, \oplus, ψ) , where, $\oplus : C \times \Sigma \to C$ is the configuration transition function and $\psi : C \to O$ is the output function. The transition function, written as $s \oplus t$, where, $s \in C$ and t is a stream update, denotes the configuration of the algorithm after it starts from configuration s and processes the stream record t. We generally write the transition function in infix notation. The notation is generalized so that $a \oplus \sigma$ denotes the current configuration of the automaton starting from configuration and processing the records of the stream σ in a left to right sequence, that is,

$$s \oplus (\sigma \circ \tau) \stackrel{\text{def}}{=} (s \oplus \sigma) \oplus \tau$$

After processing the input stream σ , the stream automaton prints the output

$$\operatorname{output}_A(\sigma) = \psi(o \oplus \sigma)$$

The automaton A is said to have space function $\operatorname{Space}(A, m)$, provided, for all input streams σ such that $|\sigma| \leq m$, the number of cells used on the work-tape during the processing of input is bounded above by $\operatorname{Space}(A, m)$. It is said to have communication function $\operatorname{Comm}(A, m) = \log |C_m(A)|$. The communication function can be viewed as a lower bound of the *effective* space usage of an automaton. The space or communication function does not include the space used by the automaton A to print its output. This allows the automaton to print outputs of size $\Omega(\operatorname{Space}(A, m))$.

The approximate computation of a function $g : \mathbb{Z}^n \to O$ of the frequency vector $g(f(\sigma))$ is specified by a binary approximation predicate APPROX : $E \times E \to \{\text{TRUE, FALSE}\}$ such that an estimate $\hat{a} \in O$ is considered an acceptable approximation to the true value $a \in O$ provided APPROX $(\hat{a}, a) = \text{TRUE}$ and is not considered to be an acceptable approximation if APPROX $(\hat{a}, a) = \text{FALSE}$. A stream automaton A is said to compute a function $g : \mathbb{Z}^n \to O$ of the frequency vector $f(\sigma)$ of its input stream σ with respect to the approximation predicate APPROX, provided

Approx $(\psi(\sigma), g(f(\sigma))) = \text{true}$

for all feasible input streams σ . A stream automaton is said to be *total* if the feasible input set is the set of all input streams over the domain [n] and is said to be *partial* otherwise. The class STRfreq represents data streaming algorithms for computing approximation of (partial or total) functions of the frequency vector of the input stream. The notation \mathbb{Z}_{2m+1} denotes the set of integers $\{-m, \ldots, 0, \ldots, m\}$.

A stream automaton is said to be *path independent* if for any reachable configuration $a \in C(A)$, the configuration obtained by starting from a and processing any input stream σ is dependent only on a and $f(\sigma)$. That is, $a \oplus \sigma$ depends only on a and $f(\sigma)$. The *kernel* of a path independent automaton is defined as

$$K(A) = \{ a \in C(A) \mid \exists \sigma \text{ s.t. } o \oplus \sigma = o \text{ and } f(\sigma) = 0 \} .$$

It is shown in [6] that the kernel of a path independent automaton is a submodule of \mathbb{Z}^n . A stream automaton is said to be *free* if it is path-independent and its kernel is a free module. We present the basic theorem of stream automaton.

Theorem 2 ([6]). For every stream automaton $A = (n, C_A, o_A, \oplus_A, \psi_A)$, there exists a path-independent stream automaton $B = (n, C_B, o_B, \oplus_B, \psi_B)$ such that the following holds.

(1.) For any APPROX predicate and any total function $g : \mathbb{Z}^n \to O$, APPROX $(\psi_B(\sigma), g(\sigma))$ holds if

APPROX $(\psi_A(\sigma), g(\sigma))$ holds.

(2.) $Comm(B, m) \leq Comm(A, m).$

(3.) There exists a sub-module $M \subset \mathbb{Z}^n$ and an isomorphic map $\varphi : C_B \to \mathbb{Z}^n/M$ where, $(\mathbb{Z}^n/M, \bigoplus)$ is viewed as a module with binary addition operation \bigoplus , such that for any stream σ ,

$$\varphi(a \oplus \sigma) = \varphi(a) \bigoplus [f(\sigma)]$$

where, $x \mapsto [x]$ is the canonical homomorphism from \mathbb{Z}^n to \mathbb{Z}^n/M (that is, [x] is the unique coset of M to which x belongs).

