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Abstract. The problem of estimating the" frequency momenk}, for any non-
negativek, over a data stream by looking at the items exactly once as they arrive,
was considered in a seminal paper by Alon, Matias and Szegedy [1, 2]. The space
complexity of their algorithm i@(nI*%). Fork > 2, their technique does not
apply to data streams with arbitrary insertions and deletions. In this paper, we
present an algorithm for estimatirfg, for £ > 2, over general update streams
whose space complexity @(nl’ﬁ) and time complexity of processing each
stream update i©(1).

Recently, an algorithm for estimatirig, over general update streams with similar
space complexity has been published by Coppersmith and Kumar [7]. Our tech-
nigue is, (a) basically different from the technique used by [7], (b) is simpler and
symmetric, and, (c) is significantly more efficient in terms of the time required to
process a stream upddi@ (1) compared withO (n' = #-1)).

1 Introduction

A data stream can be viewed as a sequence of updates, that is, insertions and deletions
of items. Each update is of the forfh +v), where,l is the identity of the item and

is the change in frequency okuch thafv| > 1. The items are assumed to draw their
identities from the domaifiv] = {0, 1, ..., N — 1}. If v is positive, then the operation

is an insertion operation, otherwise, the operation is a deletion operation. The frequency
of an item with identityl, denoted byf;, is the sum of the changes in frequencies of

! from the start of the stream. In this paper, we are interested in computing’the
frequency momenfy, = ", fF, for k > 2 andk integral, by looking at the items
exactly once when they arrive.

The problem of estimating frequency moments over data streams using randomized
algorithms was first studied in a seminal paper by Alon, Matias and Szegedy [1, 2].
They present an algorithm, based on sampling, for estimdjndor £ > 2, to within
any specified approximation facteand with confidence that is a constant greater than
1/2. The space complexity of this algorithmds= O(nl‘%) (suppressing the term
eiz) and time complexity per update é(nlﬁ), where,n is the number of distinct
elements in the stream. This algorithm assumes that frequency updates are restricted to
the form(Z, +1).

One problem with the sampling algorithm of [1, 2] is that it is not applicable to
streams with arbitrary deletion operations. For some applications, the ability to handle



deletions in a stream may be important. For example, a network monitoring applica-
tion might be continuously maintaining aggregates over the number of currently open
connections per source or destination.

In this paper, we present an algorithm for estimatiig for £ > 2, to within an
accuracy of 1 + ) with confidence at least 2/3. (The method can be boosted using the
median of averages technique to return high confidence estimates in the standard way
[1,2].) The algorithm handles arbitrary insertions and legal deletions (i.e., net frequency
of every item is non-negative) from the stream and generalizes the random linear com-
binations technique of [1, 2] designed specifically for estimafthgThe space com-
plexity of our method i:ﬁ(nl‘ﬁ) and the time complexity to process each update is
O(1), where, functions of ande that do not involve: are treated as constants.

In [7], Coppersmith and Kumar present an algorithm for estimakingver general
update streams. Their algorithm has similar space complexity@(al,*ﬁ)) as the
one we design in this paper. The principal differences between our work and the work
in [7] are as follows.

1. Different TechniqueOur method constructs random linear combinations of the
frequency vector using randomly chosen roots of unity, that is, we construct the
sketchZ = f,x;, where,z; is a randomly choseh’” root of unity. Coppersmith
and Kumar construct random linear combinatiohs= f;x;, where, forl € [N],

z; = —1/n' %7 or1—1/n'" %7 with probabilityl — 1 /n'~ T andl/n'~ %7
respectively.

2. Symmetric and Simpler Algorithm@ur technique is a symmetric method for all
k > 2, and is a direct generalization of the sketch technique of Alon, Matias and
Szegedy [1,2]. In particular, for evely > 2, E[ReZ*] = F},. The method of
Coppersmith and Kumar gives complicated expressions for estimatinfor £ >
4. Fork = 4, their estimator i€"* — B, F (where,B,, ~ n~%/3(1 — n=%/3)2),
and requires, in addition, an estimationfaf to within an accuracy factor dfl +
n~1/3). The estimator expression for higher valuescdparticularly, for powers
of 2) are not shown in [7]. These expressions require auxiliary moment estimation
and are quite complicated.

3. Time efficientOur method is significantly more efficient in terms of the time taken
to process an arrival over the stream. The time complexity to process a stream
update in our method (1), whereas, the time complexity of the Coppersmith

Kumar technique i€)(n' =7 1).

