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Abstract. We consider the data stream model where an n-dimensional
vector x is updated coordinate-wise by a stream of updates. The fre-
quency estimation problem is to process the stream in a single pass
and using small memory such that an estimate for xi for any i can
be retrieved. We present the first algorithms for `2-based frequency es-
timation that exhibit a tradeoff between the precision (additive error)
of its estimate and the confidence on that estimate, for a range of pa-
rameter values. We show that our algorithms are optimal for a range of
parameters for the class of matrix algorithms, namely, those whose state
corresponding to a vector x can be represented as Ax for some m × n
matrix A. All known algorithms for `2-based frequency estimation are
matrix algorithms.

1 Introduction

The problem of estimating frequencies is one of the most basic problems in data
stream processing. It is used for tracking heavy-hitters in low space and real
time, for example, finding popular web-sites accessed, most frequently accessed
terms in search-engines, popular sale items in supermarket transaction database,
etc.. In the general turnstile data streaming model, an n-dimensional vector
x is updated by a sequence of update entries of the form (i, v). Each update
(i, v) transforms xi ← xi + v. The frequency estimation problem is to design
a data structure and an algorithm A that (i) processes the input stream in
a single pass using as little memory as possible, and, (ii) given any i ∈ [n],
uses the structure to return an estimate x̂i for xi satisfying, |x̂i − xi| ≤ ErrA,
with confidence 1 − δ, where, C is a space parameter of A and ErrA denotes
the precision or the additive error of the estimation. We consider frequency
estimation algorithms whose error guarantees are in terms of the `2-norm. The
Countsketch algorithm by Charikar et. al. [1] is the most well-known `2-based
frequency estimation and has precision ErrCSK = ‖xres(C)‖2/

√
C and confidence

1−n−Ω(1). Here, ‖xres(C)‖2 is the second norm of x calculated after removing the
top-C absolute frequencies from it. The residual norm is often smaller than the
standard norm, since in many scenarios, much of the energy of x may concentrate
in the top few frequencies.

Precision-Confidence Trade-offs. Let us associate with a randomized esti-
mation algorithm A running on an input x, a pair of numbers namely, (1) its



Work Precision Failure Space Update Esti-
mation

Probability O(words) time O(·) Time O(·)
Countsketch[1] ‖xres(C)‖2/

√
C n−Ω(1) C logn logn n

acsk-I ‖xres(C)‖2 n−Ω(1) (C + logn) log2 n n

4 ≤ d ≤ O(logn) ×
√
d/(C logn) +2−d × logn

acsk-ii ‖xres(C)‖2 1/16 (C + logn) logO(1) n C×
4 ≤ d ≤ O(log(n/C)) ×

√
d/(C log(n/C)) +2−d × log n

C
logO(1) n

Fig. 1. Precision-Confidence tradeoffs for `2-based frequency estimation. For acsk-
i and acsk-ii , the parameter d ≥ 4 controls the precision-confidence tradeoff.

precision ErrA(x), and (2) the confidence denoted 1 − δA with which the pre-
cision holds. We say that A exhibits a precision-confidence tradeoff if for each
fixed input x, the set of feasible non-dominating (ErrA(x), δA) pairs is at least
2 and preferably, is a large set. A point (ErrA(x), δA) dominates (Err′A(x), δ′A)
if ErrA(x) < Err′A(x) and δA(x) < δ′A(x). For example, Countsketch has

the single point (‖xres(C)‖2/
√
C, 1 − n−Ω(1)) and does not exhibit a tradeoff.

Why are algorithms with precision-confidence tradeoffs useful? To illustrate,
suppose that an application requires frequency estimation of items in some
input set H of a-priori unknown size t with high constant probability. Using
Algorithm acsk-i (see Figure 1) with d = log(t) + O(1) gives a precision of
‖xres(C)‖2

√
log t/(C log n) and confidence of 1− t2−c log t = 1− t1−c. If t = O(1),

the precision is superior to that of Countsketch by a factor of
√

log n. If t = n
this matches the Countsketch guarantees. The important property is that no
changes or re-runs of the algorithm are needed. The same output simultaneously
satisfies all the precision-confidence pairs in its tradeoff set.

