
Estimating Frequency Moments of Data Streams using
Random Linear Combinations

Sumit Ganguly

Indian Institute of Technology, Kanpur
e-mail: sganguly@iitk.ac.in

Abstract. The problem of estimating thekth frequency momentFk for any non-
negativek, over a data stream by looking at the items exactly once as they arrive,
was considered in a seminal paper by Alon, Matias and Szegedy [1, 2]. The space
complexity of their algorithm is̃O(n1− 1

k). Fork > 2, their technique does not
apply to data streams with arbitrary insertions and deletions. In this paper, we
present an algorithm for estimatingFk for k > 2, over general update streams

whose space complexity is̃O(n1− 1
k−1) and time complexity of processing each

stream update is̃O(1).
Recently, an algorithm for estimatingFk over general update streams with similar
space complexity has been published by Coppersmith and Kumar [7]. Our tech-
nique is, (a) basically different from the technique used by [7], (b) is simpler and
symmetric, and, (c) is significantly more efficient in terms of the time required to

process a stream update(Õ(1) compared withÕ(n1− 1
k−1)).

1 Introduction

A data stream can be viewed as a sequence of updates, that is, insertions and deletions
of items. Each update is of the form(l,±v), where,l is the identity of the item andv
is the change in frequency ofl such that|v| ≥ 1. The items are assumed to draw their
identities from the domain[N] = {0, 1, . . . , N − 1}. If v is positive, then the operation
is an insertion operation, otherwise, the operation is a deletion operation. The frequency
of an item with identityl, denoted byfl, is the sum of the changes in frequencies of
l from the start of the stream. In this paper, we are interested in computing thekth

frequency momentFk =
∑

l f
k
l , for k > 2 andk integral, by looking at the items

exactly once when they arrive.
The problem of estimating frequency moments over data streams using randomized

algorithms was first studied in a seminal paper by Alon, Matias and Szegedy [1, 2].
They present an algorithm, based on sampling, for estimatingFk, for k ≥ 2, to within
any specified approximation factorε and with confidence that is a constant greater than
1/2. The space complexity of this algorithm iss = Õ(n1− 1

k) (suppressing the term
1
ε2) and time complexity per update is̃O(n1− 1

k), where,n is the number of distinct
elements in the stream. This algorithm assumes that frequency updates are restricted to
the form(l,+1).

One problem with the sampling algorithm of [1, 2] is that it is not applicable to
streams with arbitrary deletion operations. For some applications, the ability to handle

deletions in a stream may be important. For example, a network monitoring applica-
tion might be continuously maintaining aggregates over the number of currently open
connections per source or destination.

In this paper, we present an algorithm for estimatingFk, for k > 2, to within an
accuracy of(1± ε) with confidence at least 2/3. (The method can be boosted using the
median of averages technique to return high confidence estimates in the standard way
[1, 2].) The algorithm handles arbitrary insertions and legal deletions (i.e., net frequency
of every item is non-negative) from the stream and generalizes the random linear com-
binations technique of [1, 2] designed specifically for estimatingF2. The space com-
plexity of our method is̃O(n1− 1

k−1) and the time complexity to process each update is
Õ(1), where, functions ofk andε that do not involven are treated as constants.

In [7], Coppersmith and Kumar present an algorithm for estimatingFk over general
update streams. Their algorithm has similar space complexity (i.e.,Õ(n1− 1

k−1)) as the
one we design in this paper. The principal differences between our work and the work
in [7] are as follows.

1. Different Technique.Our method constructs random linear combinations of the
frequency vector using randomly chosen roots of unity, that is, we construct the
sketchZ = flxl, where,xl is a randomly chosenkth root of unity. Coppersmith
and Kumar construct random linear combinationsC = flxl, where, forl ∈ [N],
xl = −1/n1− 1

k−1 or 1− 1/n1− 1
k−1 with probability1− 1/n1− 1

k−1 and1/n1− 1
k−1

respectively.
2. Symmetric and Simpler Algorithm.Our technique is a symmetric method for all
k ≥ 2, and is a direct generalization of the sketch technique of Alon, Matias and
Szegedy [1, 2]. In particular, for everyk ≥ 2, E

[
ReZk

]
= Fk. The method of

Coppersmith and Kumar gives complicated expressions for estimatingFk, for k ≥
4. For k = 4, their estimator isC4 − BnF

2
2 (where,Bn ≈ n−4/3(1 − n−2/3)2),

and requires, in addition, an estimation ofF2 to within an accuracy factor of(1 ±
n−1/3). The estimator expression for higher values ofk (particularly, for powers
of 2) are not shown in [7]. These expressions require auxiliary moment estimation
and are quite complicated.