The recent and unpublished work in [11] presents an algorithm for estim&ginfpr

k > 2 and for the append only streaming model (used by [1, 2]), with space complexity
O(nl‘k%l). Although, the algorithm in [11] improves on the asymptotic space com-
plexity of the algorithm presented in this paper, it cannot handle deletion operations
over the stream. Further, the method used by [11] is significantly different from the
techniques used in this paper, or from the techniques used by Coppersmith and Kumar

[7].

Lower bounds.The work in [1, 2] shows space lower bounds for this problem to be
2(n'=5/%), for anyk > 5. Subsequently, the space lower bounds have been strength-



ened taR(e2n! ~+9)/k) fork > 2, ¢ > 0, by Bar-Yossef, Jayram, Kumar and Sivaku-
mar [3], and further ta2(n'~2/*) by Chakrabarti, Khot and Sun [5]. Saks and Sun [14]
show that estimating the, distancel between two streaming vectors to within a factor
of d° requires spac(n'=2/P=49),

Other Related WorkFor the special case of computifg, [1, 2] presents a® (log n+
log m) space and time complexity algorithm, whenejs the sum of the frequencies.
Random linear combinations based on random variables drawn from stable distributions
were considered by [13] to estimaig, for 0 < p < 2. The work presented in [9]
presents a sketch technique to estimate the difference between two streams based on
the L; metric norm. There has been substantial work on the problem of estimfating
and related metrics (set expression cardinalities over streams) for the various models of
data streams [10, 1, 4, 12].

The rest of the paper is organized as follows. Section 2 describes the method and
Section 3 presents formal lemmas and their proofs. Finally we conclude in Section 4.

2 An overview of the method

In this section, we present a simple description of the algorithm and some of its proper-
ties. The lemmas and theorems stated in this section are proved formally in Section 3.
Throughout the paper, we treflaias a fixed given value larger than 1.

2.1 Sketches using random linear combinations d** roots of unity

Let = be a randomly chosen root of the equatidn= 1, such that each of thieroots
is chosen with equal probability df/k. Given a complex number, its conjugate is
denoted byz. For anyj, 1 < j < k, the following basic property holds, as shown
below.
B[v'] = B[] _{0 =gk ®
1 ifj=k.

Proof. Letj = k. Then,E[27] = E[2*] = E[1] = 1, sincez is a root of unity.

Let1 < j < k and letu be the elementark" root of unity, that isy = ¢27V~1/k,
i i (1 —uf*)
- - (1 =)
where, the last equality follows from the sum of a geometric progression in the complex
field. Sinceu”* = 1, it follows thatu/* = 1. Further, since: is the elementarg*” root
of unity, u/ = e2mV=1/k £ 1 for1 < j < k. Thus, the expressiofl — u/*)/(1 —
u/) = 0. ThereforeE[27] = 0, for 1 < j < k.

The conjugation operator is a 1-1 and onto operator in the field of complex numbers.
Further, ifz is a root ofz* = 1, then,z* = 2% = 1 = 1, and thereforez is also ak*"

root of unity. Thus, the conjugation operator, applied to the groug’ofoots of unity,
results in a permutation of the elements in the group (actually, it is an isomorphism). It

?rM—‘
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therefore follows that the sum of th&* powers of the roots of unity is equal to the sum
of the j*" powers of the conjugates of the roots of unity. TH$z/ | = E[z7]. O

Let Z be the random variable defined Zs= Zlem fiz;. The variablex;, for
eachl € [N], is one of a randomly chosen rootof = 1. The family of variablegz; }
is assumed to b2k-wise independent. The following lemma shows thatReis an
unbiased estimator df. Following [1, 2], we callZ as asketch The random variablg
can be efficiently maintained with respect to stream updates as follows. First, we choose
arandom hash functioh: [N] — [k] drawn from a family of hash functions thatds-
wise independent. Further, we pre-computekteroots of unity into an arrayi[1..k]
of sizek (of complex numbers), that is{[r] = e2™"V=1/* forr = 1,2,... k. For
every stream updai@, v), we update the sketch as follows.

Z=7+v A

The space required to maintain the hash functica O(k), and the time required for
processing a stream update is al$g).

Lemma 1. E[ReZ*| = F;.
As the following lemma shows, the variance of this estimator is quite high.
Lemma 2. Var[ReZ*| = O(k*F¥).

