accelerated kernel learning¹

purushottam kar

department of computer science and engineering indian institute of technology kanpur

november 27, 2012

¹joint work with harish c. karnick

purushottam kar (iit kanpur)

accelerated kernel learning

november 27, 2012 1 / 27

► learning (7 slides)

- ► learning (7 slides)
 - introduction to machine learning

- ► learning (7 slides)
 - introduction to machine learning
 - ► issues in learning

- ► learning (7 slides)
 - introduction to machine learning
 - ► issues in learning
- kernel learning (6 slides)

- ► learning (7 slides)
 - introduction to machine learning
 - issues in learning
- kernel learning (6 slides)
 - introduction to kernel learning

- ► learning (7 slides)
 - introduction to machine learning
 - issues in learning
- ▶ kernel learning (6 slides)
 - introduction to kernel learning
 - issues in kernel learning

- ► learning (7 slides)
 - introduction to machine learning
 - issues in learning
- kernel learning (6 slides)
 - introduction to kernel learning
 - issues in kernel learning
- ▶ accelerated kernel learning (11 slides)

= 900

- ► learning (7 slides)
 - introduction to machine learning
 - issues in learning
- ▶ kernel learning (6 slides)
 - introduction to kernel learning
 - issues in kernel learning
- ▶ accelerated kernel learning (11 slides)
 - random features

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- ► learning (7 slides)
 - introduction to machine learning
 - issues in learning
- ▶ kernel learning (6 slides)
 - introduction to kernel learning
 - issues in kernel learning
- ▶ accelerated kernel learning (11 slides)
 - random features
 - other methods

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

▶ why machine learning ?

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

- ► why machine learning ?
 - automate tasks that are difficult for humans

- why machine learning ?
 - automate tasks that are difficult for humans
- where is machine learning used ?

- why machine learning ?
 - automate tasks that are difficult for humans
- ▶ where is machine learning used ?
 - point out spam mails for a gmail user

- why machine learning ?
 - automate tasks that are difficult for humans
- where is machine learning used ?
 - point out spam mails for a gmail user
 - predict stock market prices

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- why machine learning ?
 - automate tasks that are difficult for humans
- where is machine learning used ?
 - point out spam mails for a gmail user
 - predict stock market prices
 - predict new friends for a facebook user

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- why machine learning ?
 - automate tasks that are difficult for humans
- where is machine learning used ?
 - point out spam mails for a gmail user
 - predict stock market prices
 - predict new friends for a facebook user
- how does one do machine learning ?

- why machine learning ?
 - automate tasks that are difficult for humans
- ▶ where is machine learning used ?
 - point out spam mails for a gmail user
 - predict stock market prices
 - predict new friends for a facebook user
- ▶ how does one do machine learning ?
 - discover patterns in data

3

- why machine learning ?
 - automate tasks that are difficult for humans
- ▶ where is machine learning used ?
 - point out spam mails for a gmail user
 - predict stock market prices
 - predict new friends for a facebook user
- how does one do machine learning ?
 - discover patterns in data
 - what sort of patterns ?

3

ml task 1 : classification

purushottam kar (iit kanpur)

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

ml task 1 : classification

purushottam kar (iit kanpur)

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

 goal : find a way to assign the "correct" label to a set of objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
 - can we figure out a pattern ?

イロト 不得 トイヨト イヨト 二日

- ▶ goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
 - can we figure out a pattern ?
 - can we automatically detect spam mails for him ?

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
 - ► can we figure out a pattern ?
 - can we automatically detect spam mails for him ?
 - can we use his patterns to tag his girlfriend's emails ?

3

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
 - ► can we figure out a pattern ?
 - can we automatically detect spam mails for him ?
 - can we use his patterns to tag his girlfriend's emails ?

figure: linear classification

figure: non-linear classification

- 4 同 1 - 4 三 1 - 4 三 1

purushottam kar (iit kanpur)

accelerated kernel learning

november 27, 2012 5 / 27

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

purushottam kar (iit kanpur)

accelerated kernel learning

november 27, 2012 5 / 27

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

 goal : more like generalized curve fitting

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company

3

Sar

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
 - can we predict today's stock prices for the company ?

3

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
 - can we predict today's stock prices for the company ?
- no "labels" here

3

- 4 伺 ト 4 ヨ ト 4 ヨ ト

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
 - can we predict today's stock prices for the company ?
- ▶ no "labels" here
 - non-discrete pattern

- 4 同 1 - 4 回 1 - 4 回 1

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
 - can we predict today's stock prices for the company ?
- ▶ no "labels" here
 - non-discrete pattern

figure: real valued regression

figure: dangers of overfitting

- 4 伺 ト 4 ヨ ト 4 ヨ ト

other ml tasks

purushottam kar (iit kanpur)

accelerated kernel learning

november 27, 2012 6 / 27

purushottam kar (iit kanpur)

accelerated kernel learning

november 27, 2012 6 / 27

► ranking

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

- ► ranking
 - find the top 10 facebook users with whom I am likely to make friends

996

イロト 不得 トイヨト イヨト 二日

- ► ranking
 - ▶ find the top 10 facebook users with whom I am likely to make friends
- clustering

996

- ► ranking
 - find the top 10 facebook users with whom I am likely to make friends
- clustering
 - given genome data, discover familia, genera and species

3

Sac

- ► ranking
 - find the top 10 facebook users with whom I am likely to make friends
- clustering
 - given genome data, discover familia, genera and species
- component analysis