Contributions. We present a frequency estimation algorithm acsk-i (Averaged
CountSketch-I) that has precision O(‖xres(C)‖2

√
d/(C log n)) and confidence

1 − 2−d, where, 4 ≤ d ≤ Θ(log n). A second frequency estimation algorithm
acsk-ii has precision O(‖xres(C)‖2

√
d/(C log(n/C))) and confidence 1 − 2−d.

Both algorithms show precision-confidence tradeoff by tuning the value of d in
the allowed range. Figure 1 compares the algorithms along different measures.
We also show that the algorithms are optimal up to constant factors for a wide
range of the parameters among the class of algorithms whose state on input x
can be represented as Ax, for some m× n matrix A.

Summary. We build on the Countsketch algorithm of Charikar et.al. in
[1]. Instead of taking the median of estimates for xi from the individual tables,
we take the averages over the estimates for xi from those tables where a set of
heavy-hitters do not collide with i. The analysis uses the 2dth moment method
which requires O(d)-wise independence of the random variables. This degree of
independence d parameterizes the precision-confidence tradeoff.



2 The ACSK Algorithms

Notation. Let Countsketch(C, s) denote the structure consisting of s hash ta-
bles T1, . . . , Ts, each having 8C buckets, using independently chosen pair-wise
independent hash functions h1, . . . , hs respectively. The bucket Tl[b] is the sketch:
Tl[b] =

∑
hl(i)=b

xiξil, where the family {ξil}i∈[n] for each l ∈ [s] is four-wise inde-
pendent and the families use independent seeds across the tables. The estimated
frequency is the median of the table estimates, that is, x̂i = mediansl=1Tl[hl(i)]ξil.
Then, |x̂i − xi| ≤ ‖xres(C)‖2/

√
C, with probability 1− 2−Ω(s).

For an n-dimensional vector x and H ⊂ [n], let xH denote the sub-vector of
x with coordinates in H.

The acsk-i (C, s0, s, d) structure with space parameter C, number of tables
parameters s0 and s, and degree of independence parameter d, maintains two
structures, namely, (1) Countsketch(2C, s0), where, s0 = c log n for some
constant c > 0, and, (2) Countsketch(C ′, s), where, C ′ = d3eCe, that uses
(a) 2d + 1-wise independent Rademacher families {ξil}i∈[n] for each l ∈ [s],
and, (b) the hash functions h1, . . . , hs corresponding to the tables T1, . . . , Ts
are independently drawn from a d+ 3-wise independent hash family that maps
[n] to [C ′]. Both structures are updated as in the classical case. The frequency
estimation algorithm is as follows.

1. Use the first Countsketch structure to obtain a set H of the top-2C items
by absolute values of their estimated frequencies (by making a pass over [n]).

2. Let S(i,H) be the set of table indices in the second Countsketch structure
where i does not collide with any item in H \ {i}. Return the average of the
estimates for xi obtained from the tables in S(i,H).

x̂i = averagel∈S(i,H)Tl[hl(i)] · ξil .

Analysis. Let x′i denote the estimated frequency obtained from the first struc-
ture. By property of precision of Countsketch[1] we have, |x′i − xi| ≤ ∆,
where, ∆ = ‖xres(2C)‖2/

√
2C. Let GoodH denote the event GoodH ≡ ∀i ∈

[n], |x′i−xi| ≤ ∆. So by union bound, Pr
[
GoodH

]
≥ 1−n2−Ω(s0). We first prove

simple upper bounds for (a) the maximum frequency of an item in H̄, and, (b)
‖xres(H)‖22 =

∑
j∈[n]\H x

2
j . Let TH denote the maximum absolute frequency of

an item not in H. Lemma 1 (a) is proved in Appendix A. Lemma 1 (b) follows
variants proved in [3, 2].