This implies thatVar[Re Z*| /(E[Re Z*])? = O(F}/F?), which could be as large
asn”~2. To reduce the variance we organize the sketches in a hash table.

2.2 Organizing sketches in a hash table

Let¢: {0,1,..., N—1} — [B] be a hash function that maps the dom@ini, ..., N—

1} into a hash table consisting @ buckets. The hash functiop is drawn from a
family of hash functiong+ that is2k-wise independent. The random bits used by the
hash family is independent of the random bits used by the fafmily,c¢o,1,... 513, OF,
equivalently, the random bits used to genekandé are independent. The indicator
variabley; ;, for any domain elemerite {0,1,..., N — 1}] and buckeb € [B], is
defined agy;, = 1if ¢(I) = b andy; ;, = 0 otherwise. Associated with each buckés

a sketchz, of the elements that have hashed to that bucket. The random varigples,
andZ, are defined as follows.

ZbZZfl'Iz-yz,ln YLZREZ{f, and Y:ZYb
! be[B]

Maintaining the hash table of sketches in the presence of stream updates is analogous
to maintainingZ. As discussed previously, lét: {0,1,...,N — 1} — [k] denote a
random hash function that is chosen frorRkawise independent family of hash func-
tions (and independently of the bits usedd)yand letA[1 . .. k] be an array whosg"
entry ise2™iV=1/k for j = 1,..., k. For every stream updaté v), we perform the
following operation.

Zoay = Zoy + v - AB(0)]



The time complexity of the update operatiorfigk). The sketches in the buckets except
the bucket numberegi(!) are left unchanged.

The main observation of the paper is that the hash partitioning of the sKeittio
{Ys }ue ) reduces the variance &f significantly, while maintaining thdg [Y] = F}.
This is stated in the lemma below.

Lemma 3. LetB < 2n'~%. Then,Var[Y] = O(F2n*~2/B*1).

A hash table organization of the sketches is normally used to reduce the time com-
plexity of processing each stream update [6, 8]. Howeverkfor 2, the hash table
organization of the sketches has the additional effect of reducing the variance.

Finally, we keeps; independent copieg|0],. .., Y [s; — 1] of the variableY". The
average of these variables is denotediythus Var[Y] = (1/s1)Var[Y]. The re-
sult of the paper is summarized below, which states YhaistimatesF, to within an
accuracy factor of1 =+ €) with constant probability greater than 1/2 (at least 2/3).
Theorem 4. Letn'~ %71 < B<2.n'" %7 ands; = 6 - 2 - k3% /¢2. Then,

PI‘{D7 — Fk‘ > EFk} < 1/3

The space usage of the algorithm is therefof& - s;) = O(nl‘ﬁ) bits, since
a logarithmic overhead is required to store each sk&iclTo boost the confidence of
the answer to at least— 2—(s2) a standard technique of returning the median value
amongs, such average estimates can be used, as shown in [1, 2].

The algorithm assumes that the number of buckets in the hash taBlewbere,
n!=¥1 < B < 2.n! T, Since, in general, the number of distinct items in the
stream is not known in advance, one possible method that can be used is as follows.
First estimaten to within a factor of(1 + %) using an algorithm for estimatingp,
such as [10, 1, 2, 4]. This can be done with high probability, in sgadeg N). Keep
2log N 44 group of (independent) hash tables, such that'thgroup uses3; = [2V/?]
buckets. Each group of the hash tables uses the data structure described earlier. At the
time of inference, first is estimated a%, and, then, we choose a hash table group
indexed byi such thati = 2 - [(1 — 15)log (8 -7/7)]. This ensures that the hash

table sizeB; satisfiesn' 77 < B; < 2.~ %7, with high probability. Since, the
number of hash table groupsds log N, this construction adds an overhead in terms
of both space complexity and update time complexity by a fact@ -dbg V. In the
remainder of the paper, we assume th# known exactly, with the understanding that
this assumption can be alleviated as described.