3

- ► ranking
 - find the top 10 facebook users with whom I am likely to make friends
- clustering
 - given genome data, discover familia, genera and species
- component analysis
 - find principal or independent components in data

3

- ► ranking
 - find the top 10 facebook users with whom I am likely to make friends
- clustering
 - given genome data, discover familia, genera and species
- component analysis
 - find principal or independent components in data
 - useful in signal processing, dimensionality reduction

3

- 4 同 1 - 4 回 1 - 4 回 1

- ► ranking
 - find the top 10 facebook users with whom I am likely to make friends
- clustering
 - given genome data, discover familia, genera and species
- component analysis
 - find principal or independent components in data
 - useful in signal processing, dimensionality reduction

figure: clustering problems

figure: principal component analysis

• domain : a set \mathcal{X} of objects we are interested in

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- domain : a set \mathcal{X} of objects we are interested in
 - ▶ emails, stocks, facebook users, living organisms, analog signals

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite

E ∽QQ

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- \blacktriangleright label set : the property ${\mathcal Y}$ of the objects we are interested in predicting

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- \blacktriangleright label set : the property ${\mathcal Y}$ of the objects we are interested in predicting
 - ▶ classification : discrete label set : $\mathcal{Y} = \{\pm 1\}$ for spam classification

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- \blacktriangleright label set : the property ${\mathcal Y}$ of the objects we are interested in predicting
 - ▶ classification : discrete label set : $\mathcal{Y} = \{\pm 1\}$ for spam classification
 - \blacktriangleright regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- \blacktriangleright label set : the property ${\mathcal Y}$ of the objects we are interested in predicting
 - ▶ classification : discrete label set : $\mathcal{Y} = \{\pm 1\}$ for spam classification
 - \blacktriangleright regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$
 - ► ranking, clustering, component analysis : more structured label sets

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- \blacktriangleright label set : the property ${\mathcal Y}$ of the objects we are interested in predicting
 - ▶ classification : discrete label set : $\mathcal{Y} = \{\pm 1\}$ for spam classification
 - \blacktriangleright regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$
 - ► ranking, clustering, component analysis : more structured label sets
- true pattern : $f^* : \mathcal{X} \longrightarrow \mathcal{Y}$

• domain : a set \mathcal{X} of objects we are interested in

- ▶ emails, stocks, facebook users, living organisms, analog signals
- ► set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- \blacktriangleright label set : the property ${\mathcal Y}$ of the objects we are interested in predicting
 - ▶ classification : discrete label set : $\mathcal{Y} = \{\pm 1\}$ for spam classification
 - \blacktriangleright regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$
 - ► ranking, clustering, component analysis : more structured label sets
- true pattern : $f^* : \mathcal{X} \longrightarrow \mathcal{Y}$
 - mathematically captures the notion of "correct" labellings

supervised learning

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- supervised learning
 - ▶ includes tasks such as classification, regression, ranking

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss *unsupervised*, *semi-supervised* learning today

イロト イポト イヨト イヨト

1

200

- supervised learning
 - ▶ includes tasks such as classification, regression, ranking
 - ► shall not discuss *unsupervised*, *semi-supervised* learning today
- ► learn from the teacher

3

Sac

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- ► learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- ► learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- ► learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- ► learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- ► learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern
- ► formalizing closeness of hypothesis to true pattern

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(x_1, f^*(x_1)), (x_2, f^*(x_2)), ..., (x_n, f^*(x_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern
- ► formalizing closeness of hypothesis to true pattern
 - ▶ how often do we give out a wrong answer : $\mathbb{P}[h(\mathbf{x}) \neq f^*(\mathbf{x})]$

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- ► learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern
- ▶ formalizing closeness of hypothesis to true pattern
 - ▶ how often do we give out a wrong answer : $\mathbb{P}[h(\mathbf{x}) \neq f^*(\mathbf{x})]$
 - more generally, utilize loss functions : $\ell : \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$

- supervised learning
 - ► includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern
- ► formalizing closeness of hypothesis to true pattern
 - ▶ how often do we give out a wrong answer : $\mathbb{P}[h(\mathbf{x}) \neq f^*(\mathbf{x})]$
 - more generally, utilize loss functions : $\ell : \mathcal{Y} \times \hat{\mathcal{Y}} \longrightarrow \mathbb{R}$
 - closeness defined as average loss : $\mathbb{E}\left[\left|\ell\left(h(\mathbf{x}), f^*(\mathbf{x})\right)\right|\right]$

- supervised learning
 - \blacktriangleright includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(\mathbf{x}_1, f^*(\mathbf{x}_1)), (\mathbf{x}_2, f^*(\mathbf{x}_2)), \dots, (\mathbf{x}_n, f^*(\mathbf{x}_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern
- ► formalizing closeness of hypothesis to true pattern
 - ▶ how often do we give out a wrong answer : $\mathbb{P}[h(\mathbf{x}) \neq f^*(\mathbf{x})]$
 - more generally, utilize loss functions : $\ell : \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$
 - closeness defined as average loss : $\mathbb{E}\left[\left[\ell\left(h(\mathbf{x}), f^*(\mathbf{x})\right)\right]\right]$
 - ▶ zero-one loss : $\ell(y_1, y_2) = \mathbb{1}_{y_1 \neq y_2}$ (for classification)