3. Time efficient.Our method is significantly more efficient in terms of the time taken
to process an arrival over the stream. The time complexity to process a stream
update in our method is̃O(1), whereas, the time complexity of the Coppersmith
Kumar technique is̃O(n1− 1

k−1).

The recent and unpublished work in [11] presents an algorithm for estimatingFk, for
k > 2 and for the append only streaming model (used by [1, 2]), with space complexity
Õ(n1− 2

k+1). Although, the algorithm in [11] improves on the asymptotic space com-
plexity of the algorithm presented in this paper, it cannot handle deletion operations
over the stream. Further, the method used by [11] is significantly different from the
techniques used in this paper, or from the techniques used by Coppersmith and Kumar
[7].

Lower bounds.The work in [1, 2] shows space lower bounds for this problem to be
Ω(n1−5/k), for anyk > 5. Subsequently, the space lower bounds have been strength-

ened toΩ(ε2n1−(2+ε)/k), for k > 2, ε > 0, by Bar-Yossef, Jayram, Kumar and Sivaku-
mar [3], and further toΩ(n1−2/k) by Chakrabarti, Khot and Sun [5]. Saks and Sun [14]
show that estimating theLp distanced between two streaming vectors to within a factor
of dδ requires spaceΩ(n1−2/p−4δ).

Other Related Work.For the special case of computingF2, [1, 2] presents anO(log n+
log m) space and time complexity algorithm, where,m is the sum of the frequencies.
Random linear combinations based on random variables drawn from stable distributions
were considered by [13] to estimateFp, for 0 < p ≤ 2. The work presented in [9]
presents a sketch technique to estimate the difference between two streams based on
theL1 metric norm. There has been substantial work on the problem of estimatingF0

and related metrics (set expression cardinalities over streams) for the various models of
data streams [10, 1, 4, 12].

The rest of the paper is organized as follows. Section 2 describes the method and
Section 3 presents formal lemmas and their proofs. Finally we conclude in Section 4.

2 An overview of the method

In this section, we present a simple description of the algorithm and some of its proper-
ties. The lemmas and theorems stated in this section are proved formally in Section 3.
Throughout the paper, we treatk as a fixed given value larger than 1.

2.1 Sketches using random linear combinations ofkth roots of unity

Let x be a randomly chosen root of the equationxk = 1, such that each of thek roots
is chosen with equal probability of1/k. Given a complex numberz, its conjugate is
denoted bȳz. For anyj, 1 ≤ j ≤ k, the following basic property holds, as shown
below.

E
[
xj

]
= E

[
x̄j

]
=

{
0 if 1 ≤ j < k

1 if j = k.
(1)

Proof. Let j = k. Then,E
[
xj

]
= E

[
xk

]
= E

[
1
]

= 1, since,x is a root of unity.

Let 1 ≤ j < k and letu be the elementarykth root of unity, that is,u = e2π
√
−1/k.

E
[
xj

]
=

1
k

k∑
l=1

(ul)j =
1
k

k∑
l=1

(uj)l =
uj

k

(1− ujk)
(1− uj)

where, the last equality follows from the sum of a geometric progression in the complex
field. Sinceuk = 1, it follows thatujk = 1. Further, sinceu is the elementarykth root
of unity, uj = e2πj

√
−1/k 6= 1, for 1 ≤ j < k. Thus, the expression(1 − ujk)/(1 −

uj) = 0. Therefore,E
[
xj

]
= 0, for 1 ≤ j < k.

The conjugation operator is a 1-1 and onto operator in the field of complex numbers.
Further, ifx is a root ofxk = 1, then,x̄k = xk = 1̄ = 1, and therefore,̄x is also akth

root of unity. Thus, the conjugation operator, applied to the group ofkth roots of unity,
results in a permutation of the elements in the group (actually, it is an isomorphism). It

therefore follows that the sum of thejth powers of the roots of unity is equal to the sum
of thejth powers of the conjugates of the roots of unity. Thus,E

[
x̄j

]
= E

[
xj

]
. ut

Let Z be the random variable defined asZ =
∑

l∈[N] flxl. The variablexl, for

eachl ∈ [N], is one of a randomly chosen root ofxk = 1. The family of variables{xl}
is assumed to be2k-wise independent. The following lemma shows that ReZk is an
unbiased estimator ofFk. Following [1, 2], we callZ as asketch. The random variableZ
can be efficiently maintained with respect to stream updates as follows. First, we choose
a random hash functionθ : [N] → [k] drawn from a family of hash functions that is2k-
wise independent. Further, we pre-compute thekth roots of unity into an arrayA[1..k]
of sizek (of complex numbers), that is,A[r] = e2·π·r·

√
−1/k, for r = 1, 2, . . . , k. For

every stream update(l, v), we update the sketch as follows.

