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van der Waerden’s theorem

Theorem: Van der Waerden 1927

Suppose N is partitioned into two sets S1 and S2. Then either

S1 or S2 has arbitrarily long arithmetic progressions — i.e. ∃Si

such that for every k ≥ 2, there are integers a and b such that

have

a, a+ 2b, . . . , a+ (k − 1)b ∈ Si.

Proof due to Ron Graham, that within 325, you can find an

arithmetic progression of length 3:

Divide 325 into 65 blocks, [1-5], [6-10], . . . , [321-325]. Each number

is colored either red or blue (say).

There are 32 possible block colorings. Pigeonhole =⇒ 2 blocks in

the first 33 are colored the same.
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Erdős’ Conjecture

Definition

A set S ⊆ Z has positive upper Banach density if

lim sup
N→∞

|S ∩ [−N,N ]|

2N + 1
> 0.

Erdős conjectured that if a set S of positive upper Banach density is

partitioned into two, one of the partitions has arbitrarily long

arithmetic progressions.

Theorem: (Szemerédi 1975)

Erdős conjecture holds.

Proof uses his “regularity lemma”.





Some highlights

1. Roth 1956 Erdős Conjecture holds for length 3 A.P.

2. Szemerédi’s Theorem 1975

3. Furstenberg’s ergodic theory proof 1978

4. Gowers’ Fourier Analytic proof, 1996

5. Green-Tao A.P. in primes
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A “Proof from the Book”

Theorem

There are infinitely many prime numbers.

The following proof is by Hillel Furstenberg, 1955.

Proof. Consider the topology on Z where U is open if and only

if it is empty, or a union of arithmetic progressions of the form

A(a, b) = {a+ nb | n ∈ Z}.

The basis sets A(a, b) are clopen.

A finite set cannot be open. Equivalently, the complement of a

finite set cannot be closed.

{−1,+1}c = ∪p primeA(p, 0).

{−1, 1}c cannot be closed. Each A(p, 0) is closed. If the num-

ber of primes were finite, then the RHS would be closed!
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Topological Dynamics

Further connections between topological dynamics and integer sets.

Definition

If X is a compact space and T : X → X is a continuous map,

then (X,T ) is said to be a dynamical system.

We are typically interested in the behavior of the orbit of a point or

a set — e.g. {Tnx | x ∈ X,n ∈ Z} or {TnU | U ⊂ X,n ∈ Z}.



Pigeonhole principle and Recurrence in

Open Covers



Pigeonhole and Basic Recurrence

Theorem: The infinite pigeonhole principle

If Z is colored using finitely many colours, then at least one

color appears i.o.



Pigeonhole and Basic Recurrence

Theorem: The infinite pigeonhole principle

If Z is colored using finitely many colours, then at least one

color appears i.o.

Theorem: Recurrence in Open Covers

Let (X,T ) be a toplogical dynamical system, and (Uα)α∈Ω be

an open cover of X. Then there is a Uα in the cover for which

for infinitely many n, Uα ∩ TnUα 6= ∅.



Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.



Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.

Pick x ∈ X. Consider its orbit

. . . , T−1x, x, Tx, . . .



Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.

Pick x ∈ X. Consider its orbit

. . . , T−1x, x, Tx, . . .

Pigeonhole Principle ⇒ there is some Ui, 1 ≤ i ≤ n such that for

infinitely many n, Tnx ∈ Ui.



Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.

Pick x ∈ X. Consider its orbit

. . . , T−1x, x, Tx, . . .

Pigeonhole Principle ⇒ there is some Ui, 1 ≤ i ≤ n such that for

infinitely many n, Tnx ∈ Ui.

Consider O = {n ∈ Z | Tnx ∈ Ui}. Pick some n0 ∈ O.



Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.

Pick x ∈ X. Consider its orbit

. . . , T−1x, x, Tx, . . .

Pigeonhole Principle ⇒ there is some Ui, 1 ≤ i ≤ n such that for

infinitely many n, Tnx ∈ Ui.