- supervised learning
 - \blacktriangleright includes tasks such as classification, regression, ranking
 - ► shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
 - ▶ we are given access to lots of domain elements with their true labels
 - ► training set : { $(x_1, f^*(x_1)), (x_2, f^*(x_2)), ..., (x_n, f^*(x_n))$ }
 - ▶ hypothesis : a pattern $h : \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
 - ▶ goal : learn a hypothesis that is *close* to the true pattern
- ► formalizing closeness of hypothesis to true pattern
 - ▶ how often do we give out a wrong answer : $\mathbb{P}[h(\mathbf{x}) \neq f^*(\mathbf{x})]$
 - more generally, utilize loss functions : $\ell : \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$
 - closeness defined as average loss : $\mathbb{E}\left[\left[\ell\left(h(\mathbf{x}), f^*(\mathbf{x})\right)\right]\right]$
 - ► zero-one loss : $\ell(y_1, y_2) = \mathbb{1}_{y_1 \neq y_2}$ (for classification)
 - quadratic loss : $\ell(y_1, y_2) = (y_1 y_2)^2$ (for regression)

▶ how to learn a hypothesis from a training set

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- how to learn a hypothesis from a training set
- how do i select my training set ?

3

200

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?

3

200

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?

▶ ...

3

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?
- ► shall only address the first and the last issue in this talk

▶ ...

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?

▶ ...

- ► shall only address the first and the last issue in this talk
- ► shall find the nearest carpet for rest of the issues

kernel learning 101

► take the example of spam classification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► take the example of spam classification
- ▶ assume that emails that look similar have the same label

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ► take the example of spam classification
- ▶ assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ► take the example of spam classification
- ▶ assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth
 - ► can infer the label of a new email using labels of emails seen before

イロト 不得 トイヨト イヨト 二日

- ► take the example of spam classification
- ▶ assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth
 - ► can infer the label of a new email using labels of emails seen before
- ▶ how to quantify "similarity" ?

イロト 不得 トイヨト イヨト 二日

- ► take the example of spam classification
- assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth
 - ► can infer the label of a new email using labels of emails seen before
- ▶ how to quantify "similarity" ?
 - a bivariate function $K : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$

- ► take the example of spam classification
- assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth
 - ► can infer the label of a new email using labels of emails seen before
- ▶ how to quantify "similarity" ?
 - a bivariate function $K : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$
 - ▶ e.g. the dot product in euclidean spaces

- ► take the example of spam classification
- assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth
 - ► can infer the label of a new email using labels of emails seen before
- ▶ how to quantify "similarity" ?
 - a bivariate function $K : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$
 - e.g. the dot product in euclidean spaces
 - $K(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle := \|\mathbf{x}_1\|_2 \|\mathbf{x}_2\|_2 \cos(\angle(\mathbf{x}_1, \mathbf{x}_2))$

- ► take the example of spam classification
- assume that emails that look similar have the same label
 - essentially saying that the true pattern is smooth
 - ► can infer the label of a new email using labels of emails seen before
- ▶ how to quantify "similarity" ?
 - a bivariate function $K : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$
 - e.g. the dot product in euclidean spaces
 - $K(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle := \|\mathbf{x}_1\|_2 \|\mathbf{x}_2\|_2 \cos(\angle(\mathbf{x}_1, \mathbf{x}_2))$
 - e.g. number of shared friends on facebook

a new email can be given the label of the most similar email in the training set

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- a new email can be given the label of the most similar email in the training set
 - not a good idea : would be slow and prone to noise

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- a new email can be given the label of the most similar email in the training set
 - not a good idea : would be slow and prone to noise
- ► take all training emails and ask them to vote

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- a new email can be given the label of the most similar email in the training set
 - not a good idea : would be slow and prone to noise
- ► take all training emails and ask them to vote
 - ► training emails that are similar to new email have more influence

- a new email can be given the label of the most similar email in the training set
 - ▶ not a good idea : would be slow and prone to noise
- ► take all training emails and ask them to vote
 - ► training emails that are similar to new email have more influence
 - some training emails are more useful than others

- a new email can be given the label of the most similar email in the training set
 - not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
 - ► training emails that are similar to new email have more influence
 - some training emails are more useful than others
 - more resilient to noise but still can be slow

- a new email can be given the label of the most similar email in the training set
 - not a good idea : would be slow and prone to noise
- ► take all training emails and ask them to vote
 - ► training emails that are similar to new email have more influence
 - some training emails are more useful than others
 - more resilient to noise but still can be slow
- kernel learning uses hypotheses of the form

$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

purushottam kar (iit kanpur)

november 27, 2012 11 / 27

イロト 不得 トイヨト イヨト ヨー のくや

- a new email can be given the label of the most similar email in the training set
 - ▶ not a good idea : would be slow and prone to noise
- ► take all training emails and ask them to vote
 - ► training emails that are similar to new email have more influence
 - some training emails are more useful than others
 - more resilient to noise but still can be slow
- kernel learning uses hypotheses of the form

$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• α_i denotes the usefulness of training email \mathbf{x}_i

- a new email can be given the label of the most similar email in the training set
 - ▶ not a good idea : would be slow and prone to noise
- ► take all training emails and ask them to vote
 - ► training emails that are similar to new email have more influence
 - some training emails are more useful than others
 - more resilient to noise but still can be slow
- kernel learning uses hypotheses of the form

$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

- α_i denotes the usefulness of training email \mathbf{x}_i
- ▶ for classification one uses sign(h(x))