(4.) $Comm(B,m) = O((n - \dim M) \log m)$, where, $\dim M$ is the dimension of M.

Conversely, given any sub-module $M \subset \mathbb{Z}^n$, a stream automaton $A = (n, C_A, o_a, \oplus_A, \psi_A)$ can be constructed such that there is an isomorphic map $\varphi : C_A \to \mathbb{Z}^n/M$ such that for any stream σ ,

$$\varphi(a \oplus \sigma) = \varphi(a) \bigoplus [f(\sigma)]$$
.

where, \bigoplus is the addition operation of \mathbb{Z}^n/M , and

$$Comm(A, m) = \log \left[\left| \{ [x] : x \in \mathbb{Z}_{2m+1}^n \} \right| \right]$$
$$= \Theta((n - \dim M) \log m) \quad \Box$$

3 Lower bounds for APPROXFREQ_p

In this section, we establish deterministic space lower bounds for $APPROxFREQ_p(\epsilon)$

Theorem 2 enables us to restrict attention to path independent automata in general, for all frequency-dependent computation. Lemma 1 further allows us to restrict our attention to free automata, for the problem of $APPROxFREQ_p(\epsilon)$, while incurring a factor of 4 relaxation.

Lemma 1. Suppose A is a path independent stream automaton for solving APPROXFREQ_p(ϵ) over domain [n] and has kernel M. Then, there exists a free automaton B with kernel M' such that $M' \supset M$, \mathbb{Z}^n/M' is free, and $err_p(\min_p(x + M'), x) \leq 4\epsilon$.

The proof is similar in spirit to a corresponding Lemma in [6] and is given in the Appendix for completeness.

Consider a free automaton A over domain [n] with kernel M that is a free module and let M^e denote the unique smallest dimension subspace of \mathbb{R}^n that contains M. Let V be a $n \times k$ matrix whose columns are orthonormal and form a basis of \mathbb{R}^n/M^e . Let U denote an orthonormal basis of M^e , so that $[V \ U]$ forms an orthonormal basis of \mathbb{R}^n . For $x \in \mathbb{R}^n$, the coset $x + M^e = \{y : V^T y = V^T x\}$. For a given coset $x + M^e$, let \bar{x} denote the element $y \in x + M^e$ with the smallest value of $\|y\|_2$. Clearly, \bar{x} is the element in $x + M^e$ whose coordinates along Uare all 0. Therefore,

$$\bar{x} = \begin{bmatrix} V \ U \end{bmatrix} \begin{bmatrix} V^T x \\ 0 \end{bmatrix} = V V^T x \quad . \tag{1}$$

Lemma 2. If $err_2(\bar{x}, x) \leq \epsilon$ for all x, then, $rank(V) \geq n(1 - \epsilon)$.

Proof. Let rank(V) = k. The condition $err_2(\bar{x}, x) \leq \epsilon$ is equivalent to

$$\|(VV^T - I)x\|_{\infty} \le \epsilon \|x\|_2$$

In particular, this condition holds for the standard unit vectors $x = e_1, e_2, \ldots, e_n$ respectively. Thus, $\|VV^T e_i - e_i\|_{\infty} \leq \epsilon$, for $i = 1, 2, \ldots, n$. This implies that $|(VV^T)_{ii} - 1| \leq \epsilon$. Thus,

$$\operatorname{trace}(VV^T) \ge n(1-\epsilon)$$
.

Since V has rank k and has k orthonormal columns, the eigenvalues of VV^T are 1 with multiplicity k and 0 with multiplicity n - k. Thus, trace $(VV^T) = k$. Therefore, $n(1 - \epsilon) \leq \text{trace}(VV^T) = k$.

The lower bound proof for $1 \le p < 2$ is slightly more complicated. We first prove the following lemma.

Lemma 3. For any orthonormal basis [VU] of \mathbb{R}^n such that $\operatorname{rank}(V) = k$ and for any $1 , there exists <math>i \in [n]$ such that $\|VV^T e_i\|_2 \leq 2k/n$ and $\|VV^T e_i\|_p \leq 2n^{1/p-1}\sqrt{k}$.