Z = Z + v ·A[θ(l)]

The space required to maintain the hash functionθ = Õ(k), and the time required for
processing a stream update is alsoÕ(k).

Lemma 1. E
[
ReZk

]
= Fk.

As the following lemma shows, the variance of this estimator is quite high.

Lemma 2. Var
[
ReZk

]
= O(k2kF k

2).

This implies thatVar
[
ReZk

]
/(E

[
ReZk

]
)2 = O(F k

2 /F
2
k), which could be as large

asnk−2. To reduce the variance we organize the sketches in a hash table.

2.2 Organizing sketches in a hash table

Letφ : {0, 1, . . . , N−1} → [B] be a hash function that maps the domain{0, 1, . . . , N−
1} into a hash table consisting ofB buckets. The hash functionφ is drawn from a
family of hash functionsH that is2k-wise independent. The random bits used by the
hash family is independent of the random bits used by the family{xl}l∈{0,1,...,N−1}, or,
equivalently, the random bits used to generateφ andθ are independent. The indicator
variableyl,b, for any domain elementl ∈ {0, 1, . . . , N − 1}] and bucketb ∈ [B], is
defined asyl,b = 1 if φ(l) = b andyl,b = 0 otherwise. Associated with each bucketb is
a sketchZb of the elements that have hashed to that bucket. The random variables,Yb

andZb are defined as follows.

Zb =
∑

l

fl · xl · yl,b, Yb = ReZk
b , and Y =

∑
b∈[B]

Yb

Maintaining the hash table of sketches in the presence of stream updates is analogous
to maintainingZ. As discussed previously, letθ : {0, 1, . . . , N − 1} → [k] denote a
random hash function that is chosen from a2k-wise independent family of hash func-
tions (and independently of the bits used byφ), and letA[1 . . . k] be an array whosejth

entry ise2·π·j·
√
−1/k, for j = 1, . . . , k. For every stream update(l, v), we perform the

following operation.
Zφ(l) = Zφ(l) + v ·A[θ(l)]

The time complexity of the update operation isÕ(k). The sketches in the buckets except
the bucket numberedφ(l) are left unchanged.

The main observation of the paper is that the hash partitioning of the sketchY into
{Yb}b∈[B] reduces the variance ofY significantly, while maintaining thatE

[
Y

]
= Fk.

This is stated in the lemma below.

Lemma 3. LetB ≤ 2n1− 1
k . Then,Var

[
Y

]
= O(F 2

kn
k−2/Bk−1).

A hash table organization of the sketches is normally used to reduce the time com-
plexity of processing each stream update [6, 8]. However, fork > 2, the hash table
organization of the sketches has the additional effect of reducing the variance.

Finally, we keeps1 independent copiesY [0], . . . , Y [s1 − 1] of the variableY . The
average of these variables is denoted byȲ ; thusVar

[
Ȳ

]
= (1/s1)Var

[
Y

]
. The re-

sult of the paper is summarized below, which states thatȲ estimatesFk to within an
accuracy factor of(1± ε) with constant probability greater than 1/2 (at least 2/3).

Theorem 4. Letn1− 1
k−1 ≤ B ≤ 2 · n1− 1

k−1 ands1 = 6 · 2k · k3k/ε2. Then,
Pr

{
|Ȳ − Fk| > εFk

}
≤ 1/3.

The space usage of the algorithm is thereforeÕ(B · s1) = O(n1− 1
k−1) bits, since

a logarithmic overhead is required to store each sketchZb. To boost the confidence of
the answer to at least1 − 2−Ω(s2), a standard technique of returning the median value
amongs2 such average estimates can be used, as shown in [1, 2].

