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Quick Motivation

• Kernel Algorithms (SVM, SVR, KPCA) have output

� � =� ��� �, ��
�

���

• Number of “support vectors” is typically large

• Provably a constant fraction of training set size*

• Prediction time � �� where �� ∈� ⊂ ℝ�

• Slow for real time applications

2*[Steinwart NIPS 03, Steinwart-Christmann. NIPS 08]



The General Idea

• Approximate kernel using explicit feature maps

�:� ⟶ ℝ�  s.t.  � �, �� ≈ � �
�� ��

• Speeds up prediction time to � �� ≪ � ��

� � ≈� �� � � , � ��
�

���
= � � ��

� =� ��� ��
�

���

• Speeds up training time as well
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Why Should Such Maps Exist? 

• Mercer’s theorem*
Every PSD kernel � has the following expansion

� �, � =� ��� � � � � �
�

���

• The series converges uniformly to kernel

• For every �> �, ∃�� such that if  we construct the map

��� = � �, � �, … , � �� ∈ℝ��,

• then for all �, � ∈�

� �, � − ��� �
���� � ≤ ϵ

• Call such maps uniformly �-approximate

4*[Mercer 09]



Today’s Agenda

• Some explicit feature map constructions
• Randomized feature maps

e.g. Translation invariant, rotation invariant

• Deterministic feature maps
e.g. Intersection, scale invariant

• Some “fast” random feature constructions
• Translation invariant, dot product

• The BIG picture?
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Random Feature Maps
Approximate recovery of kernel values with 
high confidence
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Translation Invariant Kernels*

• Kernels of the form � �, � = � � − �  
• Gaussian kernel, Laplacian kernel

• Bochner’s Theorem**
For every � there exists a positive function �

� � − � = � cos�� � − � � � ��
�∈ �� 

= E�∼� cos�
� � − �

• Finding �: take inverse Fourier transform of �

• Select �� ∼ � for � = �, … ,�

��:� ↦ cos��
�� ,sin��

��

7*[Rahimi-Recht NIPS 07], ** Special case for � ⊂ ℝ�, [Bochner 33]



Translation Invariant Kernels

• Empirical averages approximate expectations

• Let �:� ↦ �� � , �� � , … , �� �

� � �� � =
�

�
∑ �� �

��� �
�
���

=
�

�
∑ cos��

� � − ��
���

≈ E�∼� cos�
� � − �

= � � − �

• Let us assume points �, � ∈� �,� ⊂ ℝ�

Then we require � ≥
���

��
log

���

��

�� depends on spectrum of kernel �
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Translation Invariant Kernels

• For the RBF Kernel

� �, � = exp
− � − � �

�

�

� � =
�

�� �/�
exp

− � �
�

�

• If kernel � offers a �margin, then we should require

� ≳
���

��
log

��

��

Here �� ≈ � where �, � ∈ℝ�
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Rotation Invariant Kernels*

• Kernels of the form � �, � = � ���
• Polynomial kernels, exponential kernel

• Schoenberg’s theorem**

� ��� =� �� �
�� �

���
, �� ≥ �

• Select �� ∼ �∈ℕ for � = �, … ,�

• Approx. ��� ��: select ��,… ,��� ∼ −�, � �

��:� ↦ ��� � ��
��

��

���

• Similar approximation guarantees as earlier

10*[K.-Karnick AISTATS 12], **[Schoenberg 42]



Deterministic Feature Maps
Exact/approximate recovery of kernel values 
with certainty
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Intersection Kernel*

• Kernel of the form � �, � = ∑ min��, ���
���

• Exploit additive separability of the kernel

� � =� ��
�

���
� min��, ��

�
�

���
=� �� �

�

�� � =� ����� ��, ��
�

�

• Each �� � can be calculated in � log � time !

• Requires � �log � preprocessing time per dimension

• Prediction time almost independent of �
• However, deterministic and exact method – no �or �

12*[Maji-Berg-Malik CVPR 08]



Scale Invariant Kernels*

• Kernels of the form � �, � = ∑ �� �
�, ���

��� where

�� �
�, �� = ��

�
��

��

��
��

�
,   �≥ �

• Bochner’s theorem still applies**

• Involves working with ��� �
�, �� = �� log �� − log ��

• Restrict domain so that we have a Fourier series

��� � =� ����
����

�

����

• Use only lower frequencies � ∈ −�,… �

• Deterministic �-approximate maps

13*[Vedaldi-Zisserman CVPR 10], **[K. 12]



Fast Feature Maps
Accelerated Random Feature Constructions
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Fast Fourier Features

• Special case of � �, � = exp
� ��� �

���

• Old method: � ∈ℝ�×�, ��� ∼ � �,��� , � �� time

• Instead use ��:� ↦ cos�� where � = ������

• � is the Hadamard transform, � is a random permutation
�, �, � random diagonal scaling, Gaussian and sign matrices

• Prediction time � Dlog � , E�� � ��� � = � �, �

• Rows of � are (non independent) Gaussian vectors

• Correlations are sufficiently low Var �� � ��� � ≤ �
�

�

• However, exponential convergence (for now) only for � = �
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Fast Taylor Features

• S������ ���� �� � �, � = ��� + � �

• Earlier method �:� ↦ ∏ ��
��

�
��� , takes � ��� time

• New method* takes � � � + �log � time

• Earlier method works (a bit) better for � > �
• Should be possible to improve new method as well

• Crucial idea ��� � = �⊗�, �⊗�

• Count Sketch** �:� ↦ �(�) such that � � �� � ≈ ���

• Create sketch � � ∈ℝ� of tensor � = �⊗�

• Create � independent count sketches �� � ,… , �� �

• Can show that � �⊗� ∼ ∏ � �� �
�
���

• Can be done in time � � � + �log � time using FFT

16*[Pham-Pagh KDD 13], **[Charikar et al 02]



The BIG Picture
An Overview of Explicit Feature Methods
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Other Feature Construction Methods

• Efficiently evaluable maps for efficient prediction
• Fidelity to a particular kernel not an objective

• Hard(er?) to give generalization guarantees

• Local Deep Kernel Learning (LDKL)*
• Sparse features speed up evaluation time to � �log �

• Training phase more involved

• Pairwise Piecewise Linear Embedding (PL2)**
• Encodes (discretization of) individual and pairs of features

• Construct a � = � � � + �� dimensional feature map

• Features are � � + ��  -sparse

18*[Jose et al ICML 13], **[Pele et al ICML 13]



A Taxonomy of Feature Methods
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Nystrom Methods
- Slow training
- Data aware
- Problem oblivious

Explicit Maps
- Fast training
- Data oblivious
- Problem oblivious

N
o

LDKL, PL2
- Slow(er) training
- Data aware
- Problem aware

Data Dependence



Discussion
The next big thing in accelerated kernel learning ?