3 Analysis

The j*" frequency moment of the set of elements that map to bucketler the hash
functiong, is a random variable denoted By;,. Thus,F;, = >, f{ y1.5- Further, since
every element in the stream hashes to exactly one bugkek; , = F;. We define; s,
forl € {0,1,...,N — 1} andb € [B] tobehy, = fi - yip- ThUS,Fjp = 3, h{b for
j> 1



Notation: Marginal expectationslhe random variables;, {Y; }»cp are functions
of two families of random variables, namely,= {z;},c10,1,...,n—1}, USEd to gener-
ate the random roots of unity, and= {y;}, ! € {0,1,...,N — 1} andb € [B],
used to map elements to buckets in the hash table. Our independence assumptions
imply that these two families are mutually independent (i.e., their seeds use indepen-
dent random bits), that ir {x =uandy =v} = Pr{x=u} - Pr{y = v} Let
W = W (x,y) be arandom variable that is a function of the random variablesaind
y. For a fixed random choice §f = ygo, Ex [W] denotes the marginal expectation of
W as a function ofy. That is,Ex[W] = >, W(u,yo)Pr {x = u}. It follows that
E[W] = Ey [Ex [W]].

Overview of the analysig.he main steps in the proof of Theorem 4 are as follows.
In Section 3.1, we show th# [Y] = Fj,. In Section 3.2, we show th#[Re Z*] <
k** Fy. In Section 3.3, using the above result, we show HafY?| < k>3, F7,.
Section 3.4 shows th&, [F},| < (2/B + 2" - n*~?/B*)F}? and also concludes the
proof of Theorem 4. Finally, we conclude in Section 4.

Notation: Multinomial Expansion.Let X be defined as¥' = >°,co;  n_1) @
where,a; > 0, forl € {0,1,..., N — 1}. Then,X* can be written as

k
k .
k _ er € .. €s
Yoy Y ()Y e

s=le;+--es=k,e1>0,---,es>0 li<lo<--<ls

where, s is the number of distinct terms in the product ands the exponent of the
i*h product term. The indicel are therefore necessarily distinte {0,1,..., N —
1},i = 1,2,...,s. For easy reference, the above equation is written and used in the

following form.
xt="3" ¢ > ([« - @)

s,e:Q(e,s) 1:R(el,s) j=1

where,Q(e,s) =1 < s < kande = (e, ea,...,es) is s-dimensional an({:jzl e;
k; R(e,1,s) =1 = (I3,la,...,l5) is s-dimensional and) < [} < Iy < --- < I,
N —1; and the multinomial coefficientt'(e) = (e1 k e) In this notation, the followi

inequality holds .
>, Ila; <TIQ ) - 3)
j=1 1

I:R(e,l,s) 7=1

SN I

g

By settingn = k, anda; = as = --- = ax, = 1, we obtain,
k

k* = § § j .

2 C’(e)(8> > 2 C(e)

By squaring the above equation on both sides, we obtairkthat (3, , C(e) (’j) )2 >
Des C?(e). We therefore have the following inequalities.

> Cle)<kF, > C%e) <k . (4)



3.1 Expectation

In this section, we show thdt [Re Z*] = Fy, thereby proving Lemma 1, and that
E.[Y] = F.

Proof (of Lemma 1)Since the family of variables,;’s is k-wise independent, therefore
E[[[=/] =]]E[] -
j=1 j=1
Applying equation (2) taz* = (Y, fiz;)* and using linearity of expectation ard
wise independence property gfs, we obtain

EZ- Y cle) 3 (f[fij)(f[lE[wf;D-

s,e:Q(e,s) LR(e,l,s) j=1

Using equation (1), we note that the te(f;_, E[xf;]) =0, if s > 1, since in this
caseg; < k, foreachj =1,...,s. Thus, the above summation reduces to

E[Z¥ =) ff=F: .
l

SinceF, is real, E[Re Z*] is alsoF}, proving Lemma 1. O

Lemma 5. Suppose that the family of random variables} is k-wise independent.
Then,Ex [Yb] = Fk,b andEy [Y] = E[Y} = F}.

Proof. We first show thaEy [Y;] = Fi.p. Ex[Z]] = Ex[(X; fivipz)*] = Ex[(X; hupz)*],
by letting 2y, = fi - y1.. By an argument analogous to the proof of Lemma 1, we ob-
tain B [(3, hupw)*] = 32, 0y = 32 vty = 20 fixvis = Fip, (sinceyyy’s are

binary variables). Sincé, , is always realEx[Y,] = Ex[ReZf| = Fj . Finally,

Ex[Y] = Ex[Y, V3] = X, Ex[Y3] = X, Fip = Fi, since each element is hashed

to exactly one bucket. Furthdi[Y] = E, [Ex[Y]] = E [F},| = Fj. O

3.2 \Variance of ReZ*
In this section, we estimate the variance of Reand derive some simple corollaries.
Lemma 6. LetW = Re (Y, ayz;)*. Then Var [W] < k2*(3, a?)*.