Lemma 1. Conditional on GoodH, (a) TH ≤ (1 +
√

2)‖xres(C)‖2/
√
C, and, (b)

‖xres(H)‖22 ≤ 9‖xres(2C)‖22.

Consider the second Countsketch structure of acsk-I. Let p = 1/(8C ′) =
1/(8d3eCe) ≤ 1/(24eC), which is the probability that a given item maps to a
given bucket in a hash table. For i, j ∈ [n], j 6= i and table index l ∈ [s], let
χijl be 1 if hl(i) = hl(j) and 0 otherwise. Lemma 2 shows that given sufficient
independence of the hash functions, S(i,H) = Θ(s) with high probability.



Lemma 2. Suppose the hash functions h1, . . . , hs of a Countsketch structure
are each chosen from a pair-wise independent family. Let C ′ ≥ d1.5ete+1. Then,
for any given set H with |H| = t, |S(i,H)| ≥ 3s/5 with probability 1− e−s/3.

Lemma 3 presents an upper bound on the 2dth moment for the sum of 2d-
wise independent random variables, each with support in the interval [−1, 1] and
having a symmetric distribution about 0. Its proof, given in the Appendix, uses
ideas from the proof of Theorem 2.4 in [6] but gives a slightly stronger result in
comparison.

Lemma 3. Suppose X1, X2, . . . , Xn are 2d-wise independent random variables
such that the Xi’s have support in the interval [−1, 1] and have a symmetric
distribution about 0. Let X = X1 +X2 + . . .+Xn. Then,

E
[
X2d

]
≤
√

2

(
2dVar [X]

e

)d(
1 +

d

Var [X]

)d−1
.

For a suitable normalization value T1 and j ∈ [n] \ (H ∪ {i}), let Xijl =
(xj/T1)ξjlξilχijl and let

Xi = (x̂i − xi)|S(i,H)|/T1 =
∑

l∈S(i,H)

∑
j 6∈H∪{i}

Xijl .

We wish to calculate E
[
X2d
i

]
and use it to obtain a concentration of measure

for Xi. However, the Xijl’s contributing to Xi are conditioned on the event that
l ∈ S(i,H), a direct application of Lemma 3 is not possible. Lemma 4 gives
an approximation for E

[
X2d
i

]
in terms of E[X2d

i ], where, E[X2d
i ] is the 2dth

moment of the same random variable but under the assumption that the ξjl’s
and the hash functions hl’s for each l are fully independent.

Lemma 4. Let C ′ = d3eCe, the hl’s be d + 1 + t-wise independent, t ≥ 2 and
{ξil}i∈[n] be 2d+ 1-wise independent. Then E

[
X2d
i

]
≤ (1 + 8(12t)−t)dE[X2d

i ].

The proof of Lemma 4 requires the following Lemma 5, which is an applica-
tion of the principle of inclusion-exclusion and Bayes’ rule.

Lemma 5. For any s ≥ 1 and t ≥ 2, let X1, . . . , Xn be s + t-wise independent
and identically distributed Bernoulli (i.e., 0/1) random variables with t ≥ 2 and
p = Pr

[
Xi = 1

]
≤ 1/(12e). Then, for disjoint sets S,H ⊂ [n], with |S| = s and

|H| ≤ 1/(12pe),
∣∣Pr[∀j ∈ S,Xj = 1 | ∀j ∈ H,Xj = 0

]
− ps

∣∣ ≤ 8(12t)−t .

The proof of Lemma 5 is given in the Appendix. We can now prove Lemma 4.

Proof (Of Lemma 4.).

E
[
X2d
i

]
= E

[( ∑
l∈S(i,H),j 6=i

(xj/T1)ξjlξilχijl

)2d]

=
∑

∑
l∈S(i,H),j 6=i ejl=2d

ejl’s even

(
2d

e11, . . . , ens

) ∏
l∈S(i,H)

E
[ ∏
j:ejl>0

(xj/T1)ejlχijl | l ∈ S(i,H)
]



Let e denote the vector (e11, . . . , ens) that satisfies the constraints in the summa-
tion, that is, (1)

∑
l∈S(i,H),j 6=i ejl = 2d, (2) ejl = 0 for each l ∈ [s] \ S(i,H), j ∈

[n], and, (3) each ejl is even. Let Sile = {j : ejl > 0}. Define the events:

E1(i, l, e) : ∀j ∈ Sile, χijl = 1 and E2(i, l,H) : ∀j ∈ H \ {i}, χijl = 0.