Proof. Since, V has orthonormal columns

$$\|VV^T e_i\|_2^2 = \|V^T e_i\|_2^2 = (VV^T e_i)_i \quad .$$
(2)

Therefore,

$$\operatorname{trace}(VV^{T}) = \sum_{i=1}^{n} (VV^{T}e_{i})_{i} = \sum_{i=1}^{n} ||VV^{T}e_{i}||_{2}^{2}$$
(3)

The trace of VV^T is the sum of the eigenvalues of VV^T . Suppose rank(V) = k. Since, V has orthonormal columns and has rank k, VV^T has eigenvalue 1 with multiplicity k and eigenvalue 0 with multiplicity n - k. Thus, trace $(VV^T) = k$. By (3)

$$k = \text{trace}(VV^T) = \sum_{i=1}^n \|VV^T e_i\|_2^2 .$$
(4)

Further, since, $||x||_p \le ||x||_2 \cdot n^{1/p-1/2}$

$$\sum_{i=1}^{n} \|VV^{T}e_{i}\|_{p} \leq \sum_{i=1}^{n} \|VV^{T}e_{i}\|_{2} (n^{1/p-1/2})$$

$$\leq \sqrt{n} \left(\sum_{i=1}^{n} \|VV^{T}e_{i}\|_{2}^{2}\right)^{1/2} n^{1/p-1/2}$$
{by Cauchy-Schwartz inequality }
$$= n^{1/p} \sqrt{k} \quad \text{by (4)} . \tag{5}$$

Let

$$J = \{i : \|VV^T e_i\|_2^2 \le 2k/n\}, \text{ and}$$

$$K = \{i : \|VV^T e_i\|_p \le 2n^{1/p-1}\sqrt{k}\}$$

Therefore, by (4) and (5), $|J| > \frac{n}{2}$ and $|K| > \frac{n}{2}$. Hence, $J \cap K \neq \phi$, that is, there exists *i* such that

$$\|VV^T e_i\|_2 \le (2k/n)^{1/2}$$
 and $\|VV^T e_i\|_p \le 2n^{1/p-1}\sqrt{k}$.

Lemma 4. Let A be a free automaton that solves the problem $\operatorname{APPROxFREQ}_p(\epsilon)$ over the domain [n] for some $1 \leq p < 2$ and has kernel M. Let M^e be the smallest dimension subspace of \mathbb{R}^n containing M. Let V, U be a collection of vectors that forms an orthonormal basis for \mathbb{R}^n such that U spans M^e and V spans \mathbb{R}^n/M^e . Then, for $\epsilon \geq 2n^{1/2-1/p}$, $\operatorname{rank}(V) \geq \frac{n^{2-2/p}}{16\epsilon^2}$.

Proof. By Lemma 3, there exists i such that

$$\|VV^T e_i\|_2^2 \le \frac{2k}{n}$$
 and
 $\|VV^T e_i\|_p \le 2n^{1/p-1}\sqrt{k}$. (6)

Since, $e_i - VV^T e_i = UU^T e_i \in M^e$, therefore,

$$\epsilon \ge err_p(e_i - VV^T e_i, 0)$$
$$= \frac{\|e_i - VV^T e_i\|_{\infty}}{\|e_i - VV^T e_i\|_p} .$$

Therefore,

$$\|e_i - VV^T e_i\|_{\infty} \le \epsilon \|VV^T e_i - e_i\|_p \quad .$$

$$\tag{7}$$

By (2),

$$(VV^T e_i)_i = \|VV^T e_i\|_2^2 \le \frac{2k}{n}$$

Therefore,

$$\|e_i - VV^T e_i\|_{\infty} \ge |(e_i - VV^T e_i)_i| = 1 - \|VV^T e_i\|_2^2$$
$$\ge 1 - \frac{2k}{n}, \text{ by (6).}$$

Substituting in (7),

$$1 - \frac{2k}{n} \le \|e_i - VV^T e_i\|_{\infty}$$
$$\le \epsilon \|VV^T e_i - e_i\|_p$$
$$\le \epsilon (\|VV^T e_i\|_p + 1)$$
$$\le \epsilon (2n^{1/p-1}\sqrt{k} + 1)$$

where, the second to last inequality follows from using triangle inequality over pth norms and the last inequality follows from (6). Simplifying, we obtain that

$$k \ge \frac{n^{2-2/p}}{16\epsilon^2}$$
, provided, $\epsilon \ge 2n^{1/2-1/p}$.

