accelerated kernel learning ${ }^{1}$

purushottam kar

department of computer science and engineering indian institute of technology kanpur
november 27, 2012

${ }^{1}$ joint work with harish c. karnick

menu del dia

- learning (7 slides)

menu del dia

- learning (7 slides)
- introduction to machine learning

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning
- kernel learning (6 slides)

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning
- kernel learning (6 slides)
- introduction to kernel learning

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning
- kernel learning (6 slides)
- introduction to kernel learning
- issues in kernel learning

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning
- kernel learning (6 slides)
- introduction to kernel learning
- issues in kernel learning
- accelerated kernel learning (11 slides)

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning
- kernel learning (6 slides)
- introduction to kernel learning
- issues in kernel learning
- accelerated kernel learning (11 slides)
- random features

menu del dia

- learning (7 slides)
- introduction to machine learning
- issues in learning
- kernel learning (6 slides)
- introduction to kernel learning
- issues in kernel learning
- accelerated kernel learning (11 slides)
- random features
- other methods

learning 101

- why machine learning ?

learning 101

- why machine learning ?
- automate tasks that are difficult for humans

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?
- point out spam mails for a gmail user

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?
- point out spam mails for a gmail user
- predict stock market prices

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?
- point out spam mails for a gmail user
- predict stock market prices
- predict new friends for a facebook user

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?
- point out spam mails for a gmail user
- predict stock market prices
- predict new friends for a facebook user
- how does one do machine learning ?

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?
- point out spam mails for a gmail user
- predict stock market prices
- predict new friends for a facebook user
- how does one do machine learning ?
- discover patterns in data

learning 101

- why machine learning ?
- automate tasks that are difficult for humans
- where is machine learning used ?
- point out spam mails for a gmail user
- predict stock market prices
- predict new friends for a facebook user
- how does one do machine learning ?
- discover patterns in data
- what sort of patterns ?

ml task 1 : classification

ml task 1 : classification

ml task 1 : classification

- goal : find a way to assign the "correct" label to a set of objects

ml task 1 : classification

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful

ml task 1 : classification

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
- can we figure out a pattern ?

ml task 1 : classification

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
- can we figure out a pattern ?
- can we automatically detect spam mails for him ?

ml task 1 : classification

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
- can we figure out a pattern ?
- can we automatically detect spam mails for him ?
- can we use his patterns to tag his girlfriend's emails ?

ml task 1 : classification

- goal : find a way to assign the "correct" label to a set of objects
- observe a gmail user as he tags his mails as spam or useful
- can we figure out a pattern ?
- can we automatically detect spam mails for him ?
- can we use his patterns to tag his girlfriend's emails ?

figure: linear classification

figure: non-linear classification

ml task 2 : regression

ml task 2 : regression

ml task 2 : regression

- goal : more like generalized curve fitting

ml task 2 : regression

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company

ml task 2 : regression

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
- can we predict today's stock prices for the company ?

ml task 2 : regression

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
- can we predict today's stock prices for the company ?
- no "labels" here

ml task 2 : regression

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
- can we predict today's stock prices for the company ?
- no "labels" here
- non-discrete pattern

ml task 2 : regression

- goal : more like generalized curve fitting
- observe variables such as company performance, past trends etc and the stock prices of a given company
- can we predict today's stock prices for the company ?
- no "labels" here
- non-discrete pattern

figure: real valued regression

figure: dangers of overfitting

other ml tasks

other ml tasks

other ml tasks

- ranking

other ml tasks

- ranking
- find the top 10 facebook
users with whom I am likely
to make friends

other ml tasks

- ranking
- find the top 10 facebook
users with whom I am likely to make friends
- clustering

other ml tasks

- ranking
- find the top 10 facebook users with whom I am likely to make friends
- clustering
- given genome data, discover familia, genera and species

other ml tasks

- ranking
- find the top 10 facebook users with whom I am likely to make friends
- clustering
- given genome data, discover familia, genera and species
- component analysis

other ml tasks

- ranking
- find the top 10 facebook users with whom I am likely to make friends
- clustering
- given genome data, discover familia, genera and species
- component analysis
- find principal or independent components in data

other ml tasks

- ranking
- find the top 10 facebook users with whom I am likely to make friends
- clustering
- given genome data, discover familia, genera and species
- component analysis
- find principal or independent components in data
- useful in signal processing, dimensionality reduction

other ml tasks

- ranking
- find the top 10 facebook users with whom I am likely to make friends
- clustering
- given genome data, discover familia, genera and species
- component analysis
- find principal or independent components in data
- useful in signal processing, dimensionality reduction

figure: clustering problems

figure: principal component analysis

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- label set: the property \mathcal{Y} of the objects we are interested in predicting