Then,

E
[∏

j:ejl>0 χijl | l ∈ S(i,H)
]

= Pr
[
E1(i, l, e) | E2(i, l,H)

]
.

Since the product is taken over positive ejl’s, for each such l, Sile is non-empty.
A bound on Pr

[
E1(i, l, e)) | E2(i, l,H)

]
can now be obtained using Lemma 5,

where, p = Pr [χijl = 1] = 1/C ′ ≤ 1/(24eC). Further, |Sile| ≤ d and |H| =
2C ≤ 1/(12pe). So the premises of Lemma 5 are satisfied. Also, since the hash
function hl is drawn from a d + 1 + t-wise independent family, the family of
random variables {χijl : j ∈ [n], j 6= i}, for each fixed i and l, is d + t-wise
independent, and across the l’s is fully independent. Applying Lemma 5, we
obtain Pr

[
E1(i, l, e) | E2(i, l,H)

]
∈ p|Sile|(1± 8(12t)−t) . Hence,

E
[
X2d
i

]
≤

∑
∑

l∈S(i,H),j 6=i ejl=2d

e′jls even

(
2d

e11 . . . ens

) ∏
l∈S(i,H)

[(
p|Sile|(1 + 8(12t)−t)

) ∏
j:ejl>0

(xj/T1)ejl
]

≤ (1 + 8(12t)−t)d
∑

∑
l∈S(i,H),j 6=i ejl=2d

ejl’s even

(
2d

e11 . . . ens

) ∏
l∈S(i,H)

p|Sile|
∏

j:ejl>0

(xj/T1)ejl

≤ (1 + 8(12t)−t)dE[X2d
i ]

since, the RHS, discounting the multiplicative factor of (1 + 8(12t)−t)d, is the
expansion of E[X2d

i ]. ut
We now prove the main theorem regarding the acsk-i algorithm.

Theorem 6. For C ≥ 2, s0 = Θ(log n) and s ≥ 20d, there is an algorithm
that for any i ∈ [n] returns x̂i satisfying |x̂i − xi| ≤ ‖xres(C)‖2

√
3d/(sC) with

probability at least 1−2−Ω(s)−2−d−n2−s0 . Moreover, E
[
x̂i
]

= xi. The algorithm
uses space O(C(s+ s0)) words.

Proof. Consider the acsk-i algorithm. For l ∈ [s], E
[
Tl[hl(i)] · ξil

]
= xi. Hence

the average of Tl[hl(i)]·ξil’s over some subset of the l’s has the same expectation.
Fix i ∈ [n]. Let T1 ≥ TH which will be chosen later. Recall that for j ∈

[n] \ (H ∪{i}) and l ∈ S(i,H), Xijl = (xj/T1)ξilξjlχijl. Since, j 6∈ H, |Xijl| ≤ 1
and Xijl has 3-valued support {−xj/T1, 0, xj/T1} with a symmetric distribution
over it. Let p = Pr

[
χijl = 1

]
= 1/(8C ′) = 1/(24eC). By direct calculation,

Var [Xi] =
∑

l∈S(i,H)

∑
j 6=i

(xj
T1

)2
p = |S(i,H)| ‖x

res(H∪{i})‖22
24eCT 2

1

(1)



By Lemma 3 and assuming full independence we have,

E[X2d
i ] ≤

√
2

(
2dVar [Xi]

e

)d (
1 +

2d

9Var [Xi]

)d−1
.