We recall that as shown in [6], $\operatorname{Comm}(A, m) \ge \operatorname{rank}(V) \log(2m + 1)$.

Proof (Of Theorem 1). We first consider the case p = 2 and p > 2. By Theorem 2, it follows that corresponding to any stream automaton A_n , there exists a path independent stream automaton B_n that is an output restriction of A_n and such that $\text{Comm}(B_n, m) \leq \text{Comm}(A_n, m)$. By Lemma 1, it follows that if B_n solves $\text{APPROxFREQ}_p(\epsilon)$, then, there exists a free automaton C_n that solves $\text{APPROxFREQ}_p(4\epsilon)$. Thus, by Theorem 2, it follows that if B_n solves $\text{APPROxFREQ}_2(\epsilon)$ for $4\epsilon \leq 1$, then,

$$\operatorname{Comm}(A_n, m) \ge \operatorname{Comm}(B_n, m) \ge \operatorname{Comm}(C_n, m) \ge \operatorname{rank}(V_{C_n} \log m)$$

and

$$\operatorname{rank}(V_{C_n}) \ge n(1-4\epsilon)\log(2m+1)$$
, by Lemma 2

Here V_{C_n} is the vector space $\mathbb{R}^n/M^e(C_n)$, where, $M^e(C_n)$ is the kernel of C_n .

Further, for p > 2, $||f||_p \le ||f||_2$, for any $f \in \mathbb{R}^n$. Therefore, $err_p(\hat{f}, f) \le \epsilon$ implies that $err_2(\hat{f}, f) \le \epsilon$. Thus, the space lower bound for err_2 as given by Lemma 2 holds for err_p , for any p > 2. By Lemma 4, it follows that if B_n solves $\operatorname{APPROxFREQ}_p(\epsilon)$, for $4\epsilon \geq 2n^{1/2-1/p}$, then,

$$\operatorname{Comm}(A_n, m) \ge \operatorname{Comm}(B_n, m) \ge \operatorname{Comm}(C_n, m) \ge \operatorname{rank}(V_{C_n}) \log m$$

$$\ge \frac{n^{2-2/p}}{64\epsilon^2} \log m .$$

Finally, we note that for any stream automaton A_n , $\text{Comm}(A_n, m)$ is a lower bound on the effective space usage $\text{Space}(A_n, m)$.

This proves the lower bound assertion of Theorem 1.

Π

4 Upper Bound

Lemma 5 presents a (nearly) matching upper bound for the APPROXFREQ_p(ϵ) problem, for $1 \leq p < 2$.

Lemma 5. For any $1 and <math>1 > \epsilon > \frac{1}{\sqrt{n}}$, there exists a total stream algorithm for solving APPROXFREQ_p(ϵ) using space $O(\epsilon^{-2}n^{2-2/p}(\log ||f(\sigma)_1||) (p/(p-1+p(\log(1/\epsilon)/\log n)))^2)$.

Proof. By a standard identity between norms, for any vector $f \in \mathbb{R}^n$, $||f||_1 \le n^{1-1/p} ||f||_p$. Therefore,

$$err_1(\hat{f}, f) \le \frac{\epsilon}{n^{1-1/p}}$$
 implies $err_p(\hat{f}, f) \le \epsilon$.

So let $\epsilon' = \epsilon/n^{1-1/p}$, and use the CR-precis algorithm with accuracy parameter ϵ' . This requires space

$$O((\epsilon')^{-2}(\log ||f(\sigma)||_1)(\log^2 n)/(\log^2(1/\epsilon'))$$
.

Substituting the value of ϵ' , we obtain the statement of the lemma.

The statement of the lemma is equivalent to the assertion of Theorem 1 for upper bounds. This completes the proof of Theorem 1.

References

- L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. "Simpler algorithm for estimating frequency moments of data streams". In *Proceedings of ACM Symposium* on Discrete Algorithms (SODA), pages 708–713, 2006.
- P. Bose, E. Kranakis, P. Morin, and Y. Tang. "Bounds for Frequency Estimation of Packet Streams". In Jop F. Sibeyn (Ed.) Proceedings of the 10th Internaltional Colloquium on Structural Information Complexity, June 18-20, 2003, Ume Sweden. Informatics 17 Carleton Scientific 2003, ISBN 1-894145-16-X, pages 33-42, 2003.
- Moses Charikar, Kevin Chen, and Martin Farach-Colton. "Finding frequent items in data streams". In Widmayer, P. Ruiz, F.T., Bueno, R.M., Hennessy, M., Eidenbenz, S. Conejo, R. (Eds.): ICALP 2002, LNCS, Vol. 2380 Springer 2002, pages 693-703.

- Graham Cormode and S. Muthukrishnan. "An Improved Data Stream Summary: The Count-Min Sketch and its Applications". J. Algorithms, 55(1):58–75, April 2005.
- E. D. Demaine, A. López-Ortiz, and J. I Munro. "Frequency estimation of internet packet streams with limited space". In *Möhring, R.H., Raman, R. (Eds.): ESA* 2002, LNCS Vol. 2461 Springer 2002, pages 348–360.
- S. Ganguly. "Lower bounds for frequency estimation over data streams". In Hirsch, E.A, Razborov, A. A., Semenov, A.L., Slissenko, A (Eds.): CSR 2008, June 7-12, 2008, LNCS Vol. 5010 Springer 2008, pages 204–215,
- S. Ganguly and A. Majumder. "CR-precis: A Deterministic Summary Structure for Update Streams". In Chen, B, Paterson, M., Zhang, G. (Eds.): ESCAPE 2007, LNCS Vol. 4614 Springer 2007, pages 48–59.
- Anna Gilbert, Sudipto Guha, Piotr Indyk, Y. Kotidis, S. Muthukrishnan, and Martin Strauss. "Fast Small-space Algorithms for Approximate Histogram Maintenance". In *Proceedings of ACM STOC*, pages 152–161, 2002.
- Anna C. Gilbert, Y. Kotidis, S. Muthukrishnan, and Martin J. Strauss. "Surfing Wavelets on Streams: One-pass Summaries for Approximate Aggregate Queries". In *Proceedings of VLDB*, pages 79–88, Roma, Italy, September 2001.
- Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin Strauss. "Histogramming Data Streams with Fast Per-Item Processing". In Widmayer, P. Ruiz, F.T., Bueno, R.M., Hennessy, M., Eidenbenz, S. Conejo, R. (Eds.): ICALP 2002, LNCS, Vol. 2380 Springer 2002, pages 681–692, 2002.
- Piotr Indyk and David Woodruff. "Optimal Approximations of the Frequency Moments". In Proceedings of ACM Symposium on Theory of Computing STOC, pages 202–298, Baltimore, Maryland, USA, June 2005.
- R.M. Karp, S. Shenker, and C.H. Papadimitriou. "A Simple Algorithm for Finding Frequent Elements in Streams and Bags". ACM Trans. Data. Syst., 28(1):51–55, 2003.
- L.K. Lee and H.F. Ting. "A simpler and more efficient deterministic scheme for finding frequent items over sliding windows". In *Proceedings of ACM International* Symposium on Principles of Database Systems (PODS), pages 263–272, 2006.
- G. Manku and R. Motwani. "Approximate Frequency Counts over Data Streams". In *Proceedings of VLDB*, pages 346–357, August 2002.
- J. Misra and D. Gries. "Finding repeated elements". Sci. Comput. Programm., 2:143–152, 1982.

A Proofs

Let M be the kernel of A_n and let M' be defined as follows.

$$M' = \{x \mid \exists a \in \mathbb{Z}, ax \in M\}$$
(8)

It follows that M' is torsion-free.

Fact 3 Let b_1, b_2, \ldots, b_r be a basis of M'. Then, $\exists \alpha_1, \ldots, \alpha_r \in \mathbb{Z} - \{0\}$ such that $\alpha_1 b_1, \ldots, \alpha_r b_r$ is a basis for M. Hence, $M^e = (M')^e$.

