Estimating Frequency Moments of Data Streams using Random Linear Combinations

Sumit Ganguly

Indian Institute of Technology, Kanpur e-mail: sganguly@iitk.ac.in

Abstract. The problem of estimating the k^{th} frequency moment F_k for any nonnegative k, over a data stream by looking at the items exactly once as they arrive, was considered in a seminal paper by Alon, Matias and Szegedy [1, 2]. The space complexity of their algorithm is $\tilde{O}(n^{1-\frac{1}{k}})$. For k > 2, their technique does not apply to data streams with arbitrary insertions and deletions. In this paper, we present an algorithm for estimating F_k for k > 2, over general update streams whose space complexity is $\tilde{O}(n^{1-\frac{1}{k-1}})$ and time complexity of processing each stream update is $\tilde{O}(1)$.

Recently, an algorithm for estimating F_k over general update streams with similar space complexity has been published by Coppersmith and Kumar [7]. Our technique is, (a) basically different from the technique used by [7], (b) is simpler and symmetric, and, (c) is significantly more efficient in terms of the time required to process a stream update $(\tilde{O}(1) \text{ compared with } \tilde{O}(n^{1-\frac{1}{k-1}}))$.

1 Introduction

A data stream can be viewed as a sequence of updates, that is, insertions and deletions of items. Each update is of the form $(l, \pm v)$, where, l is the identity of the item and vis the change in frequency of l such that $|v| \ge 1$. The items are assumed to draw their identities from the domain $[N] = \{0, 1, \ldots, N-1\}$. If v is positive, then the operation is an insertion operation, otherwise, the operation is a deletion operation. The frequency of an item with identity l, denoted by f_l , is the sum of the changes in frequencies of l from the start of the stream. In this paper, we are interested in computing the k^{th} frequency moment $F_k = \sum_l f_l^k$, for k > 2 and k integral, by looking at the items exactly once when they arrive.

The problem of estimating frequency moments over data streams using randomized algorithms was first studied in a seminal paper by Alon, Matias and Szegedy [1, 2]. They present an algorithm, based on sampling, for estimating F_k , for $k \ge 2$, to within any specified approximation factor ϵ and with confidence that is a constant greater than 1/2. The space complexity of this algorithm is $s = \tilde{O}(n^{1-\frac{1}{k}})$ (suppressing the term $\frac{1}{\epsilon^2}$) and time complexity per update is $\tilde{O}(n^{1-\frac{1}{k}})$, where, n is the number of distinct elements in the stream. This algorithm assumes that frequency updates are restricted to the form (l, +1).

One problem with the sampling algorithm of [1, 2] is that it is not applicable to streams with arbitrary deletion operations. For some applications, the ability to handle

deletions in a stream may be important. For example, a network monitoring application might be continuously maintaining aggregates over the number of currently open connections per source or destination.

In this paper, we present an algorithm for estimating F_k , for k > 2, to within an accuracy of $(1 \pm \epsilon)$ with confidence at least 2/3. (The method can be boosted using the median of averages technique to return high confidence estimates in the standard way [1, 2].) The algorithm handles arbitrary insertions and legal deletions (i.e., net frequency of every item is non-negative) from the stream and generalizes the random linear combinations technique of [1, 2] designed specifically for estimating F_2 . The space complexity of our method is $\tilde{O}(n^{1-\frac{1}{k-1}})$ and the time complexity to process each update is $\tilde{O}(1)$, where, functions of k and ϵ that do not involve n are treated as constants.

In [7], Coppersmith and Kumar present an algorithm for estimating F_k over general update streams. Their algorithm has similar space complexity (i.e., $\tilde{O}(n^{1-\frac{1}{k-1}})$) as the one we design in this paper. The principal differences between our work and the work in [7] are as follows.

- 1. Different Technique. Our method constructs random linear combinations of the frequency vector using randomly chosen roots of unity, that is, we construct the sketch $Z = f_l x_l$, where, x_l is a randomly chosen k^{th} root of unity. Coppersmith and Kumar construct random linear combinations $C = f_l x_l$, where, for $l \in [N]$, $x_l = -1/n^{1-\frac{1}{k-1}}$ or $1-1/n^{1-\frac{1}{k-1}}$ with probability $1-1/n^{1-\frac{1}{k-1}}$ and $1/n^{1-\frac{1}{k-1}}$ respectively.
- Symmetric and Simpler Algorithm. Our technique is a symmetric method for all k ≥ 2, and is a direct generalization of the sketch technique of Alon, Matias and Szegedy [1,2]. In particular, for every k ≥ 2, E[Re Z^k] = F_k. The method of Coppersmith and Kumar gives complicated expressions for estimating F_k, for k ≥ 4. For k = 4, their estimator is C⁴ B_nF₂² (where, B_n ≈ n^{-4/3}(1 n^{-2/3})²), and requires, in addition, an estimation of F₂ to within an accuracy factor of (1 ± n^{-1/3}). The estimator expression for higher values of k (particularly, for powers of 2) are not shown in [7]. These expressions require auxiliary moment estimation and are quite complicated.
- 3. *Time efficient*. Our method is significantly more efficient in terms of the time taken to process an arrival over the stream. The time complexity to process a stream update in our method is $\tilde{O}(1)$, whereas, the time complexity of the Coppersmith Kumar technique is $\tilde{O}(n^{1-\frac{1}{k-1}})$.

The recent and unpublished work in [11] presents an algorithm for estimating F_k , for k > 2 and for the append only streaming model (used by [1,2]), with space complexity $\tilde{O}(n^{1-\frac{2}{k+1}})$. Although, the algorithm in [11] improves on the asymptotic space complexity of the algorithm presented in this paper, it cannot handle deletion operations over the stream. Further, the method used by [11] is significantly different from the techniques used in this paper, or from the techniques used by Coppersmith and Kumar [7].