Let t = 2. Sine the hash functions are d + 3 = d + t + 1-wise independent and
the Rademacher variables are 2d+ 1-wise independent, by Lemma 4 we have,

E
[
X2d
i

]
≤ (1 + 8(12t)−t)dE[X2d

i ] ≤ (1 + 1/72)dE[X2d
i ], for t = 2.

By 2dth moment inequality, Pr
[
|Xi| >

√
2
(
E
[
X2d
i

])1/(2d)] ≤ 2−d. Therefore,

Pr

[
|Xi| >

√
2(1 + 1/72)

(
2dVar [Xi]

e

(
1 +

d

Var [Xi]

))1/2
]
≤ 2−d (2)

Let Ed,i denote the event whose probability is given in (2). Consider the
intersection of the following three events: (1) GoodH, (2) |S(i,H)| ≥ 3s/5,
and, (3) Ed,i. By union bound, the above three events hold with probabil-
ity 1 − n2−Ω(s0) − e−s/3 − 2−d = 1 − δ (say). Since, GoodH holds, we can
choose T1 = (1 +

√
2)‖xres(C)‖2/

√
C. Then, (1) TH ≤ T1, by Lemma 1, and, (2)

‖xres(H∪{i})‖22 ≤ 9‖xres(2C)‖22, by Lemma 1 (b). Substituting in (1),

Var [Xi] ≤
|S(i,H)|‖xres(H∪{i})‖22

(24eC)T 2
1

≤ s · 9‖xres(2C)‖22
(24eC)(1 +

√
2)2(‖xres(C)‖22/C)

≤ s

20
(3)

The deviation for |Xi| in (2) is an increasing function of Var [X]. Hence, replacing
Var [Xi] by its upper bound gives us an upper bound on the deviation for the
same tail probability. Hence, with probability 1− δ, we have from (2) that

|Xi| ≤
√

2.5
(
2ds
20e

(
1 + 20d

s

))1/2 ≤√ds
2e

since, s ≥ 20d. Since, |x̂i − xi| = |Xi|T1/|S(i,H)|, we have,

|x̂i − xi| ≤
√
ds

2e
· (1 +

√
2)‖xres(C)‖2√
C

· 1

(3s/5)
≤
√

3d

sC
‖xres(C)‖2 . ut

Precision-Confidence Tradeoff. Theorem 6 can be applied using any value
of d in the range 4 ≤ d ≤ s/4 = Θ(log n) (even after the estimate has been
obtained). One can choose d to match the confidence to the desired level and
minimize the precision ( for e.g., choose d = O(log r), where r is the number of
estimates taken).

The ACSK-II Algorithm. The acsk-ii algorithm uses the heavy-hitter algo-
rithm by Gilbert et. al. in [4], denoted byHHglps, to find the heavy hitters.

Theorem 7 ([4]). There is an algorithm and distribution on matrices Φ such
that, given Φx and a concise description of Φ, the algorithm returns x̂ such that
‖x− x̂‖22 ≤ (1 + ε)‖xres(C)‖22 holds with probability 3/4. The algorithm runs in

time C logO(1) n and Φ has O((C/ε) log(n/C)) rows.



The only difference in the acsk-ii (C, s) algorithm is that it uses an HHglps(2C, 1/2)
structure to obtain a setH of heavy-hitters. The second Countsketch(C ′, s) struc-
ture of acsk-i , and the estimation algorithm is otherwise identical. Here,
C ′ = d6eCe and s = O(log(n/C)). acsk-ii has significantly faster estimation
time than acsk-i due to the efficiency of Gilbert et. al.’s algorithm. However
its guarantee holds only with high constant probability. We have the following
theorem.

Theorem 8. For each C ≥ 2, s ≥ 20d and r ≥ 1, there is an algorithm that
given any set of distinct indices i1, . . . , ir from [n], returns x̂ij corresponding

to xij satisfying |x̂ij − xij | ≤ ‖xres(C)‖2
√

2d/(C log(n/C)) for all j ∈ [r], with
probability 15/16 − r2−d. Moreover, E

[
x̂ij
]

= xij , j ∈ [r]. The algorithm uses

space O(C log(n/C)) words and has update time O
(
logO(1) n

)
. The estimation

time is O(C logO(1)(n) + rCd log(n)).