Proof. Let X = (3, ayz;)". Then,Var[W| = E[W?] — (E[W])? < E[XX] —
(E[W])2. Using equation (2), foX, X, we obtain the following.

X= > ¢ > (I[a)-(I=1)
s,e:Q(e,s) 1:R(e,l,s) j=1 j=1
X= > ¢ > (II«) (1)

t.g:Q(g,t) I:R(g,m,t) j'=1 j’'=1



Multiplying the above two equations, we obtain

X-X= Y 3 ce-ce Y >
s,e:Q(e,s) t,g8:Q(g,t) 1:R(e,l,s) : R(g,m,t)
t

<1f[1a7;>~<naf,z;/>~<ﬁx Hm

i'=1 i=1

The general form of the product of random variables that arises in the multinomial

expansion ofX X is ([]° i1 xl )(H; -1 T ). Since the random variables's are2k-

wise independent, using equat|0n (2), it follows that,

. . 1 fs=t=1e,=9g1 =k
E[Ha:lej Hif,{j,]z 1 ifs=t,t>1l,e=gandl=m
] /! 0 otherwise.

This directly yields the following.

EXX]= Y (%) > HazeJ

e,s:Q(e,s) I:R(e,l,s) j=1

<> C3e H Zazei ), by equation (3)

<> e [[O e, smceZal 1< Z 2yes
e,s 1 1

= a?)k(z C*(e)), sincez e; =k
l e,s j=1

< (Za?)k-k%, by equation (4). O
l

By lettinga; = f;,1 € {0,1,2..., N — 1}, Lemma 6 yields
Var[Re Z¥] = Var[Re( Z fre)*] < K2 FY, (5)
which is the statement of Lemma 2. By letting= h; s = f; - y1,5, where,b is a fixed

bucket index, and € {0,1,2..., N — 1}, yields the following equation.
Ex[V}] < k**F},, forb e [B]. (6)

3.3 Var|Y]: Vanishing of cross-bucket terms

We now consider the problem of obtaining an upper boundvam [Y] Note that
Var[Y] = Ey [Ex[Y?]] - (Ey [Ex[Y]])?. From Lemma5Ey, [Ex [Y]] = F}. Thus,

Var[Y] = E, [Ex[Y?]] — F? . @)



Lemma 7. Var[Y] < k** ), Ey [F},], assuming independence assumpfion

Proof. Ex[Y?] = Ex[(30,%0)°] = Ex[, Y} + X, YaYs] = X, Ex[Y)] +
> oy B [YaY].

We now consideEy [Y,Y;], for a # b. Recall thafy;, = Re Z% (‘and analogously,
Y, is defined). For any two complex numbersv, (Rez)(Rew) = (1/2)Re(z(w +
w)). Thus,Y, Y, = (Re Z¥)(Re ZF) = (1/2)Re(Zk ZF + ZF ZF).

Let us first consideEy [Z¥Z}|. The general term involving product of random
variables iSTT;_, f")- (ITyzy f2) (T 1,0 57) - (LT i, - 4,.)- Con-

J

sider the last two product terms in the above expression, théfJis, , vi, . - xfj) .

(=1 Y, - ). Foranyl < j < sandl < j/ < t, it is not possible that

l; = mj, that is, the same element whose index is giveri by= m; cannot si-
multaneously hash to two distinct buckeisand b (recall thata # b). By 2k-wise
independence, we therefore obtain that the only way the above product term can be non
zero (i.e., 1) on expectation, is that= ¢t = 1 and thereforeg; = k andg; = k. Thus,

we haveE [ZFZ[] = > im h{fahﬁ%b = FroFip.

Using the same observation, it can be argued BygtZ* Z}"| = Fj, o Fy. 5. It fol-
lows thatEy [(1/2)(ZkZ} + ZkZF))] = Fy o Fp, which is a real number. Therefore
Ex[Re(1/2)(ZEZF + ZFZF)] = FyoFip = Ex[Ya Y.

