Precision vs Confidence Tradeoffs for ℓ_{2}-Based Frequency Estimation in Data Streams

Sumit Ganguly
Indian Institute of Technology

Abstract

We consider the data stream model where an n-dimensional vector x is updated coordinate-wise by a stream of updates. The frequency estimation problem is to process the stream in a single pass and using small memory such that an estimate for x_{i} for any i can be retrieved. We present the first algorithms for ℓ_{2}-based frequency estimation that exhibit a tradeoff between the precision (additive error) of its estimate and the confidence on that estimate, for a range of parameter values. We show that our algorithms are optimal for a range of parameters for the class of matrix algorithms, namely, those whose state corresponding to a vector x can be represented as $A x$ for some $m \times n$ matrix A. All known algorithms for ℓ_{2}-based frequency estimation are matrix algorithms.

1 Introduction

The problem of estimating frequencies is one of the most basic problems in data stream processing. It is used for tracking heavy-hitters in low space and real time, for example, finding popular web-sites accessed, most frequently accessed terms in search-engines, popular sale items in supermarket transaction database, etc.. In the general turnstile data streaming model, an n-dimensional vector x is updated by a sequence of update entries of the form (i, v). Each update (i, v) transforms $x_{i} \leftarrow x_{i}+v$. The frequency estimation problem is to design a data structure and an algorithm \mathcal{A} that (i) processes the input stream in a single pass using as little memory as possible, and, (ii) given any $i \in[n]$, uses the structure to return an estimate \hat{x}_{i} for x_{i} satisfying, $\left|\hat{x}_{i}-x_{i}\right| \leq E r r_{\mathcal{A}}$, with confidence $1-\delta$, where, C is a space parameter of \mathcal{A} and $\operatorname{Err}_{\mathcal{A}}$ denotes the precision or the additive error of the estimation. We consider frequency estimation algorithms whose error guarantees are in terms of the ℓ_{2}-norm. The Countsketch algorithm by Charikar et. al. [1] is the most well-known ℓ_{2}-based frequency estimation and has precision $\operatorname{Err}_{\mathrm{CSK}}=\left\|x^{\mathrm{res}(C)}\right\|_{2} / \sqrt{C}$ and confidence $1-n^{-\Omega(1)}$. Here, $\left\|x^{\text {res(C) }}\right\|_{2}$ is the second norm of x calculated after removing the top- C absolute frequencies from it. The residual norm is often smaller than the standard norm, since in many scenarios, much of the energy of x may concentrate in the top few frequencies.

Precision-Confidence Trade-offs. Let us associate with a randomized estimation algorithm \mathcal{A} running on an input x, a pair of numbers namely, (1) its

Work	Precision	Failure	Space	Update	Esti- mation Probability
		$O($ words $)$	time $O(\cdot)$		
Time $O(\cdot)$					

Fig. 1. Precision-Confidence tradeoffs for ℓ_{2}-based frequency estimation. For ACSKI and ACSK-II, the parameter $d \geq 4$ controls the precision-confidence tradeoff.
precision $\operatorname{Err}_{\mathcal{A}}(x)$, and (2) the confidence denoted $1-\delta_{\mathcal{A}}$ with which the precision holds. We say that \mathcal{A} exhibits a precision-confidence tradeoff if for each fixed input x, the set of feasible non-dominating $\left(\operatorname{Err}_{\mathcal{A}}(x), \delta_{\mathcal{A}}\right)$ pairs is at least 2 and preferably, is a large set. A point $\left(\operatorname{Err}_{\mathcal{A}}(x), \delta_{\mathcal{A}}\right)$ dominates $\left(E r r_{\mathcal{A}}^{\prime}(x), \delta_{\mathcal{A}}^{\prime}\right)$ if $\operatorname{Err}_{\mathcal{A}}(x)<\operatorname{Err}_{\mathcal{A}}^{\prime}(x)$ and $\delta_{\mathcal{A}}(x)<\delta_{\mathcal{A}}^{\prime}(x)$. For example, Countsketch has the single point $\left(\left\|x^{\operatorname{res}(C)}\right\|_{2} / \sqrt{C}, 1-n^{-\Omega(1)}\right)$ and does not exhibit a tradeoff. Why are algorithms with precision-confidence tradeoffs useful? To illustrate, suppose that an application requires frequency estimation of items in some input set H of a-priori unknown size t with high constant probability. Using Algorithm ACSK-I (see Figure 1) with $d=\log (t)+O(1)$ gives a precision of $\left\|x^{\mathrm{res}(C)}\right\|_{2} \sqrt{\log t /(C \log n)}$ and confidence of $1-t 2^{-c \log t}=1-t^{1-c}$. If $t=O(1)$, the precision is superior to that of Countsketch by a factor of $\sqrt{\log n}$. If $t=n$ this matches the Countsketch guarantees. The important property is that no changes or re-runs of the algorithm are needed. The same output simultaneously satisfies all the precision-confidence pairs in its tradeoff set.

Contributions. We present a frequency estimation algorithm ACSK-I (Averaged CountSketch-I) that has precision $O\left(\left\|x^{\mathrm{res}(C)}\right\|_{2} \sqrt{d /(C \log n)}\right)$ and confidence $1-2^{-d}$, where, $4 \leq d \leq \Theta(\log n)$. A second frequency estimation algorithm ACSK-II has precision $O\left(\left\|x^{\text {res }(C)}\right\|_{2} \sqrt{d /(C \log (n / C))}\right)$ and confidence $1-2^{-d}$. Both algorithms show precision-confidence tradeoff by tuning the value of d in the allowed range. Figure 1 compares the algorithms along different measures. We also show that the algorithms are optimal up to constant factors for a wide range of the parameters among the class of algorithms whose state on input x can be represented as $A x$, for some $m \times n$ matrix A.