Lower bounds. The work in [1,2] shows space lower bounds for this problem to be $\Omega(n^{1-5/k})$, for any k > 5. Subsequently, the space lower bounds have been strength-

ened to $\Omega(\epsilon^2 n^{1-(2+\epsilon)/k})$, for k > 2, $\epsilon > 0$, by Bar-Yossef, Jayram, Kumar and Sivakumar [3], and further to $\Omega(n^{1-2/k})$ by Chakrabarti, Khot and Sun [5]. Saks and Sun [14] show that estimating the L_p distance d between two streaming vectors to within a factor of d^{δ} requires space $\Omega(n^{1-2/p-4\delta})$.

Other Related Work. For the special case of computing F_2 , [1, 2] presents an $O(\log n + \log m)$ space and time complexity algorithm, where, m is the sum of the frequencies. Random linear combinations based on random variables drawn from stable distributions were considered by [13] to estimate F_p , for $0 . The work presented in [9] presents a sketch technique to estimate the difference between two streams based on the <math>L_1$ metric norm. There has been substantial work on the problem of estimating F_0 and related metrics (set expression cardinalities over streams) for the various models of data streams [10, 1, 4, 12].

The rest of the paper is organized as follows. Section 2 describes the method and Section 3 presents formal lemmas and their proofs. Finally we conclude in Section 4.

2 An overview of the method

In this section, we present a simple description of the algorithm and some of its properties. The lemmas and theorems stated in this section are proved formally in Section 3. Throughout the paper, we treat k as a fixed given value larger than 1.

2.1 Sketches using random linear combinations of k^{th} roots of unity

Let x be a randomly chosen root of the equation $x^k = 1$, such that each of the k roots is chosen with equal probability of 1/k. Given a complex number z, its conjugate is denoted by \bar{z} . For any $j, 1 \leq j \leq k$, the following basic property holds, as shown below.

$$\mathbf{E}[x^j] = \mathbf{E}[\bar{x}^j] = \begin{cases} 0 & \text{if } 1 \le j < k\\ 1 & \text{if } j = k. \end{cases}$$
(1)

Proof. Let j = k. Then, $\mathbf{E}[x^j] = \mathbf{E}[x^k] = \mathbf{E}[1] = 1$, since, x is a root of unity.

Let $1 \le j < k$ and let u be the elementary k^{th} root of unity, that is, $u = e^{2\pi\sqrt{-1}/k}$.

$$\mathbf{E}[x^{j}] = \frac{1}{k} \sum_{l=1}^{k} (u^{l})^{j} = \frac{1}{k} \sum_{l=1}^{k} (u^{j})^{l} = \frac{u^{j}}{k} \frac{(1-u^{jk})}{(1-u^{j})}$$

where, the last equality follows from the sum of a geometric progression in the complex field. Since $u^k = 1$, it follows that $u^{jk} = 1$. Further, since u is the elementary k^{th} root of unity, $u^j = e^{2\pi j \sqrt{-1}/k} \neq 1$, for $1 \leq j < k$. Thus, the expression $(1 - u^{jk})/(1 - u^j) = 0$. Therefore, $\mathbf{E}[x^j] = 0$, for $1 \leq j < k$.

The conjugation operator is a 1-1 and onto operator in the field of complex numbers. Further, if x is a root of $x^k = 1$, then, $\bar{x}^k = \bar{x}^k = \bar{1} = 1$, and therefore, \bar{x} is also a k^{th} root of unity. Thus, the conjugation operator, applied to the group of k^{th} roots of unity, results in a permutation of the elements in the group (actually, it is an isomorphism). It therefore follows that the sum of the j^{th} powers of the roots of unity is equal to the sum of the j^{th} powers of the conjugates of the roots of unity. Thus, $\mathbf{E}[\bar{x}^j] = \mathbf{E}[x^j]$.

Let Z be the random variable defined as $Z = \sum_{l \in [N]} f_l x_l$. The variable x_l , for each $l \in [N]$, is one of a randomly chosen root of $x^k = 1$. The family of variables $\{x_l\}$ is assumed to be 2k-wise independent. The following lemma shows that Re Z^k is an unbiased estimator of F_k . Following [1, 2], we call Z as a *sketch*. The random variable Z can be efficiently maintained with respect to stream updates as follows. First, we choose a random hash function $\theta : [N] \to [k]$ drawn from a family of hash functions that is 2kwise independent. Further, we pre-compute the k^{th} roots of unity into an array A[1..k]of size k (of complex numbers), that is, $A[r] = e^{2 \cdot \pi \cdot r \cdot \sqrt{-1}/k}$, for $r = 1, 2, \ldots, k$. For every stream update (l, v), we update the sketch as follows.

$$Z = Z + v \cdot A[\theta(l)]$$

The space required to maintain the hash function $\theta = \tilde{O}(k)$, and the time required for processing a stream update is also $\tilde{O}(k)$.

Lemma 1. $\mathbf{E}[\operatorname{Re} Z^k] = F_k$.

As the following lemma shows, the variance of this estimator is quite high.

Lemma 2. Var $[Re Z^k] = O(k^{2k}F_2^k).$

This implies that $\operatorname{Var}[\operatorname{Re} Z^k]/(\operatorname{E}[\operatorname{Re} Z^k])^2 = O(F_2^k/F_k^2)$, which could be as large as n^{k-2} . To reduce the variance we organize the sketches in a hash table.

