Explicit Feature Methods for Accelerated Kernel Learning Purushottam Kar

Quick Motivation

• Kernel Algorithms (SVM, SVR, KPCA) have output

$$h(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i)$$

- Number of "support vectors" is typically large
 - Provably a constant fraction of training set size*
 - Prediction time $\Omega(nd)$ where $x_i \in \mathcal{X} \subset \mathbb{R}^d$
 - Slow for real time applications

The General Idea

Approximate kernel using explicit feature maps

$$Z: \mathcal{X} \to \mathbb{R}^D$$
 s.t. $K(x, x_i) \approx Z(x)^\top Z(x_i)$

• Speeds up prediction time to $\mathbf{O}(\mathbf{Dd}) \ll \mathbf{O}(\mathbf{nd})$

$$h(x) \approx \sum_{i=1}^{n} \alpha_i \langle Z(x), Z(x_i) \rangle = Z(x)^{\mathsf{T}} w$$
$$w = \sum_{i=1}^{n} \alpha_i Z(x_i)$$

Speeds up training time as well

Why Should Such Maps Exist?

Mercer's theorem*

Every PSD kernel K has the following expansion

$$K(x,y) = \sum_{i=0}^{\infty} \lambda_i \Phi_i(x) \Phi_i(y)$$

- The series converges uniformly to kernel
 - For every $\epsilon > 0$, $\exists D_{\epsilon}$ such that if we construct the map $Z_{D_{\epsilon}} = (\Phi_1, \Phi_2, ..., \Phi_{D_{\epsilon}}) \in \mathbb{R}^{D_{\epsilon}}$,
 - then for all $x, y \in X$

$$|K(x, y) - Z_{D_{\epsilon}}(x)^{\top} Z_{D_{\epsilon}}(y)| \leq \epsilon$$

Call such maps *uniformly ε*-approximate

Today's Agenda

- Some explicit feature map constructions
 - Randomized feature maps e.g. Translation invariant, rotation invariant
 - Deterministic feature maps e.g. Intersection, scale invariant
- Some "fast" random feature constructions
 - Translation invariant, dot product
- The BIG picture?

Random Feature Maps

Approximate recovery of kernel values with high confidence

Translation Invariant Kernels*

- Kernels of the form K(x, y) = K(x y)
 - Gaussian kernel, Laplacian kernel
- Bochner's Theorem**

For every *K* there exists a positive function *p*

$$K(x - y) = \int_{\omega \in \widehat{X}} \cos(\omega^{\top}(x - y)) p(\omega) d\omega$$
$$= E_{\omega \sim p} \left[\cos(\omega^{\top}(x - y)) \right]$$

• Finding *p*: take inverse Fourier transform of *K*

• Select
$$\omega_i \sim p$$
 for $i = 1, ..., D$
 $Z_i: x \mapsto \left(\cos(\omega_i^\top x), \sin(\omega_i^\top x) \right)$

*[Rahimi-Recht NIPS 07], ** Special case for $\mathcal{X} \subset \mathbb{R}^d$, [Bochner 33]

Translation Invariant Kernels

- Empirical averages approximate expectations
- Let $Z: x \mapsto (Z_1(x), Z_2(x), \dots, Z_D(x))$ $Z(x)^\top Z(y) = \frac{1}{D} \sum_{i=1}^D Z_i(x)^\top Z_i(y)$ $= \frac{1}{D} \sum_{i=1}^D \cos\left(\omega_i^\top (x - y)\right)$ $\approx \mathbb{E}_{\omega \sim p} \left[\cos(\omega^\top (x - y)) \right]$ = K(x - y)
- Let us assume points $x, y \in \mathcal{B}(0, R) \subset \mathbb{R}^d$ Then we require $D \geq \frac{3 \ 0d}{\epsilon^2} \log\left(\frac{RC_K}{\delta\epsilon}\right)$ C_K depends on spectrum of kernel K

Translation Invariant Kernels

• For the RBF Kernel

$$K(x, y) = \exp\left(\frac{-\|x - y\|_2^2}{2}\right)$$
$$p(\omega) = \frac{1}{(2\pi)^{d/2}} \exp\left(\frac{-\|\omega\|_2^2}{2}\right)$$

• If kernel *K* offers a γ margin, then we should require $D \gtrsim \frac{30d}{\gamma^2} \log\left(\frac{Rd}{\delta\gamma}\right)$

Here $C_K \approx d$ where $x, y \in \mathbb{R}^d$

Rotation Invariant Kernels*

- Kernels of the form $K(x, y) = K(x^{\top}y)$
 - Polynomial kernels, exponential kernel
- Schoenberg's theorem**

$$K(x^{\mathsf{T}}y) = \sum_{p\geq 0} a_p (x^{\mathsf{T}}y)^p$$
, $a_p \geq 0$

• Select $\mathbf{p}_i \sim \mu \in \mathbb{N}$ for i=1,...,D

• Approx.
$$(x^{\top}y)^{p_i}$$
: select $\omega_1, \dots, \omega_{p_i} \sim \{-1, 1\}^d$
 $Z_i: x \mapsto \sqrt{a_{p_i}} \prod_{j=1}^{p_i} \omega_j^{\top} x$

• Similar approximation guarantees as earlier

Deterministic Feature Maps

Exact/approximate recovery of kernel values with certainty

Intersection Kernel*

- Kernel of the form $K(x, y) = \sum_{j=1}^{d} \min\{x^j, y^j\}$
- Exploit additive separability of the kernel

$$h(x) = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{d} \min\left\{x^j, x_i^j\right\} = \sum_j h_j(x)$$
$$h_j(x) = \sum_i \alpha_i \min\left\{x^j, x_i^j\right\}$$

- Each $h_i(x)$ can be calculated in $O(\log n)$ time !
 - Requires $O(n \log n)$ preprocessing time per dimension
- Prediction time *almost* independent of n
 - However, deterministic and exact method no ϵ or δ

Scale Invariant Kernels*

• Kernels of the form $K(x,y) = \sum_{j=1}^{d} K_j(x^j, y^j)$ where

$$K_j(x^j, y^j) = (x^j)^{\gamma} K_j\left(\frac{x^j}{y^j}\right) (y^j)^{\gamma}, \quad \gamma \ge 0$$

- Bochner's theorem still applies**
 - Involves working with $\widetilde{K}_j(x^j, y^j) = \widetilde{K}(\log |x^j| \log |y^j|)$
 - Restrict domain so that we have a Fourier series

$$\widetilde{K}_j(\lambda) = \sum_{k=-\infty}^{\infty} \widetilde{\mu}_k e^{ij\Delta\lambda}$$

- Use only lower frequencies $k \in \{-A, ..., A\}$
- Deterministic *ε*-approximate maps

Fast Feature Maps Accelerated Random Feature Constructions

Fast Fourier Features

- Special case of $K(x, y) = \exp\left(\frac{-\|x-y\|^2}{2\sigma^2}\right)$
 - Old method: $\mathbf{W} \in \mathbb{R}^{D imes d}$, $\boldsymbol{W}_{ij} \sim \mathcal{N}ig(\mathbf{0}, \sigma^{-2}ig)$, $\mathbf{O}(dD)$ time
 - Instead use \widetilde{Z} : $x \mapsto \cos(Vx)$ where $V = SHG\Pi HB$
 - Π is the Hadamard transform, Π is a random permutation
 S, G, B random diagonal scaling, Gaussian and sign matrices
- Prediction time O(Dlog d), $\mathbb{E}[\widetilde{Z}(x)^{\top}\widetilde{Z}(y)] = K(x, y)$
 - Rows of V are (non independent) Gaussian vectors
 - Correlations are sufficiently low $\operatorname{Var}\left[\widetilde{Z}(x)^{\top}\widetilde{Z}(y)\right] \leq O\left(\frac{1}{p}\right)$
 - However, exponential convergence (for now) only for D = d

Fast Taylor Features

- Special case of $K(x, y) = (x^{\top}y + c)^p$
 - Earlier method Z: $x \mapsto \prod_{j=1}^{p} \omega_j^{\top} x$, takes O(pdD) time
 - New method* takes $O(p(d + D\log D))$ time
 - Earlier method works (a bit) better for $m{c}>m{0}$
 - Should be possible to improve new method as well
- Crucial idea $(x^{ op}y)^p = \langle x^{\otimes p}, y^{\otimes p} \rangle$
 - Count Sketch** $C: x \mapsto C(x)$ such that $C(x)^{\top}C(y) \approx x^{\top}y$
 - Create sketch $C(X) \in \mathbb{R}^D$ of tensor $X = x^{\otimes p}$
 - Create p independent count sketches $C_1(x)$, ..., $C_p(x)$
 - Can show that $C(x^{\otimes p}) \sim \prod_{j=1}^{p} P(C_j(x))$
 - Can be done in time $O(p(d + D\log D))$ time using FFT

The BIG Picture

An Overview of Explicit Feature Methods

Other Feature Construction Methods

- Efficiently evaluable maps for efficient prediction
 - Fidelity to a particular kernel not an objective
 - Hard(er?) to give generalization guarantees
- Local Deep Kernel Learning (LDKL)*
 - Sparse features speed up evaluation time to O(dlog D)
 - Training phase more involved
- Pairwise Piecewise Linear Embedding (PL2)**
 - Encodes (discretization of) individual and pairs of features
 - Construct a $\mathbf{D} = O\left(\mathbf{K}(\mathbf{d} + d^2)\right)$ dimensional feature map
 - Features are $O(d + d^2)$ -sparse

A Taxonomy of Feature Methods Data Dependence

	Yes	Νο
Yes	 Nystrom Methods Slow training Data aware Problem oblivious 	 Explicit Maps Fast training Data oblivious Problem oblivious
No	 LDKL, PL2 Slow(er) training Data aware Problem aware 	

Kernel Dependence

Discussion

The next big thing in accelerated kernel learning ?