Summary. We build on the Countsketch algorithm of Charikar et.al. in [1]. Instead of taking the median of estimates for x_{i} from the individual tables, we take the averages over the estimates for x_{i} from those tables where a set of heavy-hitters do not collide with i. The analysis uses the $2 d$ th moment method which requires $O(d)$-wise independence of the random variables. This degree of independence d parameterizes the precision-confidence tradeoff.

2 The ACSK Algorithms

Notation. Let Countsketch (C, s) denote the structure consisting of s hash tables T_{1}, \ldots, T_{s}, each having $8 C$ buckets, using independently chosen pair-wise independent hash functions h_{1}, \ldots, h_{s} respectively. The bucket $T_{l}[b]$ is the sketch: $T_{l}[b]=\sum_{h_{l}(i)=b} x_{i} \xi_{i l}$, where the family $\left\{\xi_{i l}\right\}_{i \in[n]}$ for each $l \in[s]$ is four-wise independent and the families use independent seeds across the tables. The estimated frequency is the median of the table estimates, that is, $\hat{x}_{i}=\operatorname{median}_{l=1}^{s} T_{l}\left[h_{l}(i)\right] \xi_{i l}$. Then, $\left|\hat{x}_{i}-x_{i}\right| \leq\left\|x^{\mathrm{res}(C)}\right\|_{2} / \sqrt{C}$, with probability $1-2^{-\Omega(s)}$.

For an n-dimensional vector x and $H \subset[n]$, let x_{H} denote the sub-vector of x with coordinates in H.

The ACSK-I $\left(C, s_{0}, s, d\right)$ structure with space parameter C, number of tables parameters s_{0} and s, and degree of independence parameter d, maintains two structures, namely, (1) Countsketch $\left(2 C, s_{0}\right)$, where, $s_{0}=c \log n$ for some constant $c>0$, and, (2) Countsketch $\left(C^{\prime}, s\right)$, where, $C^{\prime}=\lceil 3 e C\rceil$, that uses (a) $2 d+1$-wise independent Rademacher families $\left\{\xi_{i l}\right\}_{i \in[n]}$ for each $l \in[s]$, and, (b) the hash functions h_{1}, \ldots, h_{s} corresponding to the tables T_{1}, \ldots, T_{s} are independently drawn from a $d+3$-wise independent hash family that maps $[n]$ to $\left[C^{\prime}\right]$. Both structures are updated as in the classical case. The frequency estimation algorithm is as follows.

1. Use the first Countsketch structure to obtain a set H of the top- $2 C$ items by absolute values of their estimated frequencies (by making a pass over $[n]$).
2. Let $S(i, H)$ be the set of table indices in the second Countsketch structure where i does not collide with any item in $H \backslash\{i\}$. Return the average of the estimates for x_{i} obtained from the tables in $S(i, H)$.

$$
\hat{x}_{i}=\operatorname{average}_{l \in S(i, H)} T_{l}\left[h_{l}(i)\right] \cdot \xi_{i l}
$$

Analysis. Let x_{i}^{\prime} denote the estimated frequency obtained from the first structure. By property of precision of Countsketch[1] we have, $\left|x_{i}^{\prime}-x_{i}\right| \leq \Delta$, where, $\Delta=\left\|x^{\text {res }(2 C)}\right\|_{2} / \sqrt{2 C}$. Let GoodH denote the event GoodH $\equiv \forall i \in$ $[n],\left|x_{i}^{\prime}-x_{i}\right| \leq \Delta$. So by union bound, $\operatorname{Pr}[\operatorname{GoodH}] \geq 1-n 2^{-\Omega\left(s_{0}\right)}$. We first prove simple upper bounds for (a) the maximum frequency of an item in \bar{H}, and, (b) $\left\|x^{\mathrm{res}(H)}\right\|_{2}^{2}=\sum_{j \in[n] \backslash H} x_{j}^{2}$. Let T_{H} denote the maximum absolute frequency of an item not in H. Lemma 1 (a) is proved in Appendix A. Lemma 1 (b) follows variants proved in $[3,2]$.

Lemma 1. Conditional on GoodH, (a) $T_{H} \leq(1+\sqrt{2})\left\|x^{r e s(C)}\right\|_{2} / \sqrt{C}$, and, (b) $\left\|x^{r e s(H)}\right\|_{2}^{2} \leq 9\left\|x^{r e s(2 C)}\right\|_{2}^{2}$.

Consider the second Countsketch structure of ACsk-I. Let $p=1 /\left(8 C^{\prime}\right)=$ $1 /(8\lceil 3 e C\rceil) \leq 1 /(24 e C)$, which is the probability that a given item maps to a given bucket in a hash table. For $i, j \in[n], j \neq i$ and table index $l \in[s]$, let $\chi_{i j l}$ be 1 if $h_{l}(i)=h_{l}(j)$ and 0 otherwise. Lemma 2 shows that given sufficient independence of the hash functions, $S(i, H)=\Theta(s)$ with high probability.

Lemma 2. Suppose the hash functions h_{1}, \ldots, h_{s} of a Countsketch structure are each chosen from a pair-wise independent family. Let $C^{\prime} \geq\lceil 1.5 e t\rceil+1$. Then, for any given set H with $|H|=t,|S(i, H)| \geq 3 s / 5$ with probability $1-e^{-s / 3}$.

Lemma 3 presents an upper bound on the $2 d$ th moment for the sum of $2 d$ wise independent random variables, each with support in the interval $[-1,1]$ and having a symmetric distribution about 0 . Its proof, given in the Appendix, uses ideas from the proof of Theorem 2.4 in [6] but gives a slightly stronger result in comparison.