The algorithm assumes that the number of buckets in the hash table isB, where,
n1− 1

k−1 ≤ B ≤ 2 · n1− 1
k−1 . Since, in general, the number of distinct items in the

stream is not known in advance, one possible method that can be used is as follows.
First estimaten to within a factor of(1 ± 1

8) using an algorithm for estimatingF0,
such as [10, 1, 2, 4]. This can be done with high probability, in spaceO(logN). Keep
2 logN+4 group of (independent) hash tables, such that theith group usesBi = d2i/2e
buckets. Each group of the hash tables uses the data structure described earlier. At the
time of inference, firstn is estimated aŝn, and, then, we choose a hash table group
indexed byi such thati = 2 · d(1 − 1

k−1) log (8 · n̂/7)e. This ensures that the hash

table sizeBi satisfiesn1− 1
k−1 ≤ Bi ≤ 2 · n1− 1

k−1 , with high probability. Since, the
number of hash table groups is2 · logN , this construction adds an overhead in terms
of both space complexity and update time complexity by a factor of2 · logN . In the
remainder of the paper, we assume thatn is known exactly, with the understanding that
this assumption can be alleviated as described.

3 Analysis

Thejth frequency moment of the set of elements that map to bucketb under the hash
functionφ, is a random variable denoted byFj,b. Thus,Fj,b =

∑
l f

j
l yl,b. Further, since

every element in the stream hashes to exactly one bucket,
∑

b Fj,b = Fj . We definehl,b,
for l ∈ {0, 1, . . . , N − 1} andb ∈ [B] to behl,b = fl · yl,b. Thus,Fj,b =

∑
l h

j
l,b, for

j ≥ 1.

Notation: Marginal expectations.The random variables,Y, {Yb}b∈B are functions
of two families of random variables, namely,x = {xl}l∈{0,1,...,N−1}, used to gener-
ate the random roots of unity, andy = {yl,b}, l ∈ {0, 1, . . . , N − 1} andb ∈ [B],
used to map elements to buckets in the hash table. Our independence assumptions
imply that these two families are mutually independent (i.e., their seeds use indepen-
dent random bits), that is,Pr {x = u andy = v} = Pr {x = u} · Pr {y = v} Let
W = W (x,y) be a random variable that is a function of the random variables inx and
y. For a fixed random choice ofy = y0, Ex

[
W

]
denotes the marginal expectation of

W as a function ofy. That is,Ex

[
W

]
=

∑
uW (u,y0)Pr {x = u}. It follows that

E
[
W

]
= Ey

[
Ex

[
W

]]
.

Overview of the analysis.The main steps in the proof of Theorem 4 are as follows.
In Section 3.1, we show thatEx

[
Y

]
= Fk. In Section 3.2, we show thatE

[
ReZk

]
≤

k2kF k
2 . In Section 3.3, using the above result, we show thatEx

[
Y 2

]
≤ k2k

∑
b F

k
2,b.

Section 3.4 shows thatEy

[
F k

2,b

]
≤ (2/B + 2k · nk−2/Bk)F 2

k and also concludes the
proof of Theorem 4. Finally, we conclude in Section 4.

Notation: Multinomial Expansion.Let X be defined asX =
∑

l∈{0,1,...,N−1} al,

where,al ≥ 0, for l ∈ {0, 1, . . . , N − 1}. Then,Xk can be written as

Xk =
k∑

s=1

∑
e1+···es=k,e1>0,··· ,es>0

(
k

e1e2 · · · es

) ∑
l1<l2<···<ls

ae1
l1
a

ej

l2
· · · aes

ls

where,s is the number of distinct terms in the product andei is the exponent of the
ith product term. The indicesli are therefore necessarily distinct,li ∈ {0, 1, . . . , N −
1}, i = 1, 2, . . . , s. For easy reference, the above equation is written and used in the
following form.

Xk =
∑

s,e:Q(e,s)

C(e)
∑

l:R(e,l,s)

(s∏
j=1

a
ej

lj

)
. (2)

where,Q(e, s) ≡ 1 ≤ s ≤ k ande = (e1, e2, . . . , es) is s-dimensional and
∑s

j=1 ej =
k; R(e, l, s) ≡ l = (l1, l2, . . . , ls) is s-dimensional and0 ≤ l1 < l2 < · · · < ls ≤
N−1; and the multinomial coefficientC(e) =

(
k

e1,...,es

)
. In this notation, the following

inequality holds . ∑
l:R(e,l,s)

s∏
j=1

a
ej

lj
≤

s∏
j=1

(∑
l

a
ej

l

)
. (3)

By settingn = k, anda1 = a2 = · · · = ak = 1, we obtain,

kk =
∑
e,s

C(e)
(
k

s

)
>

∑
e,s

C(e).