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- label set: the property \mathcal{Y} of the objects we are interested in predicting
- classification : discrete label set : $\mathcal{Y}=\{ \pm 1\}$ for spam classification

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- label set: the property \mathcal{Y} of the objects we are interested in predicting
- classification : discrete label set : $\mathcal{Y}=\{ \pm 1\}$ for spam classification
- regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- label set: the property \mathcal{Y} of the objects we are interested in predicting
- classification : discrete label set : $\mathcal{Y}=\{ \pm 1\}$ for spam classification
- regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$
- ranking, clustering, component analysis : more structured label sets

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- label set: the property \mathcal{Y} of the objects we are interested in predicting
- classification : discrete label set : $\mathcal{Y}=\{ \pm 1\}$ for spam classification
- regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$
- ranking, clustering, component analysis : more structured label sets
- true pattern : $f^{*}: \mathcal{X} \longrightarrow \mathcal{Y}$

a mathematical abstraction

- domain : a set \mathcal{X} of objects we are interested in
- emails, stocks, facebook users, living organisms, analog signals
- set may be discrete/continuous, finite/infinite
- may have a variety of structure (topological/geometric)
- label set: the property \mathcal{Y} of the objects we are interested in predicting
- classification : discrete label set : $\mathcal{Y}=\{ \pm 1\}$ for spam classification
- regression : continuous label set : $\mathcal{Y} \subset \mathbb{R}$
- ranking, clustering, component analysis : more structured label sets
- true pattern : $f^{*}: \mathcal{X} \longrightarrow \mathcal{Y}$
- mathematically captures the notion of "correct" labellings

the learning process

- supervised learning

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis : a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis: a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis: a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern
- formalizing closeness of hypothesis to true pattern

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis: a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern
- formalizing closeness of hypothesis to true pattern
- how often do we give out a wrong answer: $\mathbb{P}\left[h(\mathbf{x}) \neq f^{*}(\mathbf{x})\right]$

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis : a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern
- formalizing closeness of hypothesis to true pattern
- how often do we give out a wrong answer: $\mathbb{P}\left[h(\mathbf{x}) \neq f^{*}(\mathbf{x})\right]$
- more generally, utilize loss functions : $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis : a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern
- formalizing closeness of hypothesis to true pattern
- how often do we give out a wrong answer: $\mathbb{P}\left[h(\mathbf{x}) \neq f^{*}(\mathbf{x})\right]$
- more generally, utilize loss functions: $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$
- closeness defined as average loss : $\mathbb{E} \llbracket \ell\left(h(\mathbf{x}), f^{*}(\mathbf{x})\right) \rrbracket$

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis: a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern
- formalizing closeness of hypothesis to true pattern
- how often do we give out a wrong answer: $\mathbb{P}\left[h(\mathbf{x}) \neq f^{*}(\mathbf{x})\right]$
- more generally, utilize loss functions : $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$
- closeness defined as average loss : $\mathbb{E} \llbracket \ell\left(h(\mathbf{x}), f^{*}(\mathbf{x})\right) \rrbracket$
- zero-one loss : $\ell\left(y_{1}, y_{2}\right)=\mathbb{1}_{y_{1} \neq y_{2}}$ (for classification)

the learning process

- supervised learning
- includes tasks such as classification, regression, ranking
- shall not discuss unsupervised, semi-supervised learning today
- learn from the teacher
- we are given access to lots of domain elements with their true labels
- training set : $\left\{\left(\mathbf{x}_{1}, f^{*}\left(\mathbf{x}_{1}\right)\right),\left(\mathbf{x}_{2}, f^{*}\left(\mathbf{x}_{2}\right)\right), \ldots,\left(\mathbf{x}_{n}, f^{*}\left(\mathbf{x}_{n}\right)\right)\right\}$
- hypothesis : a pattern $h: \mathcal{X} \longrightarrow \mathcal{Y}$ we infer using training data
- goal : learn a hypothesis that is close to the true pattern
- formalizing closeness of hypothesis to true pattern
- how often do we give out a wrong answer: $\mathbb{P}\left[h(\mathbf{x}) \neq f^{*}(\mathbf{x})\right]$
- more generally, utilize loss functions : $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$
- closeness defined as average loss : $\mathbb{E} \llbracket \ell\left(h(\mathbf{x}), f^{*}(\mathbf{x})\right) \rrbracket$
- zero-one loss : $\ell\left(y_{1}, y_{2}\right)=1_{y_{1} \neq y_{2}}$ (for classification)
- quadratic loss: $\ell\left(y_{1}, y_{2}\right)=\left(y_{1}-y_{2}\right)^{2}$ (for regression)

issues in the learning process

- how to learn a hypothesis from a training set

issues in the learning process

- how to learn a hypothesis from a training set
- how do i select my training set ?