Lemma 3. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are $2 d$-wise independent random variables such that the X_{i} 's have support in the interval $[-1,1]$ and have a symmetric distribution about 0. Let $X=X_{1}+X_{2}+\ldots+X_{n}$. Then,

$$
E\left[X^{2 d}\right] \leq \sqrt{2}\left(\frac{2 d \operatorname{Var}[X]}{e}\right)^{d}\left(1+\frac{d}{\operatorname{Var}[X]}\right)^{d-1}
$$

For a suitable normalization value T_{1} and $j \in[n] \backslash(H \cup\{i\})$, let $X_{i j l}=$ $\left(x_{j} / T_{1}\right) \xi_{j l} \xi_{i l} \chi_{i j l}$ and let

$$
X_{i}=\left(\hat{x}_{i}-x_{i}\right)|S(i, H)| / T_{1}=\sum_{l \in S(i, H)} \sum_{j \notin H \cup\{i\}} X_{i j l} .
$$

We wish to calculate $\mathbb{E}\left[X_{i}^{2 d}\right]$ and use it to obtain a concentration of measure for X_{i}. However, the $X_{i j l}$'s contributing to X_{i} are conditioned on the event that $l \in S(i, H)$, a direct application of Lemma 3 is not possible. Lemma 4 gives an approximation for $\mathbb{E}\left[X_{i}^{2 d}\right]$ in terms of $E\left[X_{i}^{2 d}\right]$, where, $E\left[X_{i}^{2 d}\right]$ is the $2 d \mathrm{th}$ moment of the same random variable but under the assumption that the $\xi_{j l}$'s and the hash functions h_{l} 's for each l are fully independent.

Lemma 4. Let $C^{\prime}=\lceil 3 e C\rceil$, the h_{l} 's be $d+1+t$-wise independent, $t \geq 2$ and $\left\{\xi_{i l}\right\}_{i \in[n]}$ be $2 d+1$-wise independent. Then $\mathbb{E}\left[X_{i}^{2 d}\right] \leq\left(1+8(12 t)^{-t}\right)^{d} E\left[X_{i}^{2 d}\right]$.

The proof of Lemma 4 requires the following Lemma 5, which is an application of the principle of inclusion-exclusion and Bayes' rule.

Lemma 5. For any $s \geq 1$ and $t \geq 2$, let X_{1}, \ldots, X_{n} be $s+t$-wise independent and identically distributed Bernoulli (i.e., 0/1) random variables with $t \geq 2$ and $p=\operatorname{Pr}\left[X_{i}=1\right] \leq 1 /(12 e)$. Then, for disjoint sets $S, H \subset[n]$, with $|S|=s$ and $|H| \leq 1 /(12 p e),\left|\operatorname{Pr}\left[\forall j \in S, X_{j}=1 \mid \forall j \in H, X_{j}=0\right]-p^{s}\right| \leq 8(12 t)^{-t}$.
The proof of Lemma 5 is given in the Appendix. We can now prove Lemma 4.
Proof (Of Lemma 4.).

$$
\left.\begin{array}{l}
\mathbb{E}\left[X_{i}^{2 d}\right]=\mathbb{E}\left[\left(\sum_{\substack{l \in S(i, H), j \neq i}}\left(x_{j} / T_{1}\right) \xi_{j l} \xi_{i l} \chi_{i j l}\right)^{2 d}\right] \\
=\sum_{\substack{\sum_{l \in S(i, H), j \neq i} e_{j l} \text { 's even }}}\binom{2 d}{e_{j l}=2 d} \prod_{11} \mathbb{E}, e_{n s}
\end{array}\right)\left[\prod_{l \in S(i, H)}\left(x_{j} / T_{1}\right)^{e_{j l}} \chi_{i j l} \mid l \in S(i, H)\right] .
$$

Let e denote the vector $\left(e_{11}, \ldots, e_{n s}\right)$ that satisfies the constraints in the summation, that is, (1) $\sum_{l \in S(i, H), j \neq i} e_{j l}=2 d$, (2) $e_{j l}=0$ for each $l \in[s] \backslash S(i, H), j \in$ [n], and, (3) each $e_{j l}$ is even. Let $S_{i l e}=\left\{j: e_{j l}>0\right\}$. Define the events:

$$
E_{1}(i, l, e): \forall j \in S_{i l e}, \chi_{i j l}=1 \quad \text { and } \quad E_{2}(i, l, H): \quad \forall j \in H \backslash\{i\}, \chi_{i j l}=0
$$

Then,

$$
\mathbb{E}\left[\prod_{j: e_{j l}>0} \chi_{i j l} \mid l \in S(i, H)\right]=\operatorname{Pr}\left[E_{1}(i, l, e) \mid E_{2}(i, l, H)\right]
$$

Since the product is taken over positive $e_{j l}$'s, for each such $l, S_{i l e}$ is non-empty. A bound on $\left.\operatorname{Pr}\left[E_{1}(i, l, e)\right) \mid E_{2}(i, l, H)\right]$ can now be obtained using Lemma 5 , where, $p=\operatorname{Pr}\left[\chi_{i j l}=1\right]=1 / C^{\prime} \leq 1 /(24 e C)$. Further, $\left|S_{i l e}\right| \leq d$ and $|H|=$ $2 C \leq 1 /(12 p e)$. So the premises of Lemma 5 are satisfied. Also, since the hash function h_{l} is drawn from a $d+1+t$-wise independent family, the family of random variables $\left\{\chi_{i j l}: j \in[n], j \neq i\right\}$, for each fixed i and l, is $d+t$-wise independent, and across the l's is fully independent. Applying Lemma 5, we obtain $\operatorname{Pr}\left[E_{1}(i, l, e) \mid E_{2}(i, l, H)\right] \in p^{\left|S_{i l e}\right|}\left(1 \pm 8(12 t)^{-t}\right)$. Hence,