By squaring the above equation on both sides, we obtain thatk2k = (
∑

e,s C(e)
(
k
s

)
)2 >∑

e,s C
2(e). We therefore have the following inequalities.∑

e,s

C(e) < kk,
∑
e,s

C2(e) < k2k . (4)

3.1 Expectation

In this section, we show thatE
[
ReZk

]
= Fk, thereby proving Lemma 1, and that

Ex

[
Y

]
= Fk.

Proof (of Lemma 1).Since the family of variablesxl’s is k-wise independent, therefore

E
[s∏
j=1

x
ej

lj

]
=

s∏
j=1

E
[
x

ej

lj

]
.

Applying equation (2) toZk = (
∑

l flxl)k and using linearity of expectation andk-
wise independence property ofxl’s, we obtain

E
[
Zk

]
=

∑
s,e:Q(e,s)

C(e)
∑

l:R(e,l,s)

(s∏
j=1

f
ej

lj

)(s∏
j=1

E
[
x

ej

lj

])
.

Using equation (1), we note that the term
(∏s

j=1 E
[
x

ej

lj

])
= 0, if s > 1, since in this

case,ej < k, for eachj = 1, . . . , s. Thus, the above summation reduces to

E
[
Zk

]
=

∑
l

fk
l = Fk .

SinceFk is real,E
[
ReZk

]
is alsoFk, proving Lemma 1. ut

Lemma 5. Suppose that the family of random variables{xl} is k-wise independent.
Then,Ex

[
Yb

]
= Fk,b andEx

[
Y

]
= E

[
Y

]
= Fk.

Proof. We first show thatEx

[
Yb

]
= Fk,b.Ex

[
Zk

b

]
= Ex

[
(
∑

l flyl,bxl)k
]

= Ex

[
(
∑

l hl,bxl)k
]
,

by lettinghl,b = fl · yl,b. By an argument analogous to the proof of Lemma 1, we ob-
tain Ex

[
(
∑

l hl,bxl)k
]

=
∑

l h
k
l,b =

∑
l f

k
l y

k
l,b =

∑
l f

k
l,kyl,b = Fk,b, (sinceyl,b’s are

binary variables). SinceFk,b is always real,Ex

[
Yb

]
= Ex

[
ReZk

b

]
= Fk,b. Finally,

Ex

[
Y

]
= Ex

[∑
b Yb

]
=

∑
b Ex

[
Yb

]
=

∑
b Fk,b = Fk, since each element is hashed

to exactly one bucket. Further,E
[
Y

]
= Ey

[
Ex

[
Y

]]
= Ey

[
Fk

]
= Fk. ut

3.2 Variance of ReZk

In this section, we estimate the variance of ReZk and derive some simple corollaries.

Lemma 6. LetW = Re(
∑

l alxl)k. Then,Var
[
W

]
≤ k2k(

∑
l a

2
l)

k.

Proof. Let X = (
∑

l alxl)k. Then,Var
[
W

]
= E

[
W 2

]
− (E

[
W

]
)2 ≤ E

[
XX̄

]
−

(E
[
W

]
)2. Using equation (2), forX, X̄, we obtain the following.

X =
∑

s,e:Q(e,s)

C(e)
∑

l:R(e,l,s)

(s∏
j=1

a
ej

lj

)
·
(s∏
j=1

x
ej

lj

)
X̄ =

∑
t,g:Q(g,t)

C(g)
∑

l:R(g,m,t)

(t∏
j′=1

a
gj′
mj′

)
·
(t∏
j′=1

x̄
gj′
mj′

)

Multiplying the above two equations, we obtain

X · X̄ =
∑

s,e:Q(e,s)

∑
t,g:Q(g,t)

C(e) · C(g)
∑

l:R(e,l,s)

∑
l:R(g,m,t)(s∏

j=1

a
ej

lj

)
·
(t∏
j′=1

a
gj′
mj′

)
·
(s∏
j=1

x
ej

lj

)
·
(t∏
j′=1

x̄
gj′
mj′

)
.