2.2 Organizing sketches in a hash table

Let $\phi : \{0, 1, \dots, N-1\} \rightarrow [B]$ be a hash function that maps the domain $\{0, 1, \dots, N-1\}$ into a hash table consisting of B buckets. The hash function ϕ is drawn from a family of hash functions \mathcal{H} that is 2k-wise independent. The random bits used by the hash family is independent of the random bits used by the family $\{x_l\}_{l \in \{0, 1, \dots, N-1\}}$, or, equivalently, the random bits used to generate ϕ and θ are independent. The indicator variable $y_{l,b}$, for any domain element $l \in \{0, 1, \dots, N-1\}$ and bucket $b \in [B]$, is defined as $y_{l,b} = 1$ if $\phi(l) = b$ and $y_{l,b} = 0$ otherwise. Associated with each bucket b is a sketch Z_b of the elements that have hashed to that bucket. The random variables, Y_b and Z_b are defined as follows.

$$Z_b = \sum_l f_l \cdot x_l \cdot y_{l,b}, \qquad Y_b = \operatorname{Re} Z_b^k, \quad \text{and} \quad Y = \sum_{b \in [B]} Y_b$$

Maintaining the hash table of sketches in the presence of stream updates is analogous to maintaining Z. As discussed previously, let $\theta : \{0, 1, \ldots, N-1\} \rightarrow [k]$ denote a random hash function that is chosen from a 2k-wise independent family of hash functions (and independently of the bits used by ϕ), and let $A[1 \dots k]$ be an array whose j^{th} entry is $e^{2 \cdot \pi \cdot j \cdot \sqrt{-1}/k}$, for $j = 1, \dots, k$. For every stream update (l, v), we perform the following operation.

$$Z_{\phi(l)} = Z_{\phi(l)} + v \cdot A[\theta(l)]$$

The time complexity of the update operation is $\tilde{O}(k)$. The sketches in the buckets except the bucket numbered $\phi(l)$ are left unchanged.

The main observation of the paper is that the hash partitioning of the sketch Y into $\{Y_b\}_{b\in[B]}$ reduces the variance of Y significantly, while maintaining that $\mathbf{E}[Y] = F_k$. This is stated in the lemma below.

Lemma 3. Let $B \leq 2n^{1-\frac{1}{k}}$. Then, $\mathbf{Var}[Y] = O(F_k^2 n^{k-2}/B^{k-1})$.

A hash table organization of the sketches is normally used to reduce the time complexity of processing each stream update [6, 8]. However, for k > 2, the hash table organization of the sketches has the additional effect of reducing the variance.

Finally, we keep s_1 independent copies $Y[0], \ldots, Y[s_1 - 1]$ of the variable Y. The average of these variables is denoted by \overline{Y} ; thus $\mathbf{Var}[\overline{Y}] = (1/s_1)\mathbf{Var}[Y]$. The result of the paper is summarized below, which states that \overline{Y} estimates F_k to within an accuracy factor of $(1 \pm \epsilon)$ with constant probability greater than 1/2 (at least 2/3).

Theorem 4. Let $n^{1-\frac{1}{k-1}} \leq B \leq 2 \cdot n^{1-\frac{1}{k-1}}$ and $s_1 = 6 \cdot 2^k \cdot k^{3k} / \epsilon^2$. Then, **Pr** $\{ |\bar{Y} - F_k| > \epsilon F_k \} \leq 1/3$.

The space usage of the algorithm is therefore $\tilde{O}(B \cdot s_1) = O(n^{1-\frac{1}{k-1}})$ bits, since a logarithmic overhead is required to store each sketch Z_b . To boost the confidence of the answer to at least $1 - 2^{-\Omega(s_2)}$, a standard technique of returning the median value among s_2 such average estimates can be used, as shown in [1,2].

The algorithm assumes that the number of buckets in the hash table is B, where, $n^{1-\frac{1}{k-1}} \leq B \leq 2 \cdot n^{1-\frac{1}{k-1}}$. Since, in general, the number of distinct items in the stream is not known in advance, one possible method that can be used is as follows. First estimate n to within a factor of $(1 \pm \frac{1}{8})$ using an algorithm for estimating F_0 , such as [10, 1, 2, 4]. This can be done with high probability, in space $O(\log N)$. Keep $2\log N+4$ group of (independent) hash tables, such that the i^{th} group uses $B_i = \lceil 2^{i/2} \rceil$ buckets. Each group of the hash tables uses the data structure described earlier. At the time of inference, first n is estimated as \hat{n} , and, then, we choose a hash table group indexed by i such that $i = 2 \cdot \lceil (1 - \frac{1}{k-1}) \log(8 \cdot \hat{n}/7) \rceil$. This ensures that the hash table size B_i satisfies $n^{1-\frac{1}{k-1}} \leq B_i \leq 2 \cdot n^{1-\frac{1}{k-1}}$, with high probability. Since, the number of hash table groups is $2 \cdot \log N$, this construction adds an overhead in terms of both space complexity and update time complexity by a factor of $2 \cdot \log N$. In the remainder of the paper, we assume that n is known exactly, with the understanding that this assumption can be alleviated as described.

3 Analysis

The j^{th} frequency moment of the set of elements that map to bucket b under the hash function ϕ , is a random variable denoted by $F_{j,b}$. Thus, $F_{j,b} = \sum_l f_l^j y_{l,b}$. Further, since every element in the stream hashes to exactly one bucket, $\sum_b F_{j,b} = F_j$. We define $h_{l,b}$, for $l \in \{0, 1, ..., N-1\}$ and $b \in [B]$ to be $h_{l,b} = f_l \cdot y_{l,b}$. Thus, $F_{j,b} = \sum_l h_{l,b}^j$, for $j \ge 1$.

Notation: Marginal expectations. The random variables, $Y, \{Y_b\}_{b\in B}$ are functions of two families of random variables, namely, $\mathbf{x} = \{x_l\}_{l \in \{0,1,\dots,N-1\}}$, used to generate the random roots of unity, and $\mathbf{y} = \{y_{l,b}\}, l \in \{0, 1, \dots, N-1\}$ and $b \in [B]$, used to map elements to buckets in the hash table. Our independence assumptions imply that these two families are mutually independent (i.e., their seeds use independent random bits), that is, $\mathbf{Pr}\{\mathbf{x} = \mathbf{u} \text{ and } \mathbf{y} = \mathbf{v}\} = \mathbf{Pr}\{\mathbf{x} = \mathbf{u}\} \cdot \mathbf{Pr}\{\mathbf{y} = \mathbf{v}\}$ Let $W = W(\mathbf{x}, \mathbf{y})$ be a random variable that is a function of the random variables in \mathbf{x} and \mathbf{y} . For a fixed random choice of $\mathbf{y} = \mathbf{y_0}$, $\mathbf{E_x}[W]$ denotes the marginal expectation of W as a function of y. That is, $\mathbf{E_x}[W] = \sum_{\mathbf{u}} W(\mathbf{u}, \mathbf{y_0})\mathbf{Pr}\{\mathbf{x} = \mathbf{u}\}$. It follows that $\mathbf{E}[W] = \mathbf{E_v}[\mathbf{E_x}[W]]$.