$$
\begin{aligned}
& \mathbb{E}\left[X_{i}^{2 d}\right] \\
& \leq \sum_{\substack{\sum_{l \in S(i, H), j \neq i} e_{j l}^{\prime} s \text { even }}}\binom{2 d}{e_{11} \ldots e_{n s}} \prod_{l \in S(i, H)}\left[\left(p^{\left|S_{i l e}\right|}\left(1+8(12 t)^{-t}\right)\right) \prod_{j: e_{j l}>0}\left(x_{j} / T_{1}\right)^{e_{j l}}\right] \\
& \leq\left(1+8(12 t)^{-t}\right)^{d} \sum_{\substack{\sum_{l \in S(i, H), j \neq i} e_{j l}=2 d \\
e_{j l} \text { 's even }}}\binom{2 d}{e_{11} \ldots e_{n s}} \prod_{l \in S(i, H)} p^{\left|S_{i l e}\right|} \prod_{j: e_{j l}>0}\left(x_{j} / T_{1}\right)^{e_{j l}} \\
& \leq\left(1+8(12 t)^{-t}\right)^{d} E\left[X_{i}^{2 d}\right]
\end{aligned}
$$

since, the $R H S$, discounting the multiplicative factor of $\left(1+8(12 t)^{-t}\right)^{d}$, is the expansion of $E\left[X_{i}^{2 d}\right]$.
We now prove the main theorem regarding the ACSK-I algorithm.
Theorem 6. For $C \geq 2, s_{0}=\Theta(\log n)$ and $s \geq 20 d$, there is an algorithm that for any $i \in[n]$ returns \hat{x}_{i} satisfying $\left|\hat{x}_{i}-x_{i}\right| \leq\left\|x^{\text {res }(C)}\right\|_{2} \sqrt{3 d /(s C)}$ with probability at least $1-2^{-\Omega(s)}-2^{-d}-n 2^{-s_{0}}$. Moreover, $\mathbb{E}\left[\hat{x}_{i}\right]=x_{i}$. The algorithm uses space $O\left(C\left(s+s_{0}\right)\right)$ words.
Proof. Consider the ACSK-I algorithm. For $l \in[s], \mathbb{E}\left[T_{l}\left[h_{l}(i)\right] \cdot \xi_{i l}\right]=x_{i}$. Hence the average of $T_{l}\left[h_{l}(i)\right] \cdot \xi_{i l}$'s over some subset of the l's has the same expectation.

Fix $i \in[n]$. Let $T_{1} \geq T_{H}$ which will be chosen later. Recall that for $j \in$ $[n] \backslash(H \cup\{i\})$ and $l \in S(i, H), X_{i j l}=\left(x_{j} / T_{1}\right) \xi_{i l} \xi_{j l} \chi_{i j l}$. Since, $j \notin H,\left|X_{i j l}\right| \leq 1$ and $X_{i j l}$ has 3 -valued support $\left\{-x_{j} / T_{1}, 0, x_{j} / T_{1}\right\}$ with a symmetric distribution over it. Let $p=\operatorname{Pr}\left[\chi_{i j l}=1\right]=1 /\left(8 C^{\prime}\right)=1 /(24 e C)$. By direct calculation,

$$
\begin{equation*}
\operatorname{Var}\left[X_{i}\right]=\sum_{l \in S(i, H)} \sum_{j \neq i}\left(\frac{x_{j}}{T_{1}}\right)^{2} p=|S(i, H)| \frac{\| x^{\mathrm{res}(H \cup\{i\}) \|_{2}^{2}}}{24 e C T_{1}^{2}} \tag{1}
\end{equation*}
$$

By Lemma 3 and assuming full independence we have,

$$
E\left[X_{i}^{2 d}\right] \leq \sqrt{2}\left(\frac{2 d \operatorname{Var}\left[X_{i}\right]}{e}\right)^{d}\left(1+\frac{2 d}{9 \operatorname{Var}\left[X_{i}\right]}\right)^{d-1}
$$

Let $t=2$. Sine the hash functions are $d+3=d+t+1$-wise independent and the Rademacher variables are $2 d+1$-wise independent, by Lemma 4 we have,

$$
\mathbb{E}\left[X_{i}^{2 d}\right] \leq\left(1+8(12 t)^{-t}\right)^{d} E\left[X_{i}^{2 d}\right] \leq(1+1 / 72)^{d} E\left[X_{i}^{2 d}\right], \quad \text { for } t=2
$$

By $2 d$ th moment inequality, $\operatorname{Pr}\left[\left|X_{i}\right|>\sqrt{2}\left(\mathbb{E}\left[X_{i}^{2 d}\right]\right)^{1 /(2 d)}\right] \leq 2^{-d}$. Therefore,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|X_{i}\right|>\sqrt{2(1+1 / 72)}\left(\frac{2 d \operatorname{Var}\left[X_{i}\right]}{e}\left(1+\frac{d}{\operatorname{Var}\left[X_{i}\right]}\right)\right)^{1 / 2}\right] \leq 2^{-d} \tag{2}
\end{equation*}
$$