Proof (Of Fact 3). It follows from standard algebra that the basis of M is of the form $\alpha_1 b_1, \ldots, \alpha_r b_r$. It remains to be shown that the α_i 's are non-zero. Suppose

that $\alpha_1 = 0$. For any $a \in \mathbb{Z}$, $a \neq 0$, suppose $ax \in M$ and $x \in M'$. Then, x has a unique representation as $x = \sum_{j=1}^r x_j b_j$. Thus, $ax = \sum_{j=1}^r (ax_j)b_j \in M$ and has the same representation in the basis $\{\alpha_j b_j\}_{j=1,\dots,n}$. Therefore, $ax_1 = 0$ or $x_1 = 0$ for all $x \in M'$, which is a contradiction.

Let $\{b_1, b_2, \ldots, b_r\}$ be a basis for M'. Then, by the above paragraph, there exist non-zero elements $\alpha_1, \ldots, \alpha_r$ such that $\{\alpha_1 b_1, \alpha_2 b_2, \ldots, \alpha_r b_r\}$ is a basis for M. Therefore, over reals, $(b_1, \ldots, b_r) = (\alpha_1 b_1, \ldots, \alpha_r b_r)$. Thus, $M^e = (M')^e$. \Box

Lemma 6. Let M be a sub-module of \mathbb{Z}^n . (1) if there exists h_p such that $err_p(h_p, M) \leq \epsilon$, then, $err_p(0, M) \leq \epsilon$, and, (2) if $err_p(0, M) \leq \epsilon$ then $err_p(0, M^e) \leq \epsilon$.

Proof. Part (1). For any $y_i \in \mathbb{Z}$,

$$\max(|(h_p)_i - y_i|, |(h_p)_i + y_i|) \ge |y_i|.$$

Therefore,

$$\max(\|h_p - y\|_{\infty}, \|h_p + y\|_{\infty}) \ge \|y\|_{\infty} .$$

Let $y \in M$. Since, M is a module, $-y \in M$. Thus,

$$err_p(0, y) = err_p(0, -y)$$

$$= \frac{\|y\|_{\infty}}{\|y\|_p}$$

$$\leq \frac{1}{\|y\|_p} \max(\|h_p - y\|_{\infty}, \|h_p + y\|_{\infty})$$

$$= \max(err_p(h_p, y), err_p(h_p, -y))$$

$$\leq \epsilon \qquad \Box$$

Part 2. Let $z \in M^e$. Let b_1, b_2, \ldots, b_r be a basis of the free module M. For t > 0, let tz be expressed uniquely as $tz = \alpha_1 b_1 + \ldots + \alpha_r b_r$, where, α_i 's belong to \mathbb{R} . Consider the vertices of the parallelopiped P_{tz} whose sides are b_1, b_2, \ldots, b_r and that encloses tz.

$$P_{tz} = [\alpha_1]b_1 + [\alpha_2]b_2 + \ldots + [\alpha_n]b_n + \{\beta_1b_1 + \beta_2b_2 + \ldots + \beta_rb_r \mid \beta_j \in \{0,1\}, j = 1, 2, \ldots, r\}$$

where, $[\alpha]$ denotes the largest integer smaller than or equal to α . Since, ℓ_{∞} is a convex function $||tz||_{\infty} \leq ||y||_{\infty}$ for some $y \in P_{tz}$. Let $y = \sum_{j=1}^{r} \beta_j b_j$, for $\beta_j \in \{0,1\}, j = 1, 2, ..., r$.

$$\|y - tz\|_{1} = \|\sum_{j=1}^{r} (\beta_{j} - [\alpha_{j}])b_{j}\|_{1} \le \sum_{j=1}^{r} \|(\beta_{j} - [\alpha_{j}])b_{j}\|_{1} \le \sum_{j=1}^{r} \|b_{j}\|_{1}$$