Overview of the analysis. The main steps in the proof of Theorem 4 are as follows. In Section 3.1, we show that $\mathbf{E}_{\mathbf{x}}[Y] = F_k$. In Section 3.2, we show that $\mathbf{E}[\operatorname{Re} Z^k] \leq k^{2k}F_2^k$. In Section 3.3, using the above result, we show that $\mathbf{E}_{\mathbf{x}}[Y^2] \leq k^{2k}\sum_b F_{2,b}^k$. Section 3.4 shows that $\mathbf{E}_{\mathbf{y}}[F_{2,b}^k] \leq (2/B + 2^k \cdot n^{k-2}/B^k)F_k^2$ and also concludes the proof of Theorem 4. Finally, we conclude in Section 4.

Notation: Multinomial Expansion. Let X be defined as $X = \sum_{l \in \{0,1,\dots,N-1\}} a_l$, where, $a_l \ge 0$, for $l \in \{0, 1, \dots, N-1\}$. Then, X^k can be written as

$$X^{k} = \sum_{s=1}^{k} \sum_{e_{1} + \dots + e_{s} = k, e_{1} > 0, \dots, e_{s} > 0} \binom{k}{e_{1}e_{2} \cdots e_{s}} \sum_{l_{1} < l_{2} < \dots < l_{s}} a_{l_{1}}^{e_{1}} a_{l_{2}}^{e_{j}} \cdots a_{l_{s}}^{e_{s}}$$

where, s is the number of distinct terms in the product and e_i is the exponent of the i^{th} product term. The indices l_i are therefore necessarily distinct, $l_i \in \{0, 1, \ldots, N-1\}, i = 1, 2, \ldots, s$. For easy reference, the above equation is written and used in the following form.

$$X^{k} = \sum_{s,\mathbf{e}:Q(\mathbf{e},s)} C(\mathbf{e}) \sum_{\mathbf{l}:R(\mathbf{e},\mathbf{l},s)} \left(\prod_{j=1}^{s} a_{l_{j}}^{e_{j}}\right) .$$
⁽²⁾

where, $Q(\mathbf{e}, s) \equiv 1 \leq s \leq k$ and $\mathbf{e} = (e_1, e_2, \dots, e_s)$ is s-dimensional and $\sum_{j=1}^s e_j = k$; $R(\mathbf{e}, \mathbf{l}, s) \equiv \mathbf{l} = (l_1, l_2, \dots, l_s)$ is s-dimensional and $0 \leq l_1 < l_2 < \dots < l_s \leq N-1$; and the multinomial coefficient $C(\mathbf{e}) = \binom{k}{e_1, \dots, e_s}$. In this notation, the following inequality holds.

$$\sum_{\mathbf{l}:R(\mathbf{e},\mathbf{l},s)} \prod_{j=1}^{s} a_{l_j}^{e_j} \le \prod_{j=1}^{s} \left(\sum_{l} a_{l}^{e_j} \right) .$$
(3)

By setting n = k, and $a_1 = a_2 = \cdots = a_k = 1$, we obtain,

$$k^k = \sum_{\mathbf{e},s} C(\mathbf{e}) \binom{k}{s} > \sum_{\mathbf{e},s} C(\mathbf{e}).$$

By squaring the above equation on both sides, we obtain that $k^{2k} = (\sum_{e,s} C(e) {k \choose s})^2 > \sum_{e,s} C^2(e)$. We therefore have the following inequalities.

$$\sum_{\mathbf{e},s} C(\mathbf{e}) < k^k, \quad \sum_{\mathbf{e},s} C^2(\mathbf{e}) < k^{2k} \quad . \tag{4}$$

3.1 Expectation

In this section, we show that $\mathbf{E}[\operatorname{Re} Z^k] = F_k$, thereby proving Lemma 1, and that $\mathbf{E}_{\mathbf{x}}[Y] = F_k$.

Proof (of Lemma 1). Since the family of variables x_l 's is k-wise independent, therefore

$$\mathbf{E}\left[\prod_{j=1}^{s} x_{l_j}^{e_j}\right] = \prod_{j=1}^{s} \mathbf{E}\left[x_{l_j}^{e_j}\right] \;.$$

Applying equation (2) to $Z^k = (\sum_l f_l x_l)^k$ and using linearity of expectation and kwise independence property of x_l 's, we obtain

$$\mathbf{E}[Z^k] = \sum_{s, \mathbf{e}: Q(\mathbf{e}, s)} C(\mathbf{e}) \sum_{\mathbf{l}: R(\mathbf{e}, \mathbf{l}, s)} \left(\prod_{j=1}^{\mathsf{r}} f_{l_j}^{e_j}\right) \left(\prod_{j=1}^{\mathsf{r}} \mathbf{E}[x_{l_j}^{e_j}]\right) + C(\mathbf{e}) \sum_{\mathbf{k}: \mathbf{e}: Q(\mathbf{e}, s)} \left(\prod_{j=1}^{\mathsf{r}} f_{l_j}^{e_j}\right) \left(\prod_{j=1}^{\mathsf{r}} \mathbf{E}[x_{l_j}^{e_j}]\right) + C(\mathbf{e}) \sum_{\mathbf{k}: \mathbf{e}: Q(\mathbf{e}, s)} \left(\prod_{j=1}^{\mathsf{r}} f_{l_j}^{e_j}\right) \left(\prod_{r$$

Using equation (1), we note that the term $\left(\prod_{j=1}^{s} \mathbf{E} \left[x_{l_j}^{e_j} \right] \right) = 0$, if s > 1, since in this case, $e_j < k$, for each $j = 1, \ldots, s$. Thus, the above summation reduces to

$$\mathbf{E}\big[Z^k\big] = \sum_l f_l^k = F_k \;\; .$$

Since F_k is real, $\mathbf{E}[\operatorname{Re} Z^k]$ is also F_k , proving Lemma 1.