Let $E_{d, i}$ denote the event whose probability is given in (2). Consider the intersection of the following three events: (1) GoodH, (2) $|S(i, H)| \geq 3 s / 5$, and, (3) $E_{d, i}$. By union bound, the above three events hold with probability $1-n 2^{-\Omega\left(s_{0}\right)}-e^{-s / 3}-2^{-d}=1-\delta$ (say). Since, GoodH holds, we can choose $T_{1}=(1+\sqrt{2})\left\|x^{\mathrm{res}(C)}\right\|_{2} / \sqrt{C}$. Then, (1) $T_{H} \leq T_{1}$, by Lemma 1, and, (2) $\left\|x^{\mathrm{res}(H \cup\{i\})}\right\|_{2}^{2} \leq 9\left\|x^{\mathrm{res}(2 C)}\right\|_{2}^{2}$, by Lemma 1 (b). Substituting in (1),
$\operatorname{Var}\left[X_{i}\right] \leq \frac{|S(i, H)|\left\|x^{\mathrm{res}(H \cup\{i\})}\right\|_{2}^{2}}{(24 e C) T_{1}^{2}} \leq \frac{s \cdot 9\left\|x^{\mathrm{res}(2 C)}\right\|_{2}^{2}}{(24 e C)(1+\sqrt{2})^{2}\left(\left\|x^{\mathrm{res}(C)}\right\|_{2}^{2} / C\right)} \leq \frac{s}{20}$
The deviation for $\left|X_{i}\right|$ in (2) is an increasing function of $\operatorname{Var}[X]$. Hence, replacing $\operatorname{Var}\left[X_{i}\right]$ by its upper bound gives us an upper bound on the deviation for the same tail probability. Hence, with probability $1-\delta$, we have from (2) that

$$
\left|X_{i}\right| \leq \sqrt{2.5}\left(\frac{2 d s}{20 e}\left(1+\frac{20 d}{s}\right)\right)^{1 / 2} \leq \sqrt{\frac{d s}{2 e}}
$$

since, $s \geq 20 d$. Since, $\left|\hat{x}_{i}-x_{i}\right|=\left|X_{i}\right| T_{1} /|S(i, H)|$, we have,

$$
\left|\hat{x}_{i}-x_{i}\right| \leq \sqrt{\frac{d s}{2 e}} \cdot \frac{(1+\sqrt{2})\left\|x^{\mathrm{res}(C)}\right\|_{2}}{\sqrt{C}} \cdot \frac{1}{(3 s / 5)} \leq \sqrt{\frac{3 d}{s C}}\left\|x^{\mathrm{res}(C)}\right\|_{2}
$$

Precision-Confidence Tradeoff. Theorem 6 can be applied using any value of d in the range $4 \leq d \leq s / 4=\Theta(\log n)$ (even after the estimate has been obtained). One can choose d to match the confidence to the desired level and minimize the precision (for e.g., choose $d=O(\log r)$, where r is the number of estimates taken).

The ACSK-II Algorithm. The ACSK-II algorithm uses the heavy-hitter algorithm by Gilbert et. al. in [4], denoted byHH ${ }^{\text {GLPS }}$, to find the heavy hitters.

Theorem 7 ([4]). There is an algorithm and distribution on matrices Φ such that, given Φx and a concise description of Φ, the algorithm returns \hat{x} such that $\|x-\hat{x}\|_{2}^{2} \leq(1+\epsilon)\left\|x^{\text {res }(C)}\right\|_{2}^{2}$ holds with probability $3 / 4$. The algorithm runs in time $C \log ^{O(1)} n$ and Φ has $O((C / \epsilon) \log (n / C))$ rows.

The only difference in the ACSK-II (C, s) algorithm is that it uses an $\operatorname{HH}^{\text {GLPS }}(2 C, 1 / 2)$ structure to obtain a set H of heavy-hitters. The second Countsketch $\left(C^{\prime}, s\right)$ structure of ACSK-I , and the estimation algorithm is otherwise identical. Here, $C^{\prime}=\lceil 6 e C\rceil$ and $s=O(\log (n / C))$. ACSK-II has significantly faster estimation time than ACSK-I due to the efficiency of Gilbert et. al.'s algorithm. However its guarantee holds only with high constant probability. We have the following theorem.

Theorem 8. For each $C \geq 2, s \geq 20 d$ and $r \geq 1$, there is an algorithm that given any set of distinct indices i_{1}, \ldots, i_{r} from $[n]$, returns $\hat{x}_{i_{j}}$ corresponding to $x_{i_{j}}$ satisfying $\left|\hat{x}_{i_{j}}-x_{i_{j}}\right| \leq\left\|x^{\text {res(C) }}\right\|_{2} \sqrt{2 d /(C \log (n / C))}$ for all $j \in[r]$, with probability $15 / 16-r 2^{-d}$. Moreover, $\mathbb{E}\left[\hat{x}_{i_{j}}\right]=x_{i_{j}}, j \in[r]$. The algorithm uses space $O(C \log (n / C))$ words and has update time $O\left(\log ^{O(1)} n\right)$. The estimation time is $O\left(C \log ^{O(1)}(n)+r C d \log (n)\right)$.

Proof. It follows from Theorem 7 that $\left\|x^{\mathrm{res}(H)}\right\|_{2}^{2} \leq(1+1 / 2)\left\|x^{\mathrm{res}(C)}\right\|_{2}^{2}$. Further, the Loop Invariant in [4] ensures that upon termination, (a) the largest element not in H has frequency at most $T_{H}^{2}<\left\|x^{\mathrm{res}(C)}\right\|_{2}^{2} / C$, and, (b) $|H|=\|\hat{x}\|_{0} \leq$ $4 C$. We have upper bounds on all the parameters as needed, and the proof of Theorem 6 can be followed.

3 Lower Bound on Frequency Estimation

We say that a streaming algorithm has a matrix representation with m rows if the state of the structure on any input vector x can always be represented as $A x$, where, A is some $m \times n$ matrix. All known data streaming algorithms for ℓ_{2}-based frequency estimation have a matrix representation. We show a lower bound on the number of rows in the matrix representation of a frequency estimation algorithm.