The general form of the product of random variables that arises in the multinomial
expansion ofXX̄ is (

∏s
j=1 x

ej

lj
)(

∏t
j′=1 x̄

gj′
mj′). Since the random variablesxl’s are2k-

wise independent, using equation (1), it follows that,

E
[s∏
j=1

x
ej

lj

t∏
j′=1

x̄gj
mj′

]
=

1 if s = t = 1, e1 = g1 = k

1 if s = t, t > 1, e = g andl = m,

0 otherwise.

This directly yields the following.

E
[
XX̄

]
=

∑
e,s:Q(e,s)

C2(e)
∑

l:R(e,l,s)

s∏
j=1

a
2ej

lj

≤
∑
e,s

C2(e)
s∏

j=1

(∑
l

a
2ej

l

)
, by equation (3)

≤
∑
e,s

C2(e)
s∏

j=1

(∑
l

a2
l

)ej
, since

∑
l

a
2ej

l ≤ (
∑

l

a2
l)

ej

=
(∑

l

a2
l

)k(∑
e,s

C2(e)
)
, since

s∑
j=1

ej = k

≤
(∑

l

a2
l

)k · k2k, by equation (4). ut

By lettingal = fl, l ∈ {0, 1, 2 . . . , N − 1}, Lemma 6 yields

Var
[
ReZk

]
= Var

[
Re(

∑
l

flxl)k
]
≤ k2kF k

2 , (5)

which is the statement of Lemma 2. By lettingal = hl,b = fl · yl,b, where,b is a fixed
bucket index, andl ∈ {0, 1, 2 . . . , N − 1}, yields the following equation.

Ex

[
Y 2

b

]
≤ k2kF k

2,b, for b ∈ [B]. (6)

3.3 Var
[
Y

]
: Vanishing of cross-bucket terms

We now consider the problem of obtaining an upper bound onVar
[
Y

]
. Note that

Var
[
Y

]
= Ey

[
Ex

[
Y 2

]]
−(Ey

[
Ex

[
Y

]]
)2. From Lemma 5,Ey

[
Ex

[
Y

]]
= Fk. Thus,

Var
[
Y

]
= Ey

[
Ex

[
Y 2

]]
− F 2

k . (7)

Lemma 7. Var
[
Y

]
≤ k2k

∑
b Ey

[
F k

2,b

]
, assuming independence assumptionI.

Proof. Ex

[
Y 2

]
= Ex

[
(
∑

b Yb)2
]

= Ex

[∑
b Y

2
b +

∑
a6=b YaYb

]
=

∑
b Ex

[
Y 2

b

]
+∑

a6=b Ex

[
YaYb

]
.

We now considerEx

[
YaYb

]
, for a 6= b. Recall thatYa = ReZk

a (and analogously,
Yb is defined). For any two complex numbersz, w, (Rez)(Rew) = (1/2)Re(z(w +
w̄)). Thus,YaYb = (ReZk

a)(ReZk
b) = (1/2)Re(Zk

aZ
k
b + Zk

aZ
k
b).

Let us first considerEx

[
Zk

aZ
k
b

]
. The general term involving product of random

variables is(
∏s

j=1 f
ej

lj
) · (

∏t
j′=1 f

gj′
mj) · (

∏s
j=1 ylj ,a ·x

ej

lj
) · (

∏t
j′=1 ymj′ ,b ·x

gj
mj′). Con-

sider the last two product terms in the above expression, that is,(
∏s

j=1 ylj ,a · x
ej

lj
) ·

(
∏t

j′=1 ymj′ ,b · x
gj
mj′). For any1 ≤ j ≤ s and1 ≤ j′ ≤ t, it is not possible that

lj = mj′ , that is, the same element whose index is given bylj = mj′ cannot si-
multaneously hash to two distinct buckets,a and b (recall thata 6= b). By 2k-wise
independence, we therefore obtain that the only way the above product term can be non
zero (i.e., 1) on expectation, is thats = t = 1 and therefore,e1 = k andg1 = k. Thus,
we haveE

[
Zk

aZ
k
b

]
=

∑
l,m hk

l,ah
k
m,b = Fk,aFk,b.

Using the same observation, it can be argued thatEx

[
Zk

aZ
k
b

]
= Fk,aFk,b. It fol-

lows thatEx

[
(1/2)(Zk

aZ
k
b + Zk

aZ
k
b))

]
= Fk,aFk,b, which is a real number. Therefore

Ex

[
Re(1/2)(Zk

aZ
k
b + Zk

aZ
k
b)

]
= Fk,aFk,b = Ex

[
YaYb

]
.