Lemma 5. Suppose that the family of random variables $\{x_l\}$ is k-wise independent. Then, $\mathbf{E}_{\mathbf{x}}[Y_b] = F_{k,b}$ and $\mathbf{E}_{\mathbf{x}}[Y] = \mathbf{E}[Y] = F_k$.

Proof. We first show that $\mathbf{E}_{\mathbf{x}}[Y_b] = F_{k,b}$. $\mathbf{E}_{\mathbf{x}}[Z_b^k] = \mathbf{E}_{\mathbf{x}}[(\sum_l f_l y_{l,b} x_l)^k] = \mathbf{E}_{\mathbf{x}}[(\sum_l h_{l,b} x_l)^k]$, by letting $h_{l,b} = f_l \cdot y_{l,b}$. By an argument analogous to the proof of Lemma 1, we obtain $\mathbf{E}_{\mathbf{x}}[(\sum_l h_{l,b} x_l)^k] = \sum_l h_{l,b}^k = \sum_l f_l^k y_{l,b}^k = \sum_l f_{l,k}^k y_{l,b} = F_{k,b}$, (since $y_{l,b}$'s are binary variables). Since $F_{k,b}$ is always real, $\mathbf{E}_{\mathbf{x}}[Y_b] = \mathbf{E}_{\mathbf{x}}[\operatorname{Re} Z_b^k] = F_{k,b}$. Finally, $\mathbf{E}_{\mathbf{x}}[Y] = \mathbf{E}_{\mathbf{x}}[\sum_b Y_b] = \sum_b \mathbf{E}_{\mathbf{x}}[Y_b] = \sum_b F_{k,b} = F_k$, since each element is hashed to exactly one bucket. Further, $\mathbf{E}[Y] = \mathbf{E}_{\mathbf{y}}[\mathbf{E}_{\mathbf{x}}[Y]] = \mathbf{E}_{\mathbf{y}}[F_k] = F_k$. \Box

3.2 Variance of Re Z^k

In this section, we estimate the variance of Re Z^k and derive some simple corollaries.

Lemma 6. Let $W = \operatorname{Re}\left(\sum_{l} a_{l} x_{l}\right)^{k}$. Then, $\operatorname{Var}\left[W\right] \leq k^{2k} (\sum_{l} a_{l}^{2})^{k}$.

Proof. Let $X = (\sum_l a_l x_l)^k$. Then, $\operatorname{Var}[W] = \mathbf{E}[W^2] - (\mathbf{E}[W])^2 \leq \mathbf{E}[X\bar{X}] - (\mathbf{E}[W])^2$. Using equation (2), for X, \bar{X} , we obtain the following.

$$X = \sum_{s,\mathbf{e}:Q(\mathbf{e},s)} C(\mathbf{e}) \sum_{\mathbf{l}:R(\mathbf{e},\mathbf{l},s)} \left(\prod_{j=1}^{s} a_{l_{j}}^{e_{j}}\right) \cdot \left(\prod_{j=1}^{s} x_{l_{j}}^{e_{j}}\right)$$
$$\bar{X} = \sum_{t,\mathbf{g}:Q(\mathbf{g},t)} C(\mathbf{g}) \sum_{\mathbf{l}:R(\mathbf{g},\mathbf{m},t)} \left(\prod_{j'=1}^{t} a_{m_{j'}}^{g_{j'}}\right) \cdot \left(\prod_{j'=1}^{t} \bar{x}_{m_{j'}}^{g_{j'}}\right)$$

Multiplying the above two equations, we obtain

$$\begin{aligned} X \cdot \bar{X} &= \sum_{s, \mathbf{e}: Q(\mathbf{e}, s)} \sum_{t, \mathbf{g}: Q(\mathbf{g}, t)} C(\mathbf{e}) \cdot C(\mathbf{g}) \sum_{l: R(\mathbf{e}, \mathbf{l}, s)} \sum_{l: R(\mathbf{g}, \mathbf{m}, t)} \\ & \left(\prod_{j=1}^{s} a_{l_j}^{e_j}\right) \cdot \left(\prod_{j'=1}^{t} a_{m_{j'}}^{g_{j'}}\right) \cdot \left(\prod_{j=1}^{s} x_{l_j}^{e_j}\right) \cdot \left(\prod_{j'=1}^{t} \bar{x}_{m_{j'}}^{g_{j'}}\right). \end{aligned}$$

The general form of the product of random variables that arises in the multinomial expansion of $X\bar{X}$ is $(\prod_{j=1}^{s} x_{l_j}^{e_j})(\prod_{j'=1}^{t} \bar{x}_{m_{j'}}^{g_{j'}})$. Since the random variables x_l 's are 2k-wise independent, using equation (1), it follows that,

$$\mathbf{E}\left[\prod_{j=1}^{s} x_{l_{j}}^{e_{j}} \prod_{j'=1}^{t} \bar{x}_{m_{j'}}^{g_{j}}\right] = \begin{cases} 1 & \text{if } s = t = 1, e_{1} = g_{1} = k\\ 1 & \text{if } s = t, t > 1, \mathbf{e} = \mathbf{g} \text{ and } \mathbf{l} = \mathbf{m}, \\ 0 & \text{otherwise.} \end{cases}$$

This directly yields the following.