Theorem 9. Suppose that a frequency estimation algorithm has a matrix representation with m rows. Let it have precision $\left\|x^{\text {res }(C)}\right\|_{2} \sqrt{d /(C \log (n / C))}$ such that for any number r of estimations, all the estimates satisfy the precision with probability $15 / 16-r \cdot 2^{-d}$. Then, for $d=\Omega(1), 2+\log C \leq d \leq \log \frac{n}{C}$ and $n=\Omega\left(C \log \left(\frac{n}{C}\right) \log \left(C \log \frac{n}{C}\right)\right), m=\Omega\left(C \log \left(\frac{n}{C}\right) \cdot\left(1-\frac{\log C}{d}\right)\right)$.

Proof. Let $D=\left[2^{d-3}\right]$ and $C=4 k$. Given a vector x with coordinates in D we make a pass over D and obtain the estimated frequency vector \hat{x}. Let H be the set of the top- $2 k$ coordinates by absolute values of estimated frequency. Then, $\forall i \in D,\left|\hat{x}_{i}-x_{i}\right| \leq\left\|x^{\mathrm{res}(4 k)}\right\|_{2} \sqrt{\frac{d}{4 k \log (n / C)}}$ holds with probability $15 / 16-2^{d-3} 2^{-d}>2 / 3$. Following the proof of Theorem 3.1 in [5]), the resulting vector satisfies $\left\|x-\hat{x}_{H}\right\|_{2}^{2} \leq\left(1+\frac{d}{\log (n / C)}\right)\left\|x^{\text {res }(k)}\right\|_{2}^{2}$. Thus we have an $\ell_{2} / \ell_{2} k$-sparse recovery algorithm with approximation factor $1+d / \log (n / C)$ that succeeds with probability $2 / 3$. Since, $n=\Omega\left(C \log \left(\frac{n}{C}\right) \log \left(C \log \frac{n}{C}\right)\right)$ and
$n=\Omega\left(C \log ^{2}(n / C)\left(\frac{1}{d}-\frac{\log (C)}{d}\right)\right)$, by the Price-Woodruff lower bound for $(1+\epsilon)-$ approximate k-sparse recovery [5], such a matrix A has number of rows

$$
m=\Omega\left(\frac{k}{\epsilon} \log \frac{2^{d-3}}{k}\right)=\Omega\left(C \log \left(\frac{n}{C}\right) \cdot\left(1-\frac{\log C}{d}\right)\right) .
$$

Clearly, both ACSK algorithms have a matrix representation. Also ACSKII satisfies the premise regarding precision and confidence of Theorem 9 and uses $O(C \log (n / C))$ rows. ACSK-I does too provided $C=n^{1-\Omega(1)}$. Hence, they are optimal up to constant factors in the range $\frac{d}{100} \leq \log C \leq d-2$ and $d \leq \log \frac{n}{C}$ along with the other constraints of Theorem 9 on d, n and C.

References

1. Moses Charikar, Kevin Chen, and Martin Farach-Colton. "Finding frequent items in data streams". Theoretical Computer Science, 312(1):3-15, 2004.
2. Graham Cormode and S. Muthukrishnan. "Combinatorial Algorithms for Compressed Sensing". In Proceedings of International Colloquium on Structural Information and Communication Complexity (SIROCCO), 2006.
3. S. Ganguly, D. Kesh, and C. Saha. "Practical Algorithms for Tracking Database Join Sizes". In Proceedings of Foundations of Software Technoogy and Theoretical Computer Science (FSTTCS), pages 294-305, Hyderabad, India, December 2005.
4. A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss. "Approximate sparse recovery: optimizing time and measurements". In Proceedings of ACM Symposium on Theory of Computing STOC, pages 475-484, 2010.
5. Eric Price and David Woodruff. " $(1+\epsilon)$-approximate Sparse Recovery". In Proceedings of IEEE Foundations of Computer Science (FOCS), 2011.
6. J. Schmidt, A. Siegel, and A. Srinivasan. "Chernoff-Hoeffding Bounds with Applications for Limited Independence". In Proceedings of ACM Symposium on Discrete Algorithms (SODA), pages 331-340, 1993.

A Proofs

Proof (Of Lemma 1). Assume GoodH holds. Let $\left|x_{i}\right|=T_{H}=\max _{j \notin H}\left|x_{j}\right|$. So if $\left|x_{j}\right|<T_{H}-2 \Delta$, then, $j \notin H$. Hence, $H \subset J=\left\{j: x_{j} \geq T_{H}-2 \Delta\right\}$. Now, $|J \backslash \operatorname{Top}(C)| \geq|H \backslash \operatorname{Top}(C)| \geq C$. Thus,

$$
\left\|x^{\mathrm{res}(C)}\right\|_{2}^{2} \geq \sum_{j \in J \backslash \operatorname{Top}(C)} x_{j}^{2} \geq|J \backslash \operatorname{Top}(C)|\left(T_{H}-2 \Delta\right)^{2} \geq C\left(T_{H}-2 \Delta\right)^{2}
$$

or, $T_{H} \leq\left(\frac{\left\|x^{\mathrm{res}(C)}\right\|_{2}^{2}}{C}\right)^{1 / 2}+2 \Delta=(1+\sqrt{2})\left\|x^{\mathrm{res}(C)}\right\|_{2} / \sqrt{C}$.
Proof (Of Lemma 2.). Assume $t>0$, otherwise the lemma trivially holds. Since $8 C^{\prime} \geq 8\lceil 1.5 e t\rceil \geq 12 e t$, we have, $\operatorname{Pr}\left[\chi_{i j l}=1\right]=p=1 /\left(8 C^{\prime}\right) \leq 1 /(12 e t)$. Let $w=|H \backslash\{i\}|$. Denote by $\operatorname{Pr}[\cdot]$ the probability measure under the assumption that the hash functions are fully independent. By inclusion-exclusion applied for $\operatorname{Pr}\left[\bigvee_{j}\left(\chi_{i j l}=1\right)\right]$ and $\operatorname{Pr}\left[\bigvee_{j}\left(\chi_{i j l}=1\right)\right]$ respectively, where, j runs over $\left.H \backslash\{i\}\right)$, $d+1$-wise independence of the hash function h_{l} for $\operatorname{Pr}[\cdot]$ and using triangle inequality once, we have, $\left|\operatorname{Pr}\left[\bigvee_{j} \chi_{i j l}=1\right]-\operatorname{Pr}\left\{\bigvee_{j} \chi_{i j l}=1\right\}\right| \leq 2\binom{w}{d} p^{d}$.