By equation (7),Var
[
Y

]
= Ey

[
Ex

[
Y 2

]]
− F 2

k . Further, from Lemma 5,Fk =
Ey

[∑
b Fk,b

]
. We therefore have,

Var
[
Y

]
= Ey

[
Ex

[
Y 2

]
−

(∑
b

Fk,b

)2]
= Ey

[∑
b

Ex

[
Y 2

b

]
+

∑
a6=b

Ex

[
YaYb

]
−

(∑
b

Fk,b

)2]
= Ey

[∑
b

Ex

[
Y 2

b

]
+

∑
a6=b

Fk,aFk,b −
(∑

b

Fk,b

)2]
, by above argument

= Ey

[∑
b

Ex

[
Y 2

b

]
−

∑
b

F 2
k,b

]
≤ Ey

[∑
b

Ex

[
Y 2

b

]]
≤ Ey

[∑
b

k2kF k
2,b

]
, by equation (6) ut

3.4 Calculation ofE
[
F k

2,b

]
Given at-dimensional vectore = (e1, . . . , et) such thatei > 0, for 1 ≤ i ≤ t and∑t

j=1 ej = k, we define the functionψ(e) as follows. Without loss of generality, let
the indicesej be arranged in non-decreasing order. Letr = r(e) denote the largest
index such thater < k/2. Then, we define the functionφ(e) as follows.

ψ(e) = n
∑r

j=1(1−2ej/k)/Bt

The motivation of this definition stems from its use in the following lemma.

Lemma 8. Suppose
∑t

j=1 ej = k andej > 0, for j = 1, . . . , t. Then,
∏t

j=1 F2ej
≤

ψ(e) · F 2
k ·Bt.

Proof. From [1, 2],Fj ≤ n1−j/kF
j/k
k , if j < k andFj ≤ F

j/k
k , if j > k. Thus,

t∏
j=1

F2ej
=

 r∏
j=1

F2ej

 t∏
j=r+1

F2ej

 =

 r∏
j=1

n1−2ej/kF
2ej/k
k

 t∏
j=r+1

F
2ej/k
k

= n

∑r
j=1(1−2ej/k)F

∑t
j=1 2ej/k

k = ψ(e) ·Bt · F 2
k , since

∑
j

ej = k.ut

The functionψ satisfies the following property that we use later.

Lemma 9. If B < 2 · n1− 1
k , then,ψ(e) ≤ max(2/B, 2k · nk−2/Bk).

Proof. Let e be at-dimensional vector. Ift = 1, ψ(e) = 1/B. If t = r, thenψ(e) =
nt−2/Bt ≤ 2k · nk−2/Bk. If t ≥ r + 2, thenψ(e) = (2t/Bt) · nt−((t−r)+

∑
2ej/k) <

2t · nt−2/Bt ≤ 2k · nk−2/Bk. Finally, lett = r + 1. Then,

ψ(e) = 2t · nt−1−2
∑

ej/k/Bt ≤ 2t · nt−1−2(t−1)/k/Bt,

since
∑r

j=1 ej ≥ r = t− 1. Thus,

ψ(e) ≤ ψ(e)(2 · n1− 1
k /B)k−t ≤ (2t · nt−1−2(t−1)/k/Bt)(2 · n1− 1

k /B)k−t =

2k · nk−2−(t−2)/k/Bk ≤ 2k · nk−2/Bk .

where, the first inequality follows from the assumption thatB < n1− 1
k and the second

inequality follows becauset ≥ 2. ut

Lemma 10. LetB < 2 · n1− 1
k . Then,E

[
F k

2,b

]
< kkF 2

k (2/B + 2k · nk−2/Bk).

Proof. For a fixedb, the variablesyl,b arek-wise independent.F2,b is a linear function
of yl,b. Thus,F k

2,b is a symmetric multinomial of degreek, as follows.

F k
2,b = (

∑
l

f2
l yl,b)k

=
∑
s,e

C(e)
∑

l1<l2<···ls

f2e1
l1

· · · f2es

ls
yl1,b · yl2,b · yls,b .

