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Kernel algorithms : an overview

» Learning with simple linear models

Classification Regression PCA

Solution Linear hyper-plane  Linear regression Linear PCA

» Linear models may under-fit data

Poor classification accuracy (think of the XOR problem)

Poor interpolation for regression
Data may appear near isotropic to linear model
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Kernel algorithms : an overview

» Kernels exploit various invariances™ in these algorithms

Use embedding ®: X — Hy where linear models are good !
K(x,x") = (@g(x), Pg(x'))

Classification Regression PCA
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* Obliviousness to the precise embedding : recall our favorite representer theorems ! 3
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The price of trickery

» Frequently, we choose complex kernels i.e. dim(Hy) > 1

Requires implicit representations for hypotheses

Hypothesis (explicit) Hypothesis (implicit)

Classification sgn(w ' @y (x)) sgn(YayiK (x, x;))
Regression w! ®p(x) Ya;v;K(x, x;)
PCA (VK) @y (x) Yo K (x,x;)
Clustering arg;ninllcb(x) — ,ukllgzL[K arglrcnax{ZafK(x, x;) + Ck}

» Summations frequently run over most of the training set
Provably a constant fraction in some cases [Steinwart ‘03]
Expensive test, training routines

Explicit forms much cheaper to work with



Dimensionality Reduction

» How about making Hy finite dimensional
JL Lemma :inner product preserving maps ¥, : Hyg — RP

Problem :“inductive” implementations require access to Hy

X
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Structure Theorems

» Characterizations for certain kernel families

Kernel family Representation Characterization

Translation invariant K(,x")=f(x—x") Bochner’s theorem over
(R,+)
Homogeneous K(e,x") = f (ﬁl) Bochner’s theorem over
x (R\ {0},%)
Dot Product K(x,x") = f({{x,x")) Schoenberg’s theorem

» Bochner’s theorem : f(x) = fr y(x)du(y),u =0

K(e,x") = [ y(x —x")du(y) = E[y(x)y(x)]
» Schoenberg’s theorem : f(x) = ). ,spanx",a, =0
K(x,x") = ano anfx, x" )" = E[Hisn<wi»x> Hisn(wi»x’> In]



Random Features
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General form

K(x,x') = f K, (x, x")dp(w) = E[K, (6, x")]

WE()

K, (x,x")=(d,(x),P,(x")) for ®, : X - Ris rank-one
» A random such K gives an unbiased estimate of K

Independent repetitions give us maps Z : X — RP
Think of Z as composing JL and Mercer maps Z = W)} o @y

Guarantee on degree of approximation
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If X ¢ R? is “compact” and D = Q (e%logé) then with prob.
(1 —6),wehave sup |K(x,x") —(Z(x),Z(x"))| <€
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Random Features

Translation Invariant [Rahimi-Recht
Gaussian, Laplacian NIPS‘07]
Homogeneous [Vedaldi-Zisserman
Chi-Square, Min CVPR’10]
Radial Basis [Vempati et. al.
Exp. Chi-Square BMVC’10]
Dot Product [K.-Karnick
Poly, Exp DP AISTATS 12]



Random features

» Accelerated training and test routines

Comparable/increased accuracies

Most experimentation on classification tasks
SVMs [VZ,VVZ],KK], ridge regression [RR]

Cod-RNA

acc = 95.2%
trn = 91.5s
tst=17.1s

acc = 94.9%
trn = | 1.5s (8x)
tst = 2.8s (6x)
D =500

acc = 93.8%
trn = 0.67s (136x)
tst = 1.4s (12x)
D =50

Dataset
Exact SVM

RF + (*¥)™

Adult

acc = 83.7%
trn = 263s
tst = 33.4s

acc = 82.9%
trn = 40s (6.6x)
tst = 14s (2.3x)

D =500

acc = 84.8%
trn = 7.2s (37x%)
tst = 9.4s (3.6x)

D =100

JCNN

acc = 98.4%
trn = 136s
tst = 30s

acc = 97.2%
trn = 25s (5.5x%)
tst = 23s (1.3x)

D = 1000

acc = 92.2%
trn = 5.2s (26x)
tst = 9s (3.3x)
D =200

Cover-type

acc = 80.61%
trn = 194s
tst = 696s

acc = 76.2%
trn = 21s (9x)
tst = 207s (3.6x)
D = 1000

acc = 75.5%
trn = 3.7s (52x)
tst = 80s (8.7x)

D =100