► take
$$\mathcal{X} \subset \mathbb{R}^2$$
 and $K(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$ (linear kernel)
$$h(\mathbf{x}) = \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle = \left\langle \mathbf{x}, \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \right\rangle = \langle \mathbf{x}, \mathbf{w} \rangle$$
 (linear hypothesis)

► take
$$\mathcal{X} \subset \mathbb{R}^2$$
 and $K(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$ (linear kernel)
$$h(\mathbf{x}) = \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle = \left\langle \mathbf{x}, \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \right\rangle = \langle \mathbf{x}, \mathbf{w} \rangle$$
 (linear hypothesis)

• if α_i were absent then $w = \sum_{y_i=1} \mathbf{x}_i - \sum_{y_i=-1} \mathbf{x}_j$: weaker model

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

► take
$$\mathcal{X} \subset \mathbb{R}^2$$
 and $K(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$ (linear kernel)
$$h(\mathbf{x}) = \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle = \left\langle \mathbf{x}, \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \right\rangle = \langle \mathbf{x}, \mathbf{w} \rangle$$
 (linear hypothesis)

- if α_i were absent then $w = \sum_{y_i=1} \mathbf{x}_i \sum_{y_i=-1} \mathbf{x}_j$: weaker model
- α_i found by solving an optimization problem : details out of scope

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ► take $\mathcal{X} \subset \mathbb{R}^2$ and $K(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$ (linear kernel) $h(\mathbf{x}) = \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle = \left\langle \mathbf{x}, \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \right\rangle = \langle \mathbf{x}, \mathbf{w} \rangle$ (linear hypothesis)
- ► if α_i were absent then $w = \sum_{y_i=1} \mathbf{x}_i \sum_{y_i=-1} \mathbf{x}_j$: weaker model
- α_i found by solving an optimization problem : details out of scope

purushottam kar (iit kanpur)

accelerated kernel learning

november 27, 2012 12 / 27

► linear hypothesis are too weak to detect complex patterns in data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► linear hypothesis are too weak to detect complex patterns in data
 - ▶ in practice more complex notions of similarity are used

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Inear hypothesis are too weak to detect complex patterns in data
 - ► in practice more complex notions of similarity are used
 - most often, mercer kernels are used

E Sac

- ► linear hypothesis are too weak to detect complex patterns in data
 - ► in practice more complex notions of similarity are used
 - most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem

- Inear hypothesis are too weak to detect complex patterns in data
 - ► in practice more complex notions of similarity are used
 - most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem
 - loosely speaking, they correspond to measures of similarity that are actually inner products in some hilbert space

ヘロト 人間ト ヘヨト ヘヨト

- Inear hypothesis are too weak to detect complex patterns in data
 - in practice more complex notions of similarity are used
 - most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem
 - loosely speaking, they correspond to measures of similarity that are actually inner products in some hilbert space
 - more formally, a similarity function K is a mercer kernel if there exists a map Φ : X → H to some hilbert space H such that for all x₁, x₂ ∈ X, K(x₁, x₂) = ⟨Φ(x₁), Φ(x₂)⟩

- Inear hypothesis are too weak to detect complex patterns in data
 - ► in practice more complex notions of similarity are used
 - most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem
 - loosely speaking, they correspond to measures of similarity that are actually inner products in some hilbert space
 - more formally, a similarity function K is a mercer kernel if there exists a map Φ : X → H to some hilbert space H such that for all x₁, x₂ ∈ X, K(x₁, x₂) = ⟨Φ(x₁), Φ(x₂)⟩
- ▶ mercer kernels give us hypotheses that are linear in the hilbert space

$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}_i) \rangle = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$$
 for some $\mathbf{w} \in \mathcal{H}$

• consider
$$\mathcal{X} \subset \mathbb{R}^2$$
 s.t. $\mathbf{x} = (p, q)$ and $\mathcal{K}(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^2$

► consider
$$\mathcal{X} \subset \mathbb{R}^2$$
 s.t. $\mathbf{x} = (p,q)$ and $\mathcal{K}(\mathbf{x}_1,\mathbf{x}_2) = (\langle \mathbf{x}_1,\mathbf{x}_2 \rangle + 1)^2$

▶ one can show that the corresponding map is six dimensional

$$\Phi(\mathbf{x}) = \left(p^2, q^2, \sqrt{2}pq, \sqrt{2}p, \sqrt{2}q, 1
ight) \in \mathbb{R}^6$$

E 990

- ► consider $\mathcal{X} \subset \mathbb{R}^2$ s.t. $\mathbf{x} = (p,q)$ and $\mathcal{K}(\mathbf{x}_1,\mathbf{x}_2) = (\langle \mathbf{x}_1,\mathbf{x}_2 \rangle + 1)^2$
- \blacktriangleright one can show that the corresponding map is six dimensional

$$\Phi({f x})=ig({f
ho}^2,q^2,\sqrt{2}{f
ho} q,\sqrt{2}{f
ho},\sqrt{2}{f q},1ig)\in {\mathbb R}^6$$

it is able to implement quadratic hypotheses

= nac

a toy example

- ► consider $\mathcal{X} \subset \mathbb{R}^2$ s.t. $\mathbf{x} = (p, q)$ and $K(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^2$
- \blacktriangleright one can show that the corresponding map is six dimensional

$$\Phi({f x})=ig(p^2,q^2,\sqrt{2}pq,\sqrt{2}p,\sqrt{2}q,1ig)\in {\mathbb R}^6$$

- it is able to implement quadratic hypotheses
 - e.g. $h(\mathbf{x}) = p^2 + q^2 1$ for $\mathbf{w} = (1, 1, 0, 0, 0, -1)$