Proof. It follows from Theorem 7 that ‖xres(H)‖22 ≤ (1+1/2)‖xres(C)‖22. Further,
the Loop Invariant in [4] ensures that upon termination, (a) the largest element
not in H has frequency at most T 2

H < ‖xres(C)‖22/C, and, (b) |H| = ‖x̂‖0 ≤
4C. We have upper bounds on all the parameters as needed, and the proof of
Theorem 6 can be followed. ut

3 Lower Bound on Frequency Estimation

We say that a streaming algorithm has a matrix representation with m rows
if the state of the structure on any input vector x can always be represented
as Ax, where, A is some m × n matrix. All known data streaming algorithms
for `2-based frequency estimation have a matrix representation. We show a
lower bound on the number of rows in the matrix representation of a frequency
estimation algorithm.

Theorem 9. Suppose that a frequency estimation algorithm has a matrix rep-
resentation with m rows. Let it have precision ‖xres(C)‖2

√
d/(C log(n/C)) such

that for any number r of estimations, all the estimates satisfy the precision with
probability 15/16 − r · 2−d. Then, for d = Ω(1), 2 + logC ≤ d ≤ log n

C and

n = Ω(C log( nC ) log(C log n
C )), m = Ω(C log

(
n
C

)
·
(
1− logC

d

)
).

Proof. Let D = [2d−3] and C = 4k. Given a vector x with coordinates in
D we make a pass over D and obtain the estimated frequency vector x̂. Let
H be the set of the top-2k coordinates by absolute values of estimated fre-

quency. Then, ∀i ∈ D, |x̂i− xi| ≤ ‖xres(4k)‖2
√

d
4k log(n/C) holds with probability

15/16 − 2d−32−d > 2/3. Following the proof of Theorem 3.1 in [5]), the re-
sulting vector satisfies ‖x− x̂H‖22 ≤

(
1 + d

log(n/C)

)
‖xres(k)‖22. Thus we have an

`2/`2 k-sparse recovery algorithm with approximation factor 1 + d/ log(n/C)
that succeeds with probability 2/3. Since, n = Ω(C log( nC ) log(C log n

C )) and



n = Ω(C log2(n/C)( 1
d −

log(C)
d )), by the Price-Woodruff lower bound for (1 + ε)-

approximate k-sparse recovery [5], such a matrix A has number of rows

m = Ω
(
k
ε log 2d−3

k

)
= Ω

(
C log

(
n
C

)
·
(

1− logC
d

))
. ut

Clearly, both acsk algorithms have a matrix representation. Also acsk-
ii satisfies the premise regarding precision and confidence of Theorem 9 and
uses O(C log(n/C)) rows. acsk-i does too provided C = n1−Ω(1). Hence, they
are optimal up to constant factors in the range d

100 ≤ logC ≤ d−2 and d ≤ log n
C

along with the other constraints of Theorem 9 on d, n and C.
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A Proofs

Proof (Of Lemma 1). Assume GoodH holds. Let |xi| = TH = maxj 6∈H |xj |. So
if |xj | < TH − 2∆, then, j 6∈ H. Hence, H ⊂ J = {j : xj ≥ TH − 2∆}. Now,
|J \Top(C)| ≥ |H \Top(C)| ≥ C. Thus,

‖xres(C)‖22 ≥
∑
j∈J\Top(C) x

2
j ≥ |J \Top(C)|(TH − 2∆)2 ≥ C(TH − 2∆)2

or, TH ≤
(‖xres(C)‖22

C

)1/2
+ 2∆ = (1 +

√
2)‖xres(C)‖2/

√
C. ut

Proof (Of Lemma 2.). Assume t > 0, otherwise the lemma trivially holds. Since
8C ′ ≥ 8d1.5ete ≥ 12et, we have, Pr

[
χijl = 1

]
= p = 1/(8C ′) ≤ 1/(12et). Let

w = |H \ {i}|. Denote by Pr[·] the probability measure under the assumption
that the hash functions are fully independent. By inclusion-exclusion applied for
Pr
[∨

j(χijl = 1)
]

and Pr[
∨
j(χijl = 1)] respectively, where, j runs over H \ {i}),

d + 1-wise independence of the hash function hl for Pr
[
·
]

and using triangle

inequality once, we have,
∣∣Pr[∨j χijl = 1

]
− Pr

{∨
j χijl = 1

}∣∣ ≤ 2
(
w
d

)
pd.