Taking expectations, and usingk-wise independence of theyl,b’s, we have,

E
[
F k

2,b

]
=

∑
s,e

C(e)
∑

l1<l2<···<ls

f2e1
l1

· · · f2ej

lj
E

[
yl1,b · yl2,b · yls,b

]
=

∑
s,e

C(e)
∑

l1<l2<···<ls

f2e1
l1

· · · f2ej

lj
E

[
yl1,b

]
·E

[
yl2,b

]
· · ·E

[
yls , b

]
=

∑
s,e

C(e)
∑

l1<l2<···<ls

f2e1
l1

· · · f2ej

lj

1
Bs

, since,E
[
ylj ,b

]
=

1
B

≤
∑
s,e

C(e) · (1/Bs) ·
s∏

j=1

F2ej

≤
∑
s,e

C(e) · ψ(e) · F 2
k , by Lemma 8

≤
∑
s,e

C(e) · F 2
k · (2/B + 2k · nk−2/Bk), by Lemma 9

≤ kk · F 2
k · (2/B + 2k · nk−2/Bk), since,

∑
s,e

C(e) < kk ut

Combining the result of Lemma 7 with Lemma 10, we obtain the following bound on
Var

[
Y

]
.

Var
[
Y

]
≤ k3k · F 2

k · (2 + 2k · nk−2/Bk−1) (8)

Recall thatȲ is the average ofs1 independent estimators, each calculatingY . The main
theorem of the paper now follows simply.

Proof (of Theorem 4).By Chebychev’s inequality,Pr
{
|Ȳ − Fk| > εFk

}
< Var

[
Ȳ

]
/(ε2F 2

k).
Substituting Equation (8), we haveVar

[
Ȳ

]
/(ε2 · F 2

k) ≤ 1/3. ut

4 Conclusions

The paper presents a method for estimating thekth frequency moment, fork > 2,
of data streams with general update operations. The algorithm has space complexity
Õ(n1− 1

k−1)) and is based on constructing random linear combinations using randomly
chosenkth roots of unity. A gap remains between the lower bound for this problem,
namely,O(n1−2/k), for k > 2, as proved in [3, 5] and the complexity of a known
algorithm for this problem.

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approximating
the Frequency Moments”. InProceedings of the 28th Annual ACM Symposium on the Theory
of Computing STOC, 1996, pages 20–29, Philadelphia, Pennsylvania, May 1996.

2. Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approximating
frequency moments”.Journal of Computer Systems and Sciences, 58(1):137–147, 1998.

3. Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. “An information statistics
approach to data stream and communication complexity”. InProceedings of the 34th ACM
Symposium on Theory of Computing (STOC), 2002, pages 209–218, Princeton, NJ, 2002.

4. Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. “Counting
distinct elements in a data stream”. InProceedings of the 6th International Workshop on
Randomization and Approximation Techniques in Computer Science, RANDOM 2002, Cam-
bridge, MA, 2002.

5. Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. “Near-Optimal Lower Bounds on
the Multi-Party Communication Complexity of Set Disjointness”. InProceedings of the
18th Annual IEEE Conference on Computational Complexity, CCC 2003, Aarhus, Denmark,
2003.

6. Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in data
streams”. InProceedings of the 29th International Colloquium on Automata Languages and
Programming, 2002.

7. Don Coppersmith and Ravi Kumar. “An improved data stream algorithm for estimating
frequency moments”. InProceedings of the Fifteenth ACM SIAM Symposium on Discrete
Algorithms, New Orleans, LA, 2004.

8. G. Cormode and S. Muthukrishnan. “What’s Hot and What’s Not: Tracking Most Frequent
Items Dynamically”. InProceedings of the Twentysecond ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Diego, California, May 2003.

9. Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. “An Ap-
proximateL1-Difference Algorithm for Massive Data Streams”. InProceedings of the 40th
Annual IEEE Symposium on Foundations of Computer Science, New York, NY, October
1999.

10. Philippe Flajolet and G.N. Martin. “Probabilistic Counting Algorithms for Database Appli-
cations”.Journal of Computer Systems and Sciences, 31(2):182–209, 1985.

11. Sumit Ganguly. “A bifocal technique for estimating frequency moments over data streams”.
Manuscript, April 2004.

12. Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. “Processing Set Expressions over
Continuous Update Streams”. InProceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, CA, 2003.

13. Piotr Indyk. “Stable Distributions, Pseudo Random Generators, Embeddings and Data
Stream Computation”. InProceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science, pages 189–197, Redondo Beach, CA, November 2000.

14. M. Saks and X. Sun. “Space lower bounds for distance approximation in the data stream
model”. In Proceedings of the 34th ACM Symposium on Theory of Computing (STOC),
2002, 2002.