イロト 不得 トイヨト イヨト ヨー のくや

a toy example

- ► consider $\mathcal{X} \subset \mathbb{R}^2$ s.t. $\mathbf{x} = (p, q)$ and $K(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^2$
- one can show that the corresponding map is six dimensional

$$\Phi({f x})=ig(p^2,q^2,\sqrt{2}pq,\sqrt{2}p,\sqrt{2}q,1ig)\in {\mathbb R}^6$$

it is able to implement quadratic hypotheses

• e.g.
$$h(\mathbf{x}) = p^2 + q^2 - 1$$
 for $\mathbf{w} = (1, 1, 0, 0, 0, -1)$

► frequently one requires complex kernels having high dimensional maps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂/_{2σ²}) has an infinite dimensional map
 </sup>

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂/_{2σ²}) has an infinite dimensional map
 </sup>
 - \blacktriangleright cannot explicitly compute the map Φ

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂/_{2σ²}) has an infinite dimensional map
 </sup>
 - \blacktriangleright cannot explicitly compute the map Φ
 - the kernel trick : can compute $K(\mathbf{x}_1, \mathbf{x}_2)$ without computing Φ

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂/_{2σ²}) has an infinite dimensional map
 </sup>
 - \blacktriangleright cannot explicitly compute the map Φ
 - the kernel trick : can compute $K(\mathbf{x}_1, \mathbf{x}_2)$ without computing Φ
 - have to use the implicit form $h(\mathbf{x}) = \sum_{i=1}^{"} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$: slow

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂)/_{2σ²}) has an infinite dimensional map
 </sup>
 - \blacktriangleright cannot explicitly compute the map Φ
 - the kernel trick : can compute $K(\mathbf{x}_1, \mathbf{x}_2)$ without computing Φ
 - have to use the implicit form $h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$: slow
- why only mercer kernels ?

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂)/_{2σ²}) has an infinite dimensional map
 </sup>
 - \blacktriangleright cannot explicitly compute the map Φ
 - the kernel trick : can compute $K(\mathbf{x}_1, \mathbf{x}_2)$ without computing Φ
 - have to use the implicit form $h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$: slow
- why only mercer kernels ?
 - ▶ for algorithmic convenience and a clean theory

- ► frequently one requires complex kernels having high dimensional maps
 - e.g. the gaussian kernel K(x₁, x₂) = exp (<sup>||x₁-x₂||²/₂)/_{2σ²}) has an infinite dimensional map
 </sup>
 - \blacktriangleright cannot explicitly compute the map Φ
 - the kernel trick : can compute $K(\mathbf{x}_1, \mathbf{x}_2)$ without computing Φ
 - have to use the implicit form $h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$: slow
- why only mercer kernels ?
 - ▶ for algorithmic convenience and a clean theory
 - ► can use non-mercer *indefinite* kernels as well : out of scope

► two ways of representing mercer kernel hypotheses

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• requires upto n (and in practice $\Omega(n)$) operations

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• requires upto n (and in practice $\Omega(n)$) operations

►
$$h(\mathbf{x}) = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$$
 for some $\mathbf{w} \in \mathcal{H}$

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x}) = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$ for some $\mathbf{w} \in \mathcal{H}$
 - requires a single operation but in a high dimensional space

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• requires upto n (and in practice $\Omega(n)$) operations

•
$$h(\mathbf{x}) = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$$
 for some $\mathbf{w} \in \mathcal{H}$

- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space ?

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• requires upto n (and in practice $\Omega(n)$) operations

►
$$h(\mathbf{x}) = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$$
 for some $\mathbf{w} \in \mathcal{H}$

- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space ?
 - $Z: \mathcal{X} \longrightarrow \mathbb{R}^D$ such that for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $\langle Z(\mathbf{x}_1), Z(\mathbf{x}_2) \rangle \approx \mathcal{K}(\mathbf{x}_1, \mathbf{x}_2)$

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• requires upto n (and in practice $\Omega(n)$) operations

•
$$h(\mathbf{x}) = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$$
 for some $\mathbf{w} \in \mathcal{H}$

- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space ?
 - $Z: \mathcal{X} \longrightarrow \mathbb{R}^D$ such that for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $\langle Z(\mathbf{x}_1), Z(\mathbf{x}_2) \rangle \approx \mathcal{K}(\mathbf{x}_1, \mathbf{x}_2)$
 - $h(\mathbf{x}) = \langle Z(\mathbf{x}), \mathbf{w} \rangle$ for some $\mathbf{w} \in \mathbb{R}^D$

► two ways of representing mercer kernel hypotheses

•
$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

• requires upto n (and in practice $\Omega(n)$) operations

•
$$h(\mathbf{x}) = \langle \Phi(\mathbf{x}), \mathbf{w} \rangle$$
 for some $\mathbf{w} \in \mathcal{H}$

- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space ?
 - $Z: \mathcal{X} \longrightarrow \mathbb{R}^D$ such that for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $\langle Z(\mathbf{x}_1), Z(\mathbf{x}_2) \rangle \approx \mathcal{K}(\mathbf{x}_1, \mathbf{x}_2)$
 - $h(\mathbf{x}) = \langle Z(\mathbf{x}), \mathbf{w} \rangle$ for some $\mathbf{w} \in \mathbb{R}^D$
 - would get power of kernel as well as speed of linear hypothesis

why should such approximate maps exist ?

