Random features for kernel learning Purushottam Kar Joint work with Harish Karnick

Department of Computer Science and Engineering Indian Institute of Technology Kanpur

Mysore Workshop on Machine Learning, Aug 1-5, 2012

Learning with simple linear models

Problem	Classification	Regression	PCA
Solution	Linear hyper-plane	Linear regression	Linear PCA
A thousand words			

Linear models may under-fit data

- Poor classification accuracy (think of the XOR problem)
- Poor interpolation for regression
- Data may appear near isotropic to linear model

Kernels exploit various invariances* in these algorithms

• Use embedding $\Phi_K: \mathcal{X} \to \mathcal{H}_K$ where linear models are good !

$$K(x, x') = \langle \Phi_K(x), \Phi_K(x') \rangle$$

Kernels exploit various invariances* in these algorithms

• Use embedding $\Phi_K: \mathcal{X} \to \mathcal{H}_K$ where linear models are good !

$$K(x, x') = \langle \Phi_K(x), \Phi_K(x') \rangle$$

Kernels exploit various invariances* in these algorithms

• Use embedding $\Phi_K: \mathcal{X} \to \mathcal{H}_K$ where linear models are good !

$$K(x, x') = \langle \Phi_K(x), \Phi_K(x') \rangle$$

* Obliviousness to the precise embedding : recall our favorite representer theorems !

Kernels exploit various invariances* in these algorithms

• Use embedding $\Phi_K: \mathcal{X} \to \mathcal{H}_K$ where linear models are good !

$$K(x, x') = \langle \Phi_K(x), \Phi_K(x') \rangle$$

* Obliviousness to the precise embedding : recall our favorite representer theorems !

The price of trickery

Frequently, we choose complex kernels i.e. $\dim(\mathcal{H}_K) \gg 1$

Requires implicit representations for hypotheses

Problem	Hypothesis (explicit)	Hypothesis (implicit)
Classification	$\operatorname{sgn}(w^{\top}\Phi_{K}(x))$	$\operatorname{sgn}(\sum \alpha_i y_i K(x, x_i))$
Regression	$w^{T}\Phi_K(x)$	$\sum \alpha_i y_i K(x, x_i)$
PCA	$\left(V^k\right)^{T}\Phi_K(x)$	$\sum \alpha_i^k K(x, x_i)$
Clustering	$\underset{k}{\operatorname{argmin}} \ \Phi(x) - \mu_k\ _{\mathcal{H}_K}^2$	$\underset{k}{\operatorname{argmax}} \left\{ \sum \alpha_i^k K(x, x_i) + c_k \right\}$

Summations frequently run over most of the training set

- Provably a constant fraction in some cases [Steinwart '03]
- Expensive test, training routines
- Explicit forms much cheaper to work with

Dimensionality Reduction

- How about making \mathcal{H}_K finite dimensional
 - ▶ JL Lemma : inner product preserving maps Ψ_{IL} : $\mathcal{H}_K \to \mathbb{R}^D$
 - Problem : "inductive" implementations require access to \mathcal{H}_K

Structure Theorems

Characterizations for certain kernel families

Kernel family	Representation	Characterization
Translation invariant	K(x, x') = f(x - x')	Bochner's theorem over $(\mathbb{R}, +)$
Homogeneous	$K(x, x') = f\left(\frac{x}{x'}\right)$	Bochner's theorem over $(\mathbb{R} \setminus \{0\}, \times)$
Dot Product	$K(x, x') = f(\langle x, x' \rangle)$	Schoenberg's theorem

- Bochner's theorem : $f(x) = \int_{\Gamma} \gamma(x) d\mu(\gamma), \mu \ge 0$
 - $K(x, x') = \int_{\Gamma} \gamma(x x') d\mu(\gamma) = E[\gamma(x)\overline{\gamma(x')}]$
- Schoenberg's theorem : $f(x) = \sum_{n \ge 0} a_n x^n$, $a_n \ge 0$ • $K(x, x') = \sum_{n \ge 0} a_n \langle x, x' \rangle^n = \mathbb{E}[\prod_{i \le n} \langle \omega_i, x \rangle \prod_{i \le n} \langle \omega_i, x' \rangle |n]$

Random Features

General form

$$K(x, x') = \int_{\omega \in \Omega} K_{\omega}(x, x') d\mu(\omega) = \mathbb{E}[K_{\omega}(x, x')]$$

• $K_{\omega}(x, x') = \langle \Phi_{\omega}(x), \Phi_{\omega}(x') \rangle$ for $\Phi_{\omega} : \mathcal{X} \to \mathbb{R}$ is rank-one

- A random such K_{ω} gives an unbiased estimate of K
 - Independent repetitions give us maps $Z : \mathcal{X} \to \mathbb{R}^D$
 - Think of Z as composing JL and Mercer maps $Z = \Psi_{JL} \circ \Phi_K$

Guarantee on degree of approximation

If
$$\mathcal{X} \subset \mathbb{R}^d$$
 is "compact" and $D = \Omega\left(\frac{d}{\epsilon^2}\log\frac{1}{\epsilon\delta}\right)$ then with prob.
(1 - δ), we have $\sup_{x,x' \in \mathcal{X}} |K(x,x') - \langle Z(x), Z(x') \rangle| < \epsilon$

Random Features

Kernel Family	RF Construction	
Translation Invariant	[Rahimi-Recht	
Gaussian, Laplacian	NIPS'07]	
Homogeneous	[Vedaldi-Zisserman	
Chi-Square, Min	CVPR'10]	
Radial Basis	[Vempati et. al.	
Exp. Chi-Square	BMVC'10]	
Dot Product	[KKarnick	
Poly, Exp DP	AISTATS'I 2]	

Random features

Accelerated training and test routines

- Comparable/increased accuracies
- Most experimentation on classification tasks
 - SVMs [VZ,VVZJ,KK], ridge regression [RR]

Dataset	Cod-RNA	Adult	IJCNN	Cover-type
Exact SVM	acc = 95.2%	acc = 83.7%	acc = 98.4%	acc = 80.61%
	trn = 91.5s	trn = 263s	trn = 136s	trn = 194s
	tst = 17.1s	tst = 33.4s	tst = 30s	tst = 696s
RF	acc = 94.9%	acc = 82.9%	acc = 97.2%	acc = 76.2%
	trn = 11.5s (8x)	trn = 40s (6.6x)	trn = 25s (5.5x)	trn = 21s (9x)
	tst = 2.8s (6x)	tst = 14s (2.3x)	tst = 23s (1.3x)	tst = 207s (3.6x)
	D = 500	D = 500	D = 1000	D = 1000
RF + (*) ™	acc = 93.8%	acc = 84.8%	acc = 92.2%	acc = 75.5%
	trn = 0.67s (136x)	trn = 7.2s (37x)	trn = 5.2s (26x)	trn = 3.7s (52x)
	tst = 1.4s (12x)	tst = 9.4s (3.6x)	tst = 9s (3.3x)	tst = 80s (8.7x)
	D = 50	D = 100	D = 200	D = 100