Since, $\operatorname{Pr}\left[\bigwedge_{j}\left(\chi_{i j l}=0\right)\right]=1-\operatorname{Pr}\left[\bigvee_{j}\left(\chi_{i j l}=1\right)\right]$, and $\operatorname{Pr}\left[\bigwedge_{j}\left(\chi_{i j l}=0\right)\right]=$ $(1-p)^{w}$, we have, $\left|\operatorname{Pr}\left[\bigwedge_{j} \chi_{i j l}=0\right]-(1-p)^{w}\right| \leq 2\binom{w}{d} p^{d}$. Further since $w \leq t$, we have, $\binom{w}{d} p^{d} \leq(\text { pet } / d)^{d} \leq(12 d)^{-d}$. Also $(1-p)^{w} \geq 1-t p \geq 1-1 /(12 e)$.

Therefore, $\operatorname{Pr}\left[\bigwedge_{j} \chi_{i j l}=0\right] \geq 1-1 /(12 e)-2(12 d)^{-d} \geq 24 / 25$, for $d \geq 2$. Since the hash functions are independent across the tables, applying Chernoff's bounds, we have, $\operatorname{Pr}[|S(i, H)| \geq(3 / 5) s] \geq 1-\exp \{-s / 3\}$.
Proof (of Lemma 3.). We have, $X_{i}^{2 j} \leq X_{i}^{2}$ and so $\mathbb{E}\left[X_{i}^{2 j}\right] \leq \mathbb{E}\left[X_{i}^{2}\right]$. Also $\operatorname{Var}[X]=\sum_{j=1}^{n} \mathbb{E}\left[X_{i}^{2}\right]$. So for $X=X_{1}+\ldots+X_{n}$, and since all odd moments of X_{i} 's are 0 , by symmetry of the individual distributions, we have,

$$
\begin{aligned}
& \mathbb{E}\left[X^{2 d}\right]=\sum_{r=1}^{d} \sum_{\substack{t_{1}+\ldots,+t_{r}=d \\
t_{j} \ggg 0}}\left(\underset{\substack{2 d \\
2 t_{1}, 2 t_{2}, \ldots, 2 t_{r}}}{ }\right) \sum_{1 \leq j_{1}<\ldots<j_{r} \leq n} \prod_{u=1}^{r} \mathbb{E}\left[X_{j_{u}}^{2 t_{u}}\right] \\
& =\sum_{r=1}^{d} \sum_{\substack{t_{1}+\ldots,+t_{r}=d \\
t_{j} \text { s }>0}}\binom{2 d}{2 t_{1}, 2 t_{2}, \ldots, 2 t_{r}} \sum_{1 \leq j_{1}<\ldots<j_{r} \leq n} \prod_{u=1}^{r} \mathbb{E}\left[X_{j_{u}}^{2}\right] \\
& \leq \sum_{r=1}^{d} \sum_{\substack{t_{1}+\ldots,+t_{r}=d \\
t_{j}>\mathrm{s}>0}}\binom{2 d}{2 t_{1}, 2 t_{2}, \ldots, 2 t_{r}} \frac{(\operatorname{Var}[X])^{r}}{r!} \\
& =\sum_{l=0}^{d-1} T_{l}, \text { where, } T_{l}=\sum_{t_{1}+\ldots+t_{d-l}=d, t_{j}{ }^{\prime} \gg 0}\binom{2 d}{2 t_{1}, 2 t_{2}, \ldots, 2 t_{d-l}} \frac{(\operatorname{Var}[X])^{d-l}}{(d-l)!}
\end{aligned}
$$

Since $\binom{2 d}{2 t_{1}, 2 t_{2}, \ldots, 2 t_{d-l}} \leq\binom{ 2 d}{2,2, \ldots, 2}$, we have,

$$
\begin{aligned}
T_{l} & \leq \sum_{t_{1}+\ldots+t_{d-l}=d, t_{j}{ }^{\prime} \gg 0}\binom{2 d}{2,2, \ldots, 2} \frac{(\operatorname{Var}[X])^{d-l}}{(d-l)!} \leq\binom{ d-1}{d-l-1}\binom{2 d}{2,2, \ldots, 2} \frac{(\operatorname{Var}[X])^{d-l}}{(d-l)!} \\
& =\binom{d-1}{d-l-1}\left(\frac{1}{\operatorname{Var}[X]}\right)^{l} \frac{d!}{(d-l)!} T_{0}
\end{aligned}
$$

since, there are $\binom{d-1}{d-l-1}$ assignments for t_{1}, \ldots, t_{d-l}, all positive with sum d. Therefore,

$$
\begin{aligned}
\mathbb{E}\left[X^{2 d}\right] & \leq \sum_{l=0}^{d-1} T_{l} \leq \sum_{l=0}^{d-1}\binom{d-1}{d-l-1}\left(\frac{1}{\operatorname{Var}[X]}\right)^{l} \frac{d!}{(d-l)!} T_{0} \\
& \leq T_{0} \sum_{l=0}^{d-1}\binom{d-1}{l}\left(\frac{1}{\operatorname{Var}[X]}\right)^{l} d^{l}=T_{0}\left(1+\frac{d}{\operatorname{Var}[X]}\right)^{d-1}
\end{aligned}
$$