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - ▶ given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - ▶ given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$
 - need $D = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensional map

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - ▶ given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$
 - need $D = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensional map
- ▶ problem ??

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$
 - need $D = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensional map
- ► problem ??
 - ▶ all algorithmic implementations of the jl-lemma require explicit access to x_i ∈ H

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - ▶ given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$
 - need $D = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensional map
- ▶ problem ??
 - ► all algorithmic implementations of the jl-lemma require explicit access to x_i ∈ H
 - ▶ for us, calculating vectors in the hilbert space is prohibitive

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$
 - need $D = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensional map
- ▶ problem ??
 - ► all algorithmic implementations of the jl-lemma require explicit access to x_i ∈ H
 - ▶ for us, calculating vectors in the hilbert space is prohibitive
 - ► the number of dimensions depends upon the number of points

- why should such approximate maps exist ?
- ▶ johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]
 - given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{H}$, there exists a map $\Psi : \mathcal{H} \longrightarrow \mathbb{R}^D$
 - for all $i, j, \langle \Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j) \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle \pm \epsilon$
 - need $D = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensional map
- ▶ problem ??
 - ► all algorithmic implementations of the jl-lemma require explicit access to x_i ∈ H
 - ▶ for us, calculating vectors in the hilbert space is prohibitive
 - ► the number of dimensions depends upon the number of points
 - not satisfactory

figure: dimensionality reduction via jl transform

purushottam kar (iit kanpur)

accelerated kernel learning

1 november 27, 2012 18 / 27

Э

990

イロト イロト イヨト

characterization of certain kernel families

characterization of certain kernel families

bochner's theorem [rudin, fourier analysis on groups, 1962]

every translation invariant mercer kernel on a locally compact abelian group is the fourier-steiltjes transform of some bounded positive measure on the pontryagin dual group, $K(\mathbf{x}_1, \mathbf{x}_2) = \int_{\Gamma} \gamma (\mathbf{x}_1 - \mathbf{x}_2) d\mu(\gamma)$

イロト イポト イヨト イヨト 二日

characterization of certain kernel families

bochner's theorem [rudin, fourier analysis on groups, 1962]

every translation invariant mercer kernel on a locally compact abelian group is the fourier-steiltjes transform of some bounded positive measure on the pontryagin dual group, $K(\mathbf{x}_1, \mathbf{x}_2) = \int_{\Gamma} \gamma (\mathbf{x}_1 - \mathbf{x}_2) d\mu(\gamma)$

schoenberg's theorem [duke math. journ., 9(1):96-108, 1942]

every dot product mercer kernel arises from an analytic function having a maclaurin series with non-negative coefficients, $K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i=0}^{\infty} a_n \langle \mathbf{x}_1, \mathbf{x}_2 \rangle^n$

characterization of certain kernel families

bochner's theorem [rudin, fourier analysis on groups, 1962]

every translation invariant mercer kernel on a locally compact abelian group is the fourier-steiltjes transform of some bounded positive measure on the pontryagin dual group, $K(\mathbf{x}_1, \mathbf{x}_2) = \int_{\Gamma} \gamma (\mathbf{x}_1 - \mathbf{x}_2) d\mu(\gamma)$

schoenberg's theorem [duke math. journ., 9(1):96-108, 1942]

every dot product mercer kernel arises from an analytic function having a maclaurin series with non-negative coefficients, $K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i=0}^{\infty} a_n \langle \mathbf{x}_1, \mathbf{x}_2 \rangle^n$

 allows us to develop fast routines for radial basis, homogeneous and dot product kernels

purushottam kar (iit kanpur)

► a kernel whose map is one-dimensional is called a rank-one kernel

- ► a kernel whose map is one-dimensional is called a rank-one kernel
- ▶ one can interpret structure theorems as telling us that every kernel is a positive combination of rank-one kernels, i.e. for $\mu \ge 0$

$$\mathcal{K}(\mathbf{x}_1, \mathbf{x}_2) = \int_{\Omega} \mathcal{K}_{\omega}(\mathbf{x}_1, \mathbf{x}_2) d\mu(\omega) = \mathop{\mathbb{E}}_{\omega \sim \mu} \llbracket \mathcal{K}_{\omega}(\mathbf{x}_1, \mathbf{x}_2)
rbracket$$

where for all $\omega \in \Omega$, $K_{\omega} : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a rank-one kernel i.e. for some $\Phi_{\omega} : \mathcal{X} \longrightarrow \mathbb{R}$, for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $K_{\omega}(\mathbf{x}_1, \mathbf{x}_2) = \Phi_{\omega}(\mathbf{x}_1) \cdot \Phi_{\omega}(\mathbf{x}_1)$

イロト 不得 トイヨト イヨト ヨー のくや

- ► a kernel whose map is one-dimensional is called a rank-one kernel
- ▶ one can interpret structure theorems as telling us that every kernel is a positive combination of rank-one kernels, i.e. for $\mu \ge 0$

$$\mathcal{K}(\mathbf{x}_1, \mathbf{x}_2) = \int_{\Omega} \mathcal{K}_{\omega}(\mathbf{x}_1, \mathbf{x}_2) d\mu(\omega) = \mathop{\mathbb{E}}_{\omega \sim \mu} \llbracket \mathcal{K}_{\omega}(\mathbf{x}_1, \mathbf{x}_2)
rbracket$$

where for all $\omega \in \Omega$, $K_{\omega} : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a rank-one kernel i.e. for some $\Phi_{\omega} : \mathcal{X} \longrightarrow \mathbb{R}$, for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $K_{\omega}(\mathbf{x}_1, \mathbf{x}_2) = \Phi_{\omega}(\mathbf{x}_1) \cdot \Phi_{\omega}(\mathbf{x}_1)$