$$\begin{split} \mathbf{E} \begin{bmatrix} X\bar{X} \end{bmatrix} &= \sum_{\mathbf{e},s:Q(\mathbf{e},s)} C^2(\mathbf{e}) \sum_{\mathbf{l}:R(\mathbf{e},\mathbf{l},s)} \prod_{j=1}^s a_{l_j}^{2e_j} \\ &\leq \sum_{\mathbf{e},s} C^2(\mathbf{e}) \prod_{j=1}^s \left(\sum_l a_l^{2e_j}\right), \text{ by equation (3)} \\ &\leq \sum_{\mathbf{e},s} C^2(\mathbf{e}) \prod_{j=1}^s \left(\sum_l a_l^2\right)^{e_j}, \text{ since } \sum_l a_l^{2e_j} \leq \left(\sum_l a_l^2\right)^{e_j} \\ &= \left(\sum_l a_l^2\right)^k \left(\sum_{\mathbf{e},s} C^2(\mathbf{e})\right), \text{ since } \sum_{j=1}^s e_j = k \\ &\leq \left(\sum_l a_l^2\right)^k \cdot k^{2k}, \text{ by equation (4). } \Box \end{split}$$

By letting $a_l = f_l, l \in \{0, 1, 2 \dots, N-1\}$, Lemma 6 yields

$$\operatorname{Var}\left[\operatorname{Re} Z^{k}\right] = \operatorname{Var}\left[\operatorname{Re}\left(\sum_{l} f_{l} x_{l}\right)^{k}\right] \le k^{2k} F_{2}^{k},$$
(5)

which is the statement of Lemma 2. By letting $a_l = h_{l,b} = f_l \cdot y_{l,b}$, where, b is a fixed bucket index, and $l \in \{0, 1, 2..., N-1\}$, yields the following equation.

$$\mathbf{E}_{\mathbf{x}}[Y_b^2] \le k^{2k} F_{2,b}^k, \quad \text{for } b \in [B].$$
(6)

3.3 Var[Y]: Vanishing of cross-bucket terms

We now consider the problem of obtaining an upper bound on $\mathbf{Var}[Y]$. Note that $\mathbf{Var}[Y] = \mathbf{E_y}[\mathbf{E_x}[Y^2]] - (\mathbf{E_y}[\mathbf{E_x}[Y]])^2$. From Lemma 5, $\mathbf{E_y}[\mathbf{E_x}[Y]] = F_k$. Thus,

$$\operatorname{Var}[Y] = \mathbf{E}_{\mathbf{y}} \left[\mathbf{E}_{\mathbf{x}} \left[Y^2 \right] \right] - F_k^2 \quad . \tag{7}$$

Lemma 7. $\operatorname{Var}[Y] \leq k^{2k} \sum_{b} \mathbf{E}_{\mathbf{y}}[F_{2,b}^{k}]$, assuming independence assumption I.

We now consider $\mathbf{E}_{\mathbf{x}}[Y_aY_b]$, for $a \neq b$. Recall that $Y_a = \operatorname{Re} Z_a^k$ (and analogously, Y_b is defined). For any two complex numbers z, w, (Re z)(Re w) = $(1/2)\operatorname{Re}(z(w + \bar{w}))$). Thus, $Y_aY_b = (\operatorname{Re} Z_a^k)(\operatorname{Re} Z_b^k) = (1/2)\operatorname{Re}(Z_a^kZ_b^k + Z_a^k\overline{Z_b^k})$. Let us first consider $\mathbf{E}_{\mathbf{x}}[Z_a^kZ_b^k]$. The general term involving product of random

Let us first consider $\mathbf{E}_{\mathbf{x}}[Z_a^k Z_b^k]$. The general term involving product of random variables is $(\prod_{j=1}^s f_{l_j}^{e_j}) \cdot (\prod_{j'=1}^t f_{m_j}^{g_{j'}}) \cdot (\prod_{j=1}^s y_{l_j,a} \cdot x_{l_j}^{e_j}) \cdot (\prod_{j'=1}^t y_{m_{j'},b} \cdot x_{m_{j'}}^{g_{j}})$. Consider the last two product terms in the above expression, that is, $(\prod_{j=1}^s y_{l_j,a} \cdot x_{l_j}^{e_j}) \cdot (\prod_{j'=1}^t y_{m_{j'},b} \cdot x_{m_{j'}}^{g_j})$. For any $1 \leq j \leq s$ and $1 \leq j' \leq t$, it is not possible that $l_j = m_{j'}$, that is, the same element whose index is given by $l_j = m_{j'}$ cannot simultaneously hash to two distinct buckets, a and b (recall that $a \neq b$). By 2k-wise independence, we therefore obtain that the only way the above product term can be non zero (i.e., 1) on expectation, is that s = t = 1 and therefore, $e_1 = k$ and $g_1 = k$. Thus, we have $\mathbf{E}[Z_a^k Z_b^k] = \sum_{l,m} h_{l,a}^k h_{m,b}^k = F_{k,a} F_{k,b}$.

Using the same observation, it can be argued that $\mathbf{E}_{\mathbf{x}} [Z_a^k \overline{Z_b^k}] = F_{k,a} F_{k,b}$. It follows that $\mathbf{E}_{\mathbf{x}} [(1/2)(Z_a^k Z_b^k + Z_a^k \overline{Z_b^k}))] = F_{k,a} F_{k,b}$, which is a real number. Therefore $\mathbf{E}_{\mathbf{x}} [\operatorname{Re} (1/2)(Z_a^k Z_b^k + Z_a^k \overline{Z_b^k})] = F_{k,a} F_{k,b} = \mathbf{E}_{\mathbf{x}} [Y_a Y_b]$. By equation (7), $\operatorname{Var}[Y] = \mathbf{E}_{\mathbf{y}} [\mathbf{E}_{\mathbf{x}} [Y^2]] - F_k^2$. Further, from Lemma 5, $F_k =$

By equation (7), $\operatorname{Var}[Y] = \mathbf{E}_{\mathbf{y}}[\mathbf{E}_{\mathbf{x}}[Y^2]] - F_k^2$. Further, from Lemma 5, $F_k = \mathbf{E}_{\mathbf{y}}[\sum_b F_{k,b}]$. We therefore have,

$$\begin{aligned} \mathbf{Var}[Y] &= \mathbf{E_y}[\mathbf{E_x}[Y^2] - \left(\sum_b F_{k,b}\right)^2] \\ &= \mathbf{E_y}[\sum_b \mathbf{E_x}[Y_b^2] + \sum_{a \neq b} \mathbf{E_x}[Y_a Y_b] - \left(\sum_b F_{k,b}\right)^2] \\ &= \mathbf{E_y}[\sum_b \mathbf{E_x}[Y_b^2] + \sum_{a \neq b} F_{k,a} F_{k,b} - \left(\sum_b F_{k,b}\right)^2], \text{ by above argument} \\ &= \mathbf{E_y}[\sum_b \mathbf{E_x}[Y_b^2] - \sum_b F_{k,b}^2] \\ &\leq \mathbf{E_y}[\sum_b \mathbf{E_x}[Y_b^2]] \\ &\leq \mathbf{E_y}[\sum_b k^{2k} F_{2,b}^k], \text{ by equation (6)} \end{aligned}$$

3.4 Calculation of $\mathbf{E}[F_{2,b}^k]$

Given a *t*-dimensional vector $\mathbf{e} = (e_1, \ldots, e_t)$ such that $e_i > 0$, for $1 \le i \le t$ and $\sum_{j=1}^t e_j = k$, we define the function $\psi(\mathbf{e})$ as follows. Without loss of generality, let the indices e_j be arranged in non-decreasing order. Let $r = r(\mathbf{e})$ denote the largest index such that $e_r < k/2$. Then, we define the function $\phi(e)$ as follows.

$$\psi(\mathbf{e}) = n^{\sum_{j=1}^{r} (1-2e_j/k)} / B^{\frac{1}{2}}$$

The motivation of this definition stems from its use in the following lemma.

Lemma 8. Suppose $\sum_{j=1}^{t} e_j = k$ and $e_j > 0$, for $j = 1, \ldots, t$. Then, $\prod_{j=1}^{t} F_{2e_j} \leq \psi(\mathbf{e}) \cdot F_k^2 \cdot B^t$.

Proof. From [1,2], $F_j \leq n^{1-j/k} F_k^{j/k}$, if j < k and $F_j \leq F_k^{j/k}$, if j > k. Thus,

$$\begin{split} \prod_{j=1}^{t} F_{2e_j} &= \left(\prod_{j=1}^{r} F_{2e_j}\right) \left(\prod_{j=r+1}^{t} F_{2e_j}\right) = \left(\prod_{j=1}^{r} n^{1-2e_j/k} F_k^{2e_j/k}\right) \left(\prod_{j=r+1}^{t} F_k^{2e_j/k}\right) \\ &= n^{\sum_{j=1}^{r} (1-2e_j/k)} F_k^{\sum_{j=1}^{t} 2e_j/k} = \psi(\mathbf{e}) \cdot B^t \cdot F_k^2, \quad \text{since } \sum_j e_j = k. \Box \end{split}$$

The function ψ satisfies the following property that we use later.

Lemma 9. If $B < 2 \cdot n^{1-\frac{1}{k}}$, then, $\psi(\mathbf{e}) \le \max(2/B, 2^k \cdot n^{k-2}/B^k)$.

Proof. Let e be a t-dimensional vector. If t = 1, $\psi(\mathbf{e}) = 1/B$. If t = r, then $\psi(\mathbf{e}) = n^{t-2}/B^t \leq 2^k \cdot n^{k-2}/B^k$. If $t \geq r+2$, then $\psi(\mathbf{e}) = (2^t/B^t) \cdot n^{t-((t-r)+\sum 2e_j/k)} < 2^t \cdot n^{t-2}/B^t \leq 2^k \cdot n^{k-2}/B^k$. Finally, let t = r+1. Then,

$$\psi(\mathbf{e}) = 2^t \cdot n^{t-1-2\sum e_j/k} / B^t \le 2^t \cdot n^{t-1-2(t-1)/k} / B^t,$$

since $\sum_{j=1}^{r} e_j \ge r = t - 1$. Thus,

$$\psi(\mathbf{e}) \le \psi(\mathbf{e})(2 \cdot n^{1-\frac{1}{k}}/B)^{k-t} \le (2^t \cdot n^{t-1-2(t-1)/k}/B^t)(2 \cdot n^{1-\frac{1}{k}}/B)^{k-t} = 2^k \cdot n^{k-2-(t-2)/k}/B^k \le 2^k \cdot n^{k-2}/B^k .$$

where, the first inequality follows from the assumption that $B < n^{1-\frac{1}{k}}$ and the second inequality follows because $t \ge 2$.

Lemma 10. Let
$$B < 2 \cdot n^{1-\frac{1}{k}}$$
. Then, $\mathbf{E}[F_{2,b}^k] < k^k F_k^2 (2/B + 2^k \cdot n^{k-2}/B^k)$.

Proof. For a fixed b, the variables $y_{l,b}$ are k-wise independent. $F_{2,b}$ is a linear function of $y_{l,b}$. Thus, $F_{2,b}^k$ is a symmetric multinomial of degree k, as follows.

$$\begin{split} F_{2,b}^k &= (\sum_l f_l^2 y_{l,b})^k \\ &= \sum_{s,\mathbf{e}} C(\mathbf{e}) \sum_{l_1 < l_2 < \cdots l_s} f_{l_1}^{2e_1} \cdots f_{l_s}^{2e_s} y_{l_1,b} \cdot y_{l_2,b} \cdot y_{l_s,b} \ . \end{split}$$