Since,

$$
T_{0}=\binom{2 d}{2,2, \ldots, 2} \frac{(\operatorname{Var}[X])^{d}}{d!}=\frac{(2 d)!}{2^{d} d!}(\operatorname{Var}[X])^{d} \leq \frac{2^{d+1 / 2} d^{d}}{e^{d}}(\operatorname{Var}[X])^{d}
$$

by Stirling's approximation, we have,

$$
\mathbb{E}\left[X^{2 d}\right] \leq \sqrt{2}\left(\frac{2 d \operatorname{Var}[X]}{e}\right)^{d}\left(1+\frac{d}{\operatorname{Var}[X]}\right)^{d-1}
$$

Proof (Of Lemma 5.). Define events $E_{1} \equiv \forall j \in S, X_{j}=1$ and $E_{2} \equiv \forall j \in$ $H, X_{j}=0$. We have to bound the probability $\operatorname{Pr}\left[E_{1} \mid E_{2}\right]$. Let $|H|=w$. Since, $|S|=s, \operatorname{Pr}\left[E_{1}\right]=p^{s}$. By inclusion and exclusion,

$$
\begin{gathered}
\left|\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]-\sum_{r=1}^{t-1}(-1)^{r-1} \sum_{\substack{j_{1}, \ldots, j_{r} \in H \\
j_{1}<\ldots<j_{r}}} \operatorname{Pr}\left[X_{j_{1}}=1 \wedge \ldots \wedge X_{j_{r}}=1 \mid E_{1}\right]\right| \\
\leq \sum_{\substack{j_{1}, \ldots, j_{t} \in H \\
j_{1}<\ldots<j_{t}}} \operatorname{Pr}\left[X_{j_{1}}=1 \wedge \ldots X_{j_{t}}=1 \mid E_{1}\right]
\end{gathered}
$$

Since the X_{j} 's are $s+t$-wise independent and the event E_{1} is a property of the X_{j} 's for $j \in S$ and $|S|=s$, we have for distinct elements j_{1}, \ldots, j_{r} from H (given $H \cap S$ is empty) and $1 \leq r \leq t, \operatorname{Pr}\left[X_{j_{1}}=1 \wedge \ldots X_{j_{r}}=1 \mid E_{1}\right]=\operatorname{Pr}\left[X_{j_{1}}=\right.$ $1] \cdot \ldots \cdot \operatorname{Pr}\left[X_{j_{r}}=1\right]=p^{r}$. Let $|H|=w$. The above equation is equivalently,

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]-\sum_{r=1}^{t-1}(-1)^{r-1}\binom{w}{r} p^{r}\right| \leq\binom{ w}{t} p^{t} \tag{4}
\end{equation*}
$$

Suppose we denote by $\operatorname{Pr}[E]$ the probability of an event $E=E\left(X_{1}, \ldots, X_{n}\right)$ assuming that the X_{j} 's are fully independent. Then, by inclusion-exclusion, we have

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]-\sum_{r=1}^{t-1}(-1)^{r-1}\binom{w}{r} p^{r}\right| \leq\binom{ w}{t} p^{t} \tag{5}
\end{equation*}
$$

Since, $\operatorname{Pr}\left[X_{j}=1\right]=\operatorname{Pr}\left[X_{j}=1\right]=p$, combining (4) and (5), we have by triangle inequality,

$$
\left|\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]-\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]\right| \leq 2\binom{w}{t} p^{t}
$$

Also, $\operatorname{Pr}\left[E_{2} \mid E_{1}\right]=1-\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]$ and $\operatorname{Pr}\left[E_{2} \mid E_{1}\right]=$ $1-\operatorname{Pr}\left[\exists j \in H, X_{j}=1 \mid E_{1}\right]=(1-p)^{w}$. Hence,

$$
\begin{equation*}
\left|\operatorname{Pr}\left[E_{2} \mid E_{1}\right]-(1-p)^{w}\right| \leq 2\binom{w}{t} p^{t} \tag{6}
\end{equation*}
$$

Further, $\operatorname{Pr}\left[E_{1}\right]=\operatorname{Pr}\left[\forall j \in S, X_{j}=1\right]=p^{s}$. Using $s+t$-wise independence of the X_{j} 's for $j \in H$, we can show similarly that

$$
\left|\operatorname{Pr}\left[E_{2}\right]-(1-p)^{w}\right| \leq 2\binom{w}{s+t} p^{s+t}
$$

Combining,

$$
\begin{equation*}
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]=\frac{\operatorname{Pr}\left[E_{2} \mid E_{1}\right] \operatorname{Pr}\left[E_{1}\right]}{\operatorname{Pr}\left[E_{2}\right]} \in p^{s}\left(1 \pm \frac{2\binom{w}{t} p^{t}+2\binom{w}{s+t} p^{s+t}}{(1-p)^{w}-2\binom{w}{s+t} p^{s+t}}\right) \tag{7}
\end{equation*}
$$

Since, $p w \leq 1 /(12 e),(1-p)^{w} \geq 1-w p \geq 1-1 /(12 e),\binom{w}{t} p^{t} \leq(w e p / t)^{t} \leq$ $1 /(12 t)^{t}$ and $\binom{w}{s+t} p^{s+t} \leq 1 /(12(s+t))^{s+t}$. Thus, for $t \geq 2$, we have,

$$
\frac{2\binom{w}{t} p^{t}+2\binom{w}{s+t} p^{s+t}}{(1-p)^{w}-2\binom{w}{s+t} p^{s+t}} \leq \frac{2(12 t)^{-t}+2(12(s+t))^{-t-s}}{(1-1 /(12 e))-2(12(s+t))^{-s-t}} \leq 8(12 t)^{-t}
$$

since $t \geq 2$. Hence, (7) becomes

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right] \in p^{s}\left[1 \pm 8(12 t)^{-t}\right] .
$$