• a random K_{ω} gives us an unbiased estimate of K on all pairs of points

- ► a kernel whose map is one-dimensional is called a rank-one kernel
- ▶ one can interpret structure theorems as telling us that every kernel is a positive combination of rank-one kernels, i.e. for $\mu \ge 0$

$$\mathcal{K}(\mathbf{x}_1,\mathbf{x}_2) = \int_{\Omega} \mathcal{K}_{\omega}(\mathbf{x}_1,\mathbf{x}_2) d\mu(\omega) = \mathop{\mathbb{E}}_{\omega \sim \mu} \llbracket \mathcal{K}_{\omega}(\mathbf{x}_1,\mathbf{x}_2)
rbracket$$

where for all $\omega \in \Omega$, $K_{\omega} : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a rank-one kernel i.e. for some $\Phi_{\omega} : \mathcal{X} \longrightarrow \mathbb{R}$, for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $K_{\omega}(\mathbf{x}_1, \mathbf{x}_2) = \Phi_{\omega}(\mathbf{x}_1) \cdot \Phi_{\omega}(\mathbf{x}_1)$

- a random K_{ω} gives us an unbiased estimate of K on all pairs of points
 - once we have an unbiased estimate for a quantity, independent repetitions can help reduce variance

► select *D* values $\{\omega_1, \omega_2, \dots, \omega_D\}$ randomly from distribution μ over Ω

- ► select *D* values $\{\omega_1, \omega_2, \dots, \omega_D\}$ randomly from distribution μ over Ω
- create the map

$$Z(\mathbf{x}) = (\Phi_{\omega_1}(\mathbf{x}), \Phi_{\omega_2}(\mathbf{x}), \dots, \Phi_{\omega_D}(\mathbf{x})) \in \mathbb{R}^D$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ► select *D* values $\{\omega_1, \omega_2, \dots, \omega_D\}$ randomly from distribution μ over Ω
- create the map

$$Z(\mathbf{x}) = (\Phi_{\omega_1}(\mathbf{x}), \Phi_{\omega_2}(\mathbf{x}), \dots, \Phi_{\omega_D}(\mathbf{x})) \in \mathbb{R}^D$$

theorem (approximation guarantee for random features)

for a compact domain $\mathcal{X} \subset \mathbb{R}^d$, for any $\epsilon, \delta > 0$, take $D = \mathcal{O}\left(\frac{d}{\epsilon^2}\log \frac{1}{\epsilon\delta}\right)$ and construct a D-dimensional map, then with probability $(1 - \delta)$,

$$\sup_{\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}} |\mathcal{K}(\mathbf{x}_1, \mathbf{x}_2) - \langle Z(\mathbf{x}_1), Z(\mathbf{x}_2) \rangle| \le \epsilon$$

purushottam kar (iit kanpur)

november 27, 2012 21 / 27

▶ the guarantee is *uniform* unlike the jl-lemma guarantee

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► the guarantee is *uniform* unlike the jl-lemma guarantee
 - holds for all (possibly infinite) pairs of points from \mathcal{X}

イロト 不得 トイヨト イヨト 二日

- ▶ the guarantee is *uniform* unlike the jl-lemma guarantee
 - holds for all (possibly infinite) pairs of points from \mathcal{X}
- ▶ hypothesis is of the form $h(\mathbf{x}) = \langle Z(\mathbf{x}), \mathbf{w} \rangle$, for some $\mathbf{w} \in \mathbb{R}^D$

- ▶ the guarantee is *uniform* unlike the jl-lemma guarantee
 - holds for all (possibly infinite) pairs of points from \mathcal{X}
- ▶ hypothesis is of the form $h(\mathbf{x}) = \langle Z(\mathbf{x}), \mathbf{w} \rangle$, for some $\mathbf{w} \in \mathbb{R}^D$
 - evaluating a hypothesis takes $\mathcal{O}(D)$ time

- ▶ the guarantee is *uniform* unlike the jl-lemma guarantee
 - holds for all (possibly infinite) pairs of points from \mathcal{X}
- ▶ hypothesis is of the form $h(\mathbf{x}) = \langle Z(\mathbf{x}), \mathbf{w} \rangle$, for some $\mathbf{w} \in \mathbb{R}^D$
 - evaluating a hypothesis takes $\mathcal{O}(D)$ time
- ▶ procedure gives approximation to the kernel function directly

- ▶ the guarantee is *uniform* unlike the jl-lemma guarantee
 - holds for all (possibly infinite) pairs of points from \mathcal{X}
- ▶ hypothesis is of the form $h(\mathbf{x}) = \langle Z(\mathbf{x}), \mathbf{w} \rangle$, for some $\mathbf{w} \in \mathbb{R}^D$
 - evaluating a hypothesis takes $\mathcal{O}(D)$ time
- ▶ procedure gives approximation to the kernel function directly
 - ► same random features can be used for different tasks : classification, regression etc

random features : properties

figure: random features providing dimensionality reduction

purushottam kar (iit kanpur)

november 27, 2012 23 / 27

3

990

イロト イロト イヨト イ

random features : in action

several constructions for various families

イロト 不良 トイヨト イヨト ヨー のくや

- several constructions for various families
 - ► translation invariant kernels [rahimi, recht, nips 2007]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- several constructions for various families
 - ► translation invariant kernels [rahimi, recht, nips 2007]
 - ► homogeneous kernels [vedaldi, zisserman, cvpr 2010]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- several constructions for various families
 - ► translation invariant kernels [rahimi, recht, nips 2007]
 - ► homogeneous kernels [vedaldi, zisserman, cvpr 2010]
 - dot product kernels [k., karnick, aistats 2012]