Taking expectations, and using k-wise independence of the $y_{l,b}$'s, we have,

$$\begin{split} \mathbf{E} \begin{bmatrix} F_{2,b}^k \end{bmatrix} &= \sum_{s,\mathbf{e}} C(\mathbf{e}) \sum_{l_1 < l_2 < \dots < l_s} f_{l_1}^{2e_1} \cdots f_{l_j}^{2e_j} \mathbf{E} \begin{bmatrix} y_{l_1,b} \cdot y_{l_2,b} \cdot y_{l_s,b} \end{bmatrix} \\ &= \sum_{s,\mathbf{e}} C(\mathbf{e}) \sum_{l_1 < l_2 < \dots < l_s} f_{l_1}^{2e_1} \cdots f_{l_j}^{2e_j} \mathbf{E} \begin{bmatrix} y_{l_1,b} \end{bmatrix} \cdot \mathbf{E} \begin{bmatrix} y_{l_2,b} \end{bmatrix} \cdots \mathbf{E} \begin{bmatrix} y_{l_s}, b \end{bmatrix} \\ &= \sum_{s,\mathbf{e}} C(\mathbf{e}) \sum_{l_1 < l_2 < \dots < l_s} f_{l_1}^{2e_1} \cdots f_{l_j}^{2e_j} \frac{1}{B^s}, \quad \text{since, } \mathbf{E} \begin{bmatrix} y_{l_j,b} \end{bmatrix} = \frac{1}{B} \\ &\leq \sum_{s,\mathbf{e}} C(\mathbf{e}) \cdot (1/B^s) \cdot \prod_{j=1}^s F_{2e_j} \\ &\leq \sum_{s,\mathbf{e}} C(\mathbf{e}) \cdot \psi(\mathbf{e}) \cdot F_k^2, \quad \text{by Lemma 8} \\ &\leq \sum_{s,\mathbf{e}} C(\mathbf{e}) \cdot F_k^2 \cdot (2/B + 2^k \cdot n^{k-2}/B^k), \quad \text{by Lemma 9} \\ &\leq k^k \cdot F_k^2 \cdot (2/B + 2^k \cdot n^{k-2}/B^k), \quad \text{since, } \sum_{s,\mathbf{e}} C(\mathbf{e}) < k^k \\ & \Box \end{aligned}$$

Combining the result of Lemma 7 with Lemma 10, we obtain the following bound on Var[Y].

$$\mathbf{Var}[Y] \le k^{3k} \cdot F_k^2 \cdot (2 + 2^k \cdot n^{k-2}/B^{k-1})$$
(8)

Recall that \overline{Y} is the average of s_1 independent estimators, each calculating Y. The main theorem of the paper now follows simply.

Proof (of Theorem 4). By Chebychev's inequality, $\Pr\{|\bar{Y} - F_k| > \epsilon F_k\} < \operatorname{Var}[\bar{Y}]/(\epsilon^2 F_k^2)$. Substituting Equation (8), we have $\operatorname{Var}[\bar{Y}]/(\epsilon^2 \cdot F_k^2) \leq 1/3$.

4 Conclusions

The paper presents a method for estimating the k^{th} frequency moment, for k > 2, of data streams with general update operations. The algorithm has space complexity $\tilde{O}(n^{1-\frac{1}{k-1}}))$ and is based on constructing random linear combinations using randomly chosen k^{th} roots of unity. A gap remains between the lower bound for this problem, namely, $O(n^{1-2/k})$, for k > 2, as proved in [3,5] and the complexity of a known algorithm for this problem.

References

- 1. Noga Alon, Yossi Matias, and Mario Szegedy. "The Space Complexity of Approximating the Frequency Moments". In *Proceedings of the 28th Annual ACM Symposium on the Theory of Computing STOC, 1996*, pages 20–29, Philadelphia, Pennsylvania, May 1996.
- 2. Noga Alon, Yossi Matias, and Mario Szegedy. "The space complexity of approximating frequency moments". *Journal of Computer Systems and Sciences*, 58(1):137–147, 1998.

- Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. "An information statistics approach to data stream and communication complexity". In *Proceedings of the 34th ACM Symposium on Theory of Computing (STOC)*, 2002, pages 209–218, Princeton, NJ, 2002.
- Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. "Counting distinct elements in a data stream". In *Proceedings of the 6th International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM 2002*, Cambridge, MA, 2002.
- Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. "Near-Optimal Lower Bounds on the Multi-Party Communication Complexity of Set Disjointness". In *Proceedings of the* 18th Annual IEEE Conference on Computational Complexity, CCC 2003, Aarhus, Denmark, 2003.
- Moses Charikar, Kevin Chen, and Martin Farach-Colton. "Finding frequent items in data streams". In Proceedings of the 29th International Colloquium on Automata Languages and Programming, 2002.
- 7. Don Coppersmith and Ravi Kumar. "An improved data stream algorithm for estimating frequency moments". In *Proceedings of the Fifteenth ACM SIAM Symposium on Discrete Algorithms*, New Orleans, LA, 2004.
- G. Cormode and S. Muthukrishnan. "What's Hot and What's Not: Tracking Most Frequent Items Dynamically". In Proceedings of the Twentysecond ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego, California, May 2003.
- Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. "An Approximate L¹-Difference Algorithm for Massive Data Streams". In *Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science*, New York, NY, October 1999.
- Philippe Flajolet and G.N. Martin. "Probabilistic Counting Algorithms for Database Applications". Journal of Computer Systems and Sciences, 31(2):182–209, 1985.
- Sumit Ganguly. "A bifocal technique for estimating frequency moments over data streams". Manuscript, April 2004.
- Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. "Processing Set Expressions over Continuous Update Streams". In *Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data*, San Diego, CA, 2003.
- Piotr Indyk. "Stable Distributions, Pseudo Random Generators, Embeddings and Data Stream Computation". In *Proceedings of the 41st Annual IEEE Symposium on Foundations* of Computer Science, pages 189–197, Redondo Beach, CA, November 2000.
- 14. M. Saks and X. Sun. "Space lower bounds for distance approximation in the data stream model". In *Proceedings of the 34th ACM Symposium on Theory of Computing (STOC),* 2002, 2002.