or, $\|tz\|_{1} \ge \|y\|_{1} - \sum_{j=1}^{r} \|b_{j}\|_{1}$

Therefore,

$$err_{p}(0,tz) = \frac{\|tz\|_{\infty}}{\|tz\|_{1}} \le \frac{\|y\|_{\infty}}{\|y\|_{1} - \sum_{j=1}^{r} \|b_{j}\|_{1}} \\ \le \left(\frac{\|y\|_{1}}{\|y\|_{\infty}} - \frac{\sum_{j=1}^{r} \|b_{j}\|_{1}}{\|y\|_{\infty}}\right)^{-1} \le \left(\frac{1}{\epsilon} - \frac{\sum_{j=1}^{r} \|b_{j}\|_{1}}{\|y\|_{\infty}}\right)^{-1}$$

where, the last step follows from the assumption that $y \in M$ and therefore, $err_p(0,y) = \frac{\|y\|_{\infty}}{\|y\|_1} \leq \epsilon$. The ratio $\frac{\sum_{j=1}^r \|b_j\|_1}{\|y\|_{\infty}}$ can be made arbitrarily small by choosing t to be arbitrarily large. Thus, $\lim_{t\to\infty} err_p(0,tz) \leq \epsilon$. Since, $err_p(0,tz) = \frac{\|tz\|_{\infty}}{\|tz\|_1} = \frac{\|z\|_{\infty}}{\|z\|_1} = err_p(0,z)$, for all t, we have, $err_p(0,z) \leq \epsilon$. \Box

Proof (Of Lemma 1.). By construction, M' is the smallest module that contains M as a sub-module and M' is free. This also implies that \mathbb{Z}^n/M' is free. For $x \in \mathbb{Z}^n$, define

$$h_p(x+M') = \min_{\ell_p}(x+M')$$

That is, $h_p(x + M')$ is the element with the smallest ℓ_p norm among all vectors in x + M'.

Let $y \in x + M'$. Then, $y \in x_p + M$ for some x_p . Let $\hat{y} = \text{output}_A(x_p + M)$ denote the output of A for an input stream with frequency in $x_p + M$ (they all return the same value, since, A is path independent and has kernel M) and let $y'_p = \min_{\ell_p} (x_p + M)$. Let h_p denote $h_p(x + M')$ and let $\hat{h} = \text{output}_A(h_p + M)$. Therefore,

$$err(h_p, y) = \frac{\|y - h_p\|_{\infty}}{\|y\|_p} \\ \leq \frac{\|y - \hat{y}\|_{\infty}}{\|y\|_p} + \frac{\|\hat{y} - y'_p\|_{\infty}}{\|y\|_p} + \frac{\|y'_p - h_p\|_{\infty}}{\|y\|_p}$$
(9)

The first and the second terms above are bounded by ϵ as follows. The first term $\frac{\|y-\hat{y}\|_{\infty}}{\|y\|_{p}} = err_{p}(\hat{y}, y) \leq \epsilon$, since, $y \in x_{p} + M$ and \hat{y} is the estimate returned by A_{n} for this coset. The second term

$$\frac{\|\hat{y} - y'_p\|_{\infty}}{\|y\|_p} \le \frac{\|\hat{y} - y'_p\|_{\infty}}{\|y'_p\|_p} = err(\hat{y}, y'_p) \le \epsilon$$

since, $||y'_p||_p \leq ||y||_p$ and y'_p lies in the coset $x_p + M$. The third term in (9) can be rewritten as follows. Since, M' is a free module, $y'_p - h_p \in M'$ and $M' \subset M^e$.

Therefore,

$$\begin{aligned} \frac{\|y'_p - h_p\|_{\infty}}{\|y\|_p} \\ &\leq \frac{\|y'_p - h_p\|_{\infty}}{\|y'_p - h\|_p} \cdot \frac{\|y'_p - h_p\|_p}{\|y'_p\|_p}, \quad \text{since, } \|y'_p\|_p \leq \|y\|_p \\ &\leq \epsilon \cdot \frac{\|y'_p\|_p + \|h_p\|_p}{\|y'_p\|_p} \quad \text{by Lemma 6 and by triangle inequality} \\ &\leq 2\epsilon, \quad \text{since, } \|h_p\|_p \leq \|y'_p\|_p \end{aligned}$$

By (9), $err(h, y) \leq \epsilon + \epsilon + 2\epsilon = 4\epsilon$. The automaton B_n with kernel M' is constructed as in Theorem 2.