Consider O = {n ∈ Z | Tnx ∈ Ui}. Pick some n0 ∈ O.

∀n ∈ O, Tn0x = Tn0−nTnx. Hence Tn0x ∈ Ui ∩ Tn0−nUi.



Pigeonhole Principle implies BROC

X is compact. Hence some finite subcover U1, . . . , Un covers X.

Pick x ∈ X. Consider its orbit

. . . , T−1x, x, Tx, . . .

Pigeonhole Principle ⇒ there is some Ui, 1 ≤ i ≤ n such that for

infinitely many n, Tnx ∈ Ui.

Consider O = {n ∈ Z | Tnx ∈ Ui}. Pick some n0 ∈ O.

∀n ∈ O, Tn0x = Tn0−nTnx. Hence Tn0x ∈ Ui ∩ Tn0−nUi.

Hence for infinitely many n, Ui ∩ Tn0−nUi 6= ∅.



BROC =⇒ PhP

This uses the idea of subsystems.



BROC =⇒ PhP

This uses the idea of subsystems.

Let Ω be the finite set of colors. Let A be a coloring of Z. Consider

the tds (ΩZ, T ), where T is the right-shift. Represent A by a ∈ ΩZ.



BROC =⇒ PhP

This uses the idea of subsystems.

Let Ω be the finite set of colors. Let A be a coloring of Z. Consider

the tds (ΩZ, T ), where T is the right-shift. Represent A by a ∈ ΩZ.

Define

Xa = {Tna | n ∈ Z}.



BROC =⇒ PhP

This uses the idea of subsystems.

Let Ω be the finite set of colors. Let A be a coloring of Z. Consider

the tds (ΩZ, T ), where T is the right-shift. Represent A by a ∈ ΩZ.

Define

Xa = {Tna | n ∈ Z}.

Consider the cover (Uc)c∈Ω where Uc are the points in Xa with 0

colored c.



BROC =⇒ PhP

This uses the idea of subsystems.

Let Ω be the finite set of colors. Let A be a coloring of Z. Consider

the tds (ΩZ, T ), where T is the right-shift. Represent A by a ∈ ΩZ.

Define

Xa = {Tna | n ∈ Z}.

Consider the cover (Uc)c∈Ω where Uc are the points in Xa with 0

colored c.

By recurrence in open covers,

∃c ∈ Ω ∃∞n Uc ∩ TnUc 6= ∅. (1)



BROC =⇒ PhP

This uses the idea of subsystems.

Let Ω be the finite set of colors. Let A be a coloring of Z. Consider

the tds (ΩZ, T ), where T is the right-shift. Represent A by a ∈ ΩZ.

Define

Xa = {Tna | n ∈ Z}.

Consider the cover (Uc)c∈Ω where Uc are the points in Xa with 0

colored c.

By recurrence in open covers,

∃c ∈ Ω ∃∞n Uc ∩ TnUc 6= ∅. (1)

Since Xa is the orbit closure of a, there is a k ∈ Z such that

T ka ∈ Uc ∩ TnUc. That is, a−k = c and a−k+n = c. This is true for all

n in (1).



van der Waerden’s Theorem and Multiple

Recurrence in Open Covers



The version of recurrence in tds which is equivalent to Van der

Waerden’s theorem is the following.

Theorem: Multiple Recurrence in Open Covers

Let (X,T ) be a topological dynamical system and (Uα)α∈Ω be

an open cover of X. Then there is a Uα in the cover such that

∀k ≥ 2 ∃n > 0 Uα ∩ TnUα ∩ · · · ∩ T (k−1)nUα 6= ∅.
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Dynamical Systems view of Szemerédi’s Theorem

For Szemerédi’s theorem, we now have to consider measure as well.

Definition

A measure-preserving topological dynamical system is a quadru-

ple (X,X , µ, T ) is a space where

• X is a compact topological space,

• X is a σ-algebra on X,

• µ a probability measure on X and

• T : X → X is a measure-preserving homeomorphism.