Sac

イロト イポト イヨト イヨト 二日

random features : in action

- several constructions for various families
 - translation invariant kernels [rahimi, recht, nips 2007]
 - ▶ homogeneous kernels [vedaldi, zisserman, cvpr 2010]
 - dot product kernels [k., karnick, aistats 2012]

figure: approximation error in reconstructing kernel values

イロト イポト イヨト イヨト

dataset	$\mathbf{K} + libsvm$	\mathbf{RF} + liblinear	H0/1 + liblinear
nursery N = 13000 d = 8	acc = 99.8% trn = 10.8s tst = 1.7s	acc = 99.6% trn = 2.52s ($4.3 \times$) tst = 0.6s ($2.8 \times$) D = 500	acc = 97.96% trn = 0.4s ($27 \times$) tst = 0.18s ($9.4 \times$) D = 100
cod-rna N = 60000 d = 8	acc = 95.2% trn = 91.5s tst = 17.1s	acc = 94.9% trn = $11.5s$ ($8\times$) tst = $2.8s$ ($6.1\times$) D = 500	$\begin{array}{l} \mbox{acc} = 93.8\% \\ \mbox{trn} = 0.67 \mbox{s} \ ({\bf 136} \times) \\ \mbox{tst} = 1.4 \mbox{s} \ ({\bf 12} \times) \\ \mbox{D} = 50 \end{array}$
adult N = 49000 d = 123	acc = 83.7% trn = 263.3s tst = 33.4s	acc = 82.9% trn = $39.8s$ ($6.6\times$) tst = $14.3s$ ($2.3\times$) D = 500	acc = 84.8% trn = $7.18s (37 \times)$ tst = $9.4s (3.6 \times)$ D = 100
covertype $N=581000$ d=54	acc = 80.6% trn = 194.1s tst = 695.8s	acc = 76.2% trn = 21.4s ($9 \times$) tst = 207s ($3.6 \times$) D = 1000	acc = 75.5% trn = 3.7s ($52 \times$) tst = 80.4s ($8.7 \times$) D = 100

figure: speedups for exponential kernel $K(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(\frac{\langle \mathbf{x}_1, \mathbf{x}_2 \rangle}{\sigma^2}\right)$

► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G
 - ► nyström method : chooses a subsample of training points x̂₁,..., x̂_D as anchor points and creates a D dimensional map

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G
 - ► nyström method : chooses a subsample of training points x̂₁,..., x̂_D as anchor points and creates a D dimensional map
- advantages

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G
 - ► nyström method : chooses a subsample of training points x̂₁,..., x̂_D as anchor points and creates a D dimensional map
- advantages
 - ► data dependency helps in hard learning instances [yang et al, nips 2010]

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G
 - ► nyström method : chooses a subsample of training points x̂₁,..., x̂_D as anchor points and creates a D dimensional map
- advantages
 - ► data dependency helps in hard learning instances [yang et al, nips 2010]
- disadvantages

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G
 - ► nyström method : chooses a subsample of training points x̂₁,..., x̂_D as anchor points and creates a D dimensional map
- advantages
 - ▶ data dependency helps in hard learning instances [yang et al, nips 2010]
- disadvantages
 - ► slower than random features as the hypothesis takes Ω (D²) time to evaluate in worst case : O (D) time using random features

- ► alternative approaches exist that given a set of training points x₁,..., x_n, approximate the gram matrix G = [g_{ij}], g_{ij} = K(x_i, x_j)
 - cholesky decomposition : finds a rank D approximation to G
 - ► nyström method : chooses a subsample of training points x̂₁,..., x̂_D as anchor points and creates a D dimensional map
- advantages
 - ▶ data dependency helps in hard learning instances [yang et al, nips 2010]
- disadvantages
 - ► slower than random features as the hypothesis takes Ω (D²) time to evaluate in worst case : O (D) time using random features
 - ► expensive preprocessing required : increases time taken to learn

▶ what all families admit such random feature constructions ?

- ▶ what all families admit such random feature constructions ?
 - ▶ there do exist that dont [balcan et al., mach. learn., 65(1): 79–94, 2006]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- ▶ what all families admit such random feature constructions ?
 - ▶ there do exist that dont [balcan et al., mach. learn., 65(1): 79–94, 2006]
- introduce data awareness in methods

- ▶ what all families admit such random feature constructions ?
 - ▶ there do exist that dont [balcan et al., mach. learn., 65(1): 79–94, 2006]
- introduce data awareness in methods
- explore applications in other kernel learning tasks

- ▶ what all families admit such random feature constructions ?
 - ▶ there do exist that dont [balcan et al., mach. learn., 65(1): 79–94, 2006]
- introduce data awareness in methods
- explore applications in other kernel learning tasks
 - ▶ some work in clustering [chitta et al., icdm 2012]

= nac

イロト イポト イヨト イヨト