By equation (7) Var[Y] = Ey [Ex[Y?]|] — FZ. Further, from Lemma 5F}, =
Ey [>, Fr]. We therefore have,

Var[v] = By [Bx[1?] = (3 Fii)’]

= By DB+ DB ] - (30 Fi)

a#b
—E, [Z Ex V2] + Z FraFrp — (Z Fk’b)Q], by above argument
b ab b

= Ey [Zb: Ex[Yy] - ; Fy)
< By > Ex[¥7]]

b

< Ey [Z k**F¥,], by equation (6) -
b

3.4 Calculation of E[Fy, ]

Given at-dimensional vectoe = (ej,...,e;) such thate; > 0, for1 < ¢ < ¢ and
Zézl e; = k, we define the functiony(e) as follows. Without loss of generality, let
the indicese; be arranged in non-decreasing order. et r(e) denote the largest
index such that,. < k/2. Then, we define the functiap(e) as follows.

W(e) = nz;;l(l—%j/k)/Bt



The motivation of this definition stems from its use in the following lemma.

Lemma 8. Supposé_;_, e; = k ande; > 0,forj = 1,...,t. Then[[;_; Fa, <
w(e) - F2- B

Proof. From [1,2],F; < n!=3/*F//* if j < kandF; < F//*,if j > k. Thus,

t r ; . .
H Fae; = H Fe, H Fa, | = H n1—2ej/ka?€j/k H F}fe_j/k
j=1 j=1

j=r+1 j=1 j=r+1

= nEia(=2ey/k) po=2lh _ gy gt 2 since) e; = k.0

J

The functiomy satisfies the following property that we use later.

Lemma 9. If B < 2-n'"#, then,y(e) < max(2/B, 2" - n*~2/B*).

Proof. Let e be at-dimensional vector. If = 1, (e) = 1/B. If t = r, theny(e) =
nt=2/Bt <2k .nk=2/BF If t > r 4 2, theny(e) = (2¢/Bt) - nt~ (=) 2¢i/k) <
2t .nt=2/Bt < 2k . nk=2/B* Finally, lett = r + 1. Then,

1[)(@) — 2t . nt—l—?z ej/k/Bt < 2t . nt_l_Q(t_l)/k/Bt7

sinceZ;’:1 e; >r=t—1.Thus,

d(e) <(e)(2-n'"F/B)FTt < (28 ntTITAD/R B (2. 1Tk /B)E Tt =
2k . nki?i(tiZ)/k/Bk S 2k‘ . 'I’Lk72/Bk .

where, the first inequality follows from the assumption tBat n'~* and the second
inequality follows because> 2. O

Lemma 10. Let B < 2-n!~#. ThenE[F},| < k*F2(2/B + 2% - n*~2/Bk).

Proof. For a fixedb, the variableg, , arek-wise independentt; ; is a linear function
of 1. Thus,F}', is a symmetric multinomial of degree as follows.

F2k,b = (Z fl2yl,b)]~C
l
=Y 0 Y f SRy Y Y -
s,e

li<la<--ls



Taking expectations, and usikegwise independence of thg,'s, we have,

F2b ZC Z f2€1"'f E[yll,b ylzb yl@vb]

h<la<--<ls
= ZC(E) P "'fiejE[yll,b] “Ely,p] - Ely., b]
s,e I <lp <<l
€1 eJ 1 i 1
:ZC’(e) Z f2 . 2 ETL S|nce,E[ylj7b}:§
s,e 1 <la<--<ls
gZC -(1/B%) HFQeJ
< ZC(e) -p(e) - FZ, bylLemmas8
gZO() 2.(2/B+2%.n*2/B"), bylLemma9
gkk-F,3~(2/B+2k k=2/Bk), smceZC ) < kF O

Combining the result of Lemma 7 with Lemma 10, we obtain the following bound on
Var [Y]
Var[Y] < k3. F2-(2+2% - n*2/BF 1) (8)

Recall that” is the average of; independent estimators, each calculafihgrhe main
theorem of the paper now follows simply.

Proof (of Theorem 4By Chebychev'sinequalitfr {|Y — Fi| > eF}.} < Var[Y]/(e2F?).
Substituting Equation (8), we ha%ar Y] /(e* - F2) < 1/3. O

4 Conclusions

The paper presents a method for estimating AHfefrequency moment, fok > 2,

of data streams with general update operations. The algorithm has space complexity
O(nlfﬁ)) and is based on constructing random linear combinations using randomly
chosenk®” roots of unity. A gap remains between the lower bound for this problem,
namely,O(n'~2/k), for k > 2, as proved in [3,5] and the complexity of a known
algorithm for this problem.
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