Fursteneberg Multiple Recurrence

Theorem



Multiple Recurrence

Theorem: Multiple Recurrence Theorem

Let (X,X , µ, T ) be a mtds. Then for any E ∈ X with µ(E) > 0,

we have

µ(E ∩ TnE ∩ · · · ∩ T (k−1)nE) > 0.



Furstenberg Correspondence Principle



Lemma

Let (X,X , µ, T ) be as in the FMRT, and E have positive mea-

sure. Then there is an F , µ(F ) > 0 such that for every x in

F ,

{n ∈ Z | Tnx ∈ E}

has positive upper density.



Proof of Lemma

Proof.

• Define δN (x) to be the frequency with which T−Nx, . . . ,
TNx visits E. Then the expected value of δN is µ(E).

• By an Egorov-style argument, show that the probability of

{

x ∈ X | δN (x) ≥
1

2
µ(E)

}

is at least 1/2µ(E).
• Then F is the set

⋂

N

⋃

m>N Am.
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Let APk denote the set of k-length arithmetic progressions in Z. For

each α = (a1, . . . , ak) which is an A.P., define

Bα = {x ∈ X | T a1x, . . . , T akx ∈ E}.

Pick F ⊆ X as in the previous lemma. Then for every x ∈ F , the set

{n ∈ Z | Tnx ∈ E} has positive upper density.

By Szemerédi’s theorem, the visit time set has a k-term arithmetic

progression β such that µ(Bβ) > 0.

Thus some b, n ∈ Z exist such that T bBa ⊆ E ∩ TnE ∩ · · · ∩ T (k−1)nE,

and µ(T bBa) > 0. [A.P. starting with 0]
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FMRT → SZ

Let A have positive upper density, represented as a ∈ 2Z. Consider

the system (2Z , T ), where TB = B + 1 is the right shift.

Take Xa to be the orbit closure of a. Let E be the sequences in Xa

with their 0th co-ordinate 1.

If we can find an invariant measure µ with µ(E) > 0, then by FMRT,

we can conclude Szemerédi’s theorem.

The invariant measure is constructed using the Banach-Alaoglu

theorem.
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Weak Mixing Systems - Bernoulli Systems

Consider B = (2Z,B, T, µ) where T is the right-shift and µ the

product measure specified by µ(0) and µ(1).

Theorem. B has multiple recurrence.

Proof. It suffices to verify MR for cylinders.

Let E = (Xi1 = a1, . . . , Xik = ak).

Then for large n, the sets E, TnE, . . . , T (k−1)nE depend on disjoint

sets of indices.

Hence µ(E ∩ TnE ∩ · · · ∩ T (k−1)nE) = µ(E)k by independence and the

measure preservation of T . µ(E)k > 0.
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Kronecker Systems - Irrational Rotation

Consider X = (R/Z, Tα) where Tα(x) = (x+ α) mod 1. This is an

almost-periodic system —

∀ε > 0 ∀x ∈ R/Z ∃N∀n ||Tn
αx− Tn+N

α x|| < ε.

Theorem. X has multiple recurrence.

Proof. Let k ≥ 3. Fix ε > 0 and let (x− ε, x+ ε) ⊆ V .

Using continued fractions, ∃P,Q ∈ Z |Qα− P | < ε/k.

For any n, |(x+ nα) mod 1− (x+ (n+Q)α) mod 1| < ε/k.

i.e. ∀0 ≤ j ≤ k − 1, |x− T jQ
α x| ≤ jε/k ≤ ε. Hence T jQx ∈ V .
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Weak Mixing and Almost Periodic Extensions

Decompose the system into a weak mixing and an almost periodic

part if possible, and prove multiple recurrence for these part

separately.

General systems: build a tower of maps X → Kα → · · · → K1 where

in each map A → B, B is a Kronecker factor of A.

Lift multiple recurrence from the bottommost system all the way to

X.
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