Since, Pr
[∧

j(χijl = 0)
]

= 1 − Pr
[∨

j(χijl = 1)
]
, and Pr[

∧
j(χijl = 0)] =

(1− p)w, we have,
∣∣Pr[∧j χijl = 0

]
− (1− p)w

∣∣ ≤ 2
(
w
d

)
pd. Further since w ≤ t,

we have,
(
w
d

)
pd ≤ (pet/d)d ≤ (12d)−d. Also (1− p)w ≥ 1− tp ≥ 1− 1/(12e).

Therefore, Pr
[∧

j χijl = 0
]
≥ 1 − 1/(12e) − 2(12d)−d ≥ 24/25, for d ≥ 2.

Since the hash functions are independent across the tables, applying Chernoff’s
bounds, we have, Pr

[
|S(i,H)| ≥ (3/5)s

]
≥ 1− exp{−s/3}. ut

Proof (of Lemma 3.). We have, X2j
i ≤ X2

i and so E
[
X2j
i

]
≤ E

[
X2
i

]
. Also

Var [X] =
∑n
j=1 E

[
X2
i

]
. So for X = X1 + . . . + Xn, and since all odd moments

of Xi’s are 0, by symmetry of the individual distributions, we have,

E
[
X2d

]
=
∑d
r=1

∑
t1+...+tr=d
tj ’s > 0

(
2d

2t1,2t2,...,2tr

)∑
1≤j1<...<jr≤n

∏r
u=1 E

[
X2tu
ju

]
=
∑d
r=1

∑
t1+...+tr=d
tj ’s > 0

(
2d

2t1,2t2,...,2tr

)∑
1≤j1<...<jr≤n

∏r
u=1 E

[
X2
ju

]
≤
∑d
r=1

∑
t1+...+tr=d
tj ’s > 0

(
2d

2t1,2t2,...,2tr

) (Var[X])r

r!

=
∑d−1
l=0 Tl, where, Tl =

∑
t1+...+td−l=d, tj ’s>0

(
2d

2t1,2t2,...,2td−l

) (Var[X])d−l

(d−l)!

Since
(

2d
2t1,2t2,...,2td−l

)
≤
(

2d
2,2,...,2

)
, we have,

Tl ≤
∑
t1+...+td−l=d, tj ’s>0

(
2d

2,2,...,2

) (Var[X])d−l

(d−l)! ≤
(
d−1
d−l−1

)(
2d

2,2,...,2

) (Var[X])d−l

(d−l)!

=
(
d−1
d−l−1

)(
1

Var[X]

)l
d!

(d−l)!T0

since, there are
(
d−1
d−l−1

)
assignments for t1, . . . , td−l, all positive with sum d.

Therefore,

E
[
X2d

]
≤
∑d−1
l=0 Tl ≤

∑d−1
l=0

(
d−1
d−l−1

)(
1

Var[X]

)l
d!

(d−l)!T0

≤ T0
∑d−1
l=0

(
d−1
l

)(
1

Var[X]

)l
dl = T0

(
1 + d

Var[X]

)d−1
Since,

T0 =
(

2d
2,2,...,2

) (Var[X])d

d! = (2d)!
2dd!