issues in the learning process

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?

issues in the learning process

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?

issues in the learning process

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?

issues in the learning process

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?
- shall only address the first and the last issue in this talk

issues in the learning process

- how to learn a hypothesis from a training set
- how do i select my training set ?
- how many training points should i choose ?
- how do i output my hypothesis to the end user ?
- shall only address the first and the last issue in this talk
- shall find the nearest carpet for rest of the issues

kernel learning 101

- take the example of spam classification

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth
- can infer the label of a new email using labels of emails seen before

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth
- can infer the label of a new email using labels of emails seen before
- how to quantify "similarity" ?

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth
- can infer the label of a new email using labels of emails seen before
- how to quantify "similarity" ?
- a bivariate function $K: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth
- can infer the label of a new email using labels of emails seen before
- how to quantify "similarity" ?
- a bivariate function $K: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$
- e.g. the dot product in euclidean spaces

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth
- can infer the label of a new email using labels of emails seen before
- how to quantify "similarity" ?
- a bivariate function $K: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$
- e.g. the dot product in euclidean spaces
- $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle:=\left\|\mathbf{x}_{1}\right\|_{2}\left\|\mathbf{x}_{2}\right\|_{2} \cos \left(\angle\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right)$

kernel learning 101

- take the example of spam classification
- assume that emails that look similar have the same label
- essentially saying that the true pattern is smooth
- can infer the label of a new email using labels of emails seen before
- how to quantify "similarity" ?
- a bivariate function $K: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$
- e.g. the dot product in euclidean spaces
- $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle:=\left\|\mathbf{x}_{1}\right\|_{2}\left\|\mathbf{x}_{2}\right\|_{2} \cos \left(\angle\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right)$
- e.g. number of shared friends on facebook

learning using similarities

- a new email can be given the label of the most similar email in the training set

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
- training emails that are similar to new email have more influence

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
- training emails that are similar to new email have more influence
- some training emails are more useful than others

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
- training emails that are similar to new email have more influence
- some training emails are more useful than others
- more resilient to noise but still can be slow

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
- training emails that are similar to new email have more influence
- some training emails are more useful than others
- more resilient to noise but still can be slow
- kernel learning uses hypotheses of the form

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
- training emails that are similar to new email have more influence
- some training emails are more useful than others
- more resilient to noise but still can be slow
- kernel learning uses hypotheses of the form

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

- α_{i} denotes the usefulness of training email \mathbf{x}_{i}

learning using similarities

- a new email can be given the label of the most similar email in the training set
- not a good idea : would be slow and prone to noise
- take all training emails and ask them to vote
- training emails that are similar to new email have more influence
- some training emails are more useful than others
- more resilient to noise but still can be slow
- kernel learning uses hypotheses of the form

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

- α_{i} denotes the usefulness of training email \mathbf{x}_{i}
- for classification one uses $\operatorname{sign}(h(x))$

a toy example

- take $\mathcal{X} \subset \mathbb{R}^{2}$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle$ (linear kernel)

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle=\left\langle\mathbf{x}, \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right\rangle=\langle\mathbf{x}, \mathbf{w}\rangle \text { (linear hypothesis) }
$$

a toy example

- take $\mathcal{X} \subset \mathbb{R}^{2}$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle$ (linear kernel)

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle=\left\langle\mathbf{x}, \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right\rangle=\langle\mathbf{x}, \mathbf{w}\rangle \text { (linear hypothesis) }
$$

- if α_{i} were absent then $w=\sum_{y_{i}=1} \mathbf{x}_{i}-\sum_{y_{i}=-1} \mathbf{x}_{j}:$ weaker model

a toy example

- take $\mathcal{X} \subset \mathbb{R}^{2}$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle$ (linear kernel)

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle=\left\langle\mathbf{x}, \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right\rangle=\langle\mathbf{x}, \mathbf{w}\rangle \text { (linear hypothesis) }
$$

- if α_{i} were absent then $w=\sum_{y_{i}=1} \mathbf{x}_{i}-\sum_{y_{i}=-1} \mathbf{x}_{j}$: weaker model
- α_{i} found by solving an optimