

Kernel algorithms : an overview

- Learning with simple linear models

Problem	Classification	Regression	PCA	
Solution	Linear hyper-plane	Linear regression	Linear PCA	
A thousand words		\ddots		

- Linear models may under-fit data
- Poor classification accuracy (think of the XOR problem)
- Poor interpolation for regression
- Data may appear near isotropic to linear model

Kernel algorithms : an overview

- Kernels exploit various invariances* in these algorithms
- Use embedding $\Phi_{K}: \mathcal{X} \rightarrow \mathcal{H}_{K}$ where linear models are good!
- $K\left(x, x^{\prime}\right)=\left\langle\Phi_{K}(x), \Phi_{K}\left(x^{\prime}\right)\right\rangle$

Kernel algorithms : an overview

- Kernels exploit various invariances* in these algorithms
, Use embedding $\Phi_{K}: \mathcal{X} \rightarrow \mathcal{H}_{K}$ where linear models are good!
- $K\left(x, x^{\prime}\right)=\left\langle\Phi_{K}(x), \Phi_{K}\left(x^{\prime}\right)\right\rangle$
Problem

Kernel algorithms : an overview

- Kernels exploit various invariances* in these algorithms
, Use embedding $\Phi_{K}: \mathcal{X} \rightarrow \mathcal{H}_{K}$ where linear models are good!
- $K\left(x, x^{\prime}\right)=\left\langle\Phi_{K}(x), \Phi_{K}\left(x^{\prime}\right)\right\rangle$

Kernel algorithms : an overview

- Kernels exploit various invariances* in these algorithms
, Use embedding $\Phi_{K}: \mathcal{X} \rightarrow \mathcal{H}_{K}$ where linear models are good!
- $K\left(x, x^{\prime}\right)=\left\langle\Phi_{K}(x), \Phi_{K}\left(x^{\prime}\right)\right\rangle$

The price of trickery

- Frequently, we choose complex kernels i.e. $\operatorname{dim}\left(\mathcal{H}_{K}\right) \gg 1$
- Requires implicit representations for hypotheses

Problem	Hypothesis (explicit)	Hypothesis (implicit)		
Classification	$\operatorname{sgn}\left(w^{\top} \Phi_{K}(x)\right)$	$\operatorname{sgn}\left(\sum \alpha_{i} y_{i} K\left(x, x_{i}\right)\right)$		
Regression	$w^{\top} \Phi_{K}(x)$	$\sum \alpha_{i} y_{i} K\left(x, x_{i}\right)$		
PCA	$\left(V^{k}\right)^{\top} \Phi_{K}(x)$	$\sum \alpha_{i}^{k} K\left(x, x_{i}\right)$		
Clustering	$\underset{k}{\operatorname{argmin}\left\\|\Phi(x)-\mu_{k}\right\\|_{\mathcal{H}_{K}}^{2}}$	$\underset{k}{\operatorname{argmax}\{ }\left\{\alpha_{i}^{k} K\left(x, x_{i}\right)+c_{k}\right\}$		

- Summations frequently run over most of the training set
- Provably a constant fraction in some cases [Steinwart ‘03]
- Expensive test, training routines
- Explicit forms much cheaper to work with

Dimensionality Reduction

- How about making \mathcal{H}_{K} finite dimensional
- JL Lemma : inner product preserving maps $\Psi_{J L}: \mathcal{H}_{K} \rightarrow \mathbb{R}^{D}$
- Problem :"inductive" implementations require access to \mathscr{H}_{K}

Structure Theorems

- Characterizations for certain kernel families

Kernel family	Representation	Characterization
Translation invariant	$K\left(x, x^{\prime}\right)=f\left(x-x^{\prime}\right)$	Bochner's theorem over $(\mathbb{R},+)$
Homogeneous	$K\left(x, x^{\prime}\right)=f\left(\frac{x}{x^{\prime}}\right)$	Bochner's theorem over $(\mathbb{R} \backslash\{0\}, \times)$
Dot Product	$K\left(x, x^{\prime}\right)=f\left(\left\langle x, x^{\prime}\right\rangle\right)$	Schoenberg's theorem

- Bochner's theorem : $f(x)=\int_{\Gamma} \gamma(x) d \mu(\gamma), \mu \geq 0$

$$
K\left(x, x^{\prime}\right)=\int_{\Gamma} \gamma\left(x-x^{\prime}\right) d \mu(\gamma)=\mathrm{E}\left[\gamma(x) \overline{\gamma\left(x^{\prime}\right)}\right]
$$

- Schoenberg's theorem : $f(x)=\sum_{n \geq 0} a_{n} x^{n}, a_{n} \geq 0$
- $K\left(x, x^{\prime}\right)=\sum_{n \geq 0} a_{n}\left\langle x, x^{\prime}\right\rangle^{n}=\mathrm{E}\left[\prod_{i \leq n}\left\langle\omega_{i}, x\right\rangle \prod_{i \leq n}\left\langle\omega_{i}, x^{\prime}\right\rangle \mid n\right]$

Random Features

- General form

$$
\begin{gathered}
K\left(x, x^{\prime}\right)=\int_{\omega \in \Omega} K_{\omega}\left(x, x^{\prime}\right) d \mu(\omega)=\mathrm{E}\left[K_{\omega}\left(x, x^{\prime}\right)\right] \\
K_{\omega}\left(x, x^{\prime}\right)=\left\langle\Phi_{\omega}(x), \Phi_{\omega}\left(x^{\prime}\right)\right\rangle \text { for } \Phi_{\omega}: x \rightarrow \mathbb{R} \text { is rank-one }
\end{gathered}
$$

- A random such K_{ω} gives an unbiased estimate of K
- Independent repetitions give us maps $Z: X \rightarrow \mathbb{R}^{D}$
- Think of Z as composing JL and Mercer maps $Z=\Psi_{J L} \circ \Phi_{K}$
- Guarantee on degree of approximation

If $X \subset \mathbb{R}^{d}$ is "compact" and $D=\Omega\left(\frac{d}{\epsilon^{2}} \log \frac{1}{\epsilon \delta}\right)$ then with prob.
$(1-\delta)$, we have $\sup \left|K\left(x, x^{\prime}\right)-\left\langle Z(x), Z\left(x^{\prime}\right)\right\rangle\right|<\epsilon$

$$
x, x^{\prime} \in \mathcal{X}
$$

Random Features

Kernel Family	RF Construction
Translation Invariant Gaussian, Laplacian	[Rahimi-Recht NIPS‘07]
Homogeneous Chi-Square, Min	[Vedaldi-Zisserman CVPR'I0]
Radial Basis	[Vempati et. al.
Exp. Chi-Square	BMVC'I0]
Dot Product	[K.-Karnick
Poly, Exp DP	AISTATS‘I2]

Random features

- Accelerated training and test routines
- Comparable/increased accuracies
- Most experimentation on classification tasks
- SVMs [VZ,VVZJ,KK], ridge regression [RR]

Dataset	Cod-RNA	Adult	IJCNN	Cover-type
Exact SVM	$\begin{aligned} \mathrm{acc} & =95.2 \% \\ \text { trn } & =91.5 \mathrm{~s} \\ \mathrm{tst} & =17.1 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{acc}=83.7 \% \\ & \mathrm{trn}=263 \mathrm{~s} \\ & \mathrm{tst}=33.4 \mathrm{~s} \end{aligned}$	$\begin{gathered} \mathrm{acc}=98.4 \% \\ \text { trn }=136 \mathrm{~s} \\ \mathrm{tst}=30 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{acc}=80.61 \% \\ \text { trn }=194 \mathrm{~s} \\ \text { tst }=696 \mathrm{~s} \end{gathered}$
RF	$\begin{gathered} \mathrm{acc}=94.9 \% \\ \mathrm{trn}=11.5 \mathrm{~s}(8 \mathrm{x}) \\ \mathrm{tst}=2.8 \mathrm{~s}(6 \mathrm{x}) \\ \mathrm{D} \end{gathered}=500 \mathrm{l}$	$\begin{gathered} \text { acc }=82.9 \% \\ \text { trn }=40 \mathrm{~s}(6.6 \mathrm{x}) \\ \mathrm{tst}=14 \mathrm{~s}(2.3 \mathrm{x}) \\ \mathrm{D}=500 \end{gathered}$	$\begin{gathered} \text { acc }=97.2 \% \\ \text { trn }=25 \mathrm{~s}(5.5 \mathrm{x}) \\ \mathrm{tst}=23 \mathrm{~s}(1.3 \mathrm{x}) \\ \mathrm{D}=1000 \end{gathered}$	$\begin{gathered} \mathrm{acc}=76.2 \% \\ \operatorname{trn}=21 \mathrm{~s}(9 \mathrm{x}) \\ \mathrm{tst}=207 \mathrm{~s}(3.6 \mathrm{x}) \\ \mathrm{D}=1000 \end{gathered}$
$\mathbf{R F}+(\%)^{\text {TM }}$	$\begin{gathered} \mathrm{acc}=93.8 \% \\ \operatorname{trn}=0.67 \mathrm{~s}(136 \mathrm{x}) \\ \mathrm{tst}=1.4 \mathrm{~s}(12 \mathrm{x}) \\ \mathrm{D}=50 \end{gathered}$	$\begin{gathered} \mathrm{acc}=84.8 \% \\ \operatorname{trn}=7.2 \mathrm{~s}(37 \mathrm{x}) \\ \mathrm{tst}=9.4 \mathrm{~s}(3.6 \mathrm{x}) \\ \mathrm{D}=100 \end{gathered}$	$\begin{gathered} \text { acc }=92.2 \% \\ \text { trn }=5.2 \mathrm{~s}(26 \mathrm{x}) \\ \mathrm{tst}=9 \mathrm{~s}(3.3 \mathrm{x}) \\ \mathrm{D}=200 \end{gathered}$	$\begin{gathered} \text { acc }=75.5 \% \\ \operatorname{trn}=3.7 \mathrm{~s}(52 \mathrm{x}) \\ \mathrm{tst}=80 \mathrm{~s}(8.7 \mathrm{x}) \\ \mathrm{D}=100 \end{gathered}$

