CS350 Assignment 3

1. Apply β reductions to obtain the normal forms of the following expressions, if they are valid. Recall that the normal forms are those which will remain the same under β-reductions.
a. $(\lambda x \cdot x x)(\lambda x \cdot y) x$

$$
\begin{aligned}
(\lambda x \cdot x x)(\lambda x \cdot y) x & \rightarrow^{\alpha}(\lambda a \cdot a a)(\lambda b \cdot y) x \\
& \rightarrow a a[a:=(\lambda b \cdot y)] x \\
& \rightarrow^{\beta}(\lambda b \cdot y)(\lambda b \cdot y) x \\
& \rightarrow^{\alpha}(\lambda b \cdot y)(\lambda c \cdot y) x \\
& \rightarrow y[b:=(\lambda c \cdot y)] x \\
& \rightarrow y x
\end{aligned}
$$

b $\cdot(\lambda x \cdot x x)((\lambda x \cdot y) x)$

$$
\begin{aligned}
(\lambda x \cdot x x)((\lambda x \cdot y) x) & \rightarrow^{\alpha}(\lambda a \cdot a a)((\lambda b \cdot y) x) \\
& \rightarrow(\lambda a \cdot a a)(y[b:=x]) \\
& \rightarrow^{\beta}(\lambda a \cdot a a) y \\
& \rightarrow a a[a:=y] \\
& \rightarrow^{\beta} y y
\end{aligned}
$$

c. $\cdot(\lambda x \cdot x(\lambda y \cdot x y y) z) z$

$$
\begin{aligned}
(\lambda x \cdot x(\lambda y \cdot x y y) z) z & \rightarrow^{\alpha}(\lambda a \cdot a(\lambda b \cdot a b b) z) z \\
& \rightarrow(a(\lambda b \cdot a b b) z)[a:=z] \\
& \rightarrow^{\beta} z(\lambda b \cdot z b b) z
\end{aligned}
$$

The last expression is in normal form, and cannot be β-reduced.

2 . For the following λ-term, provide one sequence of β-reductions which yields us a normal form, and another which fails to terminate.

$$
(\lambda x y z \cdot x z(y z)) P M M
$$

where $P=(\lambda x y \cdot x)$ and $M=(\lambda x \cdot x x)$.
First, let us reduce the given expression to a certain form.

$$
\begin{aligned}
(\lambda x y z \cdot x z(y z)) P M M & =(\lambda x y z \cdot x z(y z))(\lambda x y \cdot x)(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow^{\alpha}(\lambda a b c \cdot a c(b c))(\lambda d e \cdot d)(\lambda f \cdot f f)(\lambda g \cdot g g) \\
& \rightarrow^{*}(\lambda d e \cdot d)(\lambda g \cdot g g)((\lambda f \cdot f f)(\lambda g \cdot g g))
\end{aligned}
$$

Now, depending on the order we reduce further, we may get a non-terminating sequence of reductions or a terminating one.

If we try to β-reduce the inner term $((\lambda f \cdot f f)(\lambda g \cdot g g))$ first, we never terminate. On the other hand, if we do the following β-reduction on the first term, we have

$$
d[d:=(\lambda g \cdot g g), e:=((\lambda f \cdot f f)(\lambda g \cdot g g))]
$$

which terminates with $(\lambda g \cdot g g)$.
(An intuitive way to understand this is the following - evaluating the the third term $((\lambda f f \cdot f f)(\lambda g \cdot g g))$ will lead to a non-terminating computation. On the other hand, evaluating it is unnecessary for evaluating the whole expression - the first term just needs the value of the second term.)

3 . Prove that the following is a fixed-point combinator - that is, for any λ-term f, we have $f \Theta f=\Theta f$.

$$
\Theta=(\lambda x \lambda y \cdot(y(x x y)))(\lambda x . \lambda y \cdot(y(x x y)))
$$

Let M be any λ-term. We have

$$
\begin{aligned}
\Theta M & =(\lambda x \lambda y \cdot y(x x y))(\lambda x \lambda y \cdot y(x x y)) M \\
& \rightarrow^{\alpha}(\lambda a \lambda b \cdot b(a a b))(\lambda c \lambda d \cdot d(c c d)) M \\
& \rightarrow b(a a b)[a:=(\lambda c \lambda d \cdot d(c c d)), b:=M] \\
& \rightarrow^{\beta} M \quad((\lambda c \lambda d \cdot d(c c d))(\lambda c \lambda d \cdot d(c c d)) M) \\
& =M(\Theta M),
\end{aligned}
$$

proving that ΘM is the fixed-point of M.