(Var [X])d ≤ 2d+1/2dd

ed
(Var [X])d

by Stirling’s approximation, we have,

E
[
X2d

]
≤
√

2
(

2dVar[X]
e

)d (
1 + d

Var[X]

)d−1
. ut

Proof (Of Lemma 5.). Define events E1 ≡ ∀j ∈ S,Xj = 1 and E2 ≡ ∀j ∈
H,Xj = 0. We have to bound the probability Pr

[
E1 | E2

]
. Let |H| = w. Since,

|S| = s, Pr
[
E1

]
= ps. By inclusion and exclusion,∣∣∣∣Pr[∃j ∈ H,Xj = 1 | E1

]
−

t−1∑
r=1

(−1)r−1
∑

j1,...,jr∈H
j1<...<jr

Pr
[
Xj1 = 1 ∧ . . . ∧Xjr = 1 | E1

]∣∣∣∣
≤

∑
j1,...,jt∈H
j1<...<jt

Pr
[
Xj1 = 1 ∧ . . . Xjt = 1 | E1

]



Since the Xj ’s are s+ t-wise independent and the event E1 is a property of the
Xj ’s for j ∈ S and |S| = s, we have for distinct elements j1, . . . , jr from H (given
H ∩ S is empty) and 1 ≤ r ≤ t, Pr

[
Xj1 = 1 ∧ . . . Xjr = 1 | E1

]
= Pr

[
Xj1 =

1
]
· . . . · Pr

[
Xjr = 1

]
= pr. Let |H| = w. The above equation is equivalently,∣∣∣∣Pr[∃j ∈ H,Xj = 1 | E1

]
−

t−1∑
r=1

(−1)r−1
(
w

r

)
pr
∣∣∣∣ ≤ (wt

)
pt (4)

Suppose we denote by Pr [E] the probability of an event E = E(X1, . . . , Xn)
assuming that the Xj ’s are fully independent. Then, by inclusion-exclusion, we
have ∣∣∣∣Pr [∃j ∈ H,Xj = 1 | E1]−

t−1∑
r=1

(−1)r−1
(
w

r

)
pr
∣∣∣∣ ≤ (wt

)
pt (5)

Since, Pr
[
Xj = 1

]
= Pr [Xj = 1] = p, combining (4) and (5), we have by

triangle inequality,∣∣Pr[∃j ∈ H,Xj = 1 | E1

]
− Pr [∃j ∈ H,Xj = 1 | E1]

∣∣ ≤ 2

(
w

t

)
pt

Also, Pr
[
E2 | E1

]
= 1 − Pr

[
∃j ∈ H,Xj = 1 | E1

]
and Pr [E2 | E1] =

1− Pr [∃j ∈ H,Xj = 1 | E1] = (1− p)w. Hence,∣∣Pr[E2 | E1

]
− (1− p)w

∣∣ ≤ 2

(
w

t

)
pt (6)

Further, Pr
[
E1

]
= Pr [∀j ∈ S,Xj = 1] = ps. Using s + t-wise independence of

the Xj ’s for j ∈ H, we can show similarly that∣∣Pr[E2

]
− (1− p)w

∣∣ ≤ 2

(
w

s+ t

)
ps+t .

Combining,

Pr
[
E1 | E2

]
=

Pr
[
E2 | E1

]
Pr
[
E1

]
Pr
[
E2

] ∈ ps
(

1±
2
(
w
t

)
pt + 2

(
w
s+t

)
ps+t

(1− p)w − 2
(
w
s+t

)
ps+t

)
(7)

Since, pw ≤ 1/(12e), (1 − p)w ≥ 1 − wp ≥ 1 − 1/(12e),
(
w
t

)
pt ≤ (wep/t)t ≤

1/(12t)t and
(
w
s+t

)
ps+t ≤ 1/(12(s+ t))s+t. Thus, for t ≥ 2, we have,

2
(
w
t

)
pt + 2

(
w
s+t

)
ps+t

(1− p)w − 2
(
w
s+t

)
ps+t

≤ 2(12t)−t + 2(12(s+ t))−t−s

(1− 1/(12e))− 2(12(s+ t))−s−t
≤ 8(12t)−t .

since t ≥ 2. Hence, (7) becomes

Pr
[
E1 | E2

]
∈ ps

[
1± 8(12t)−t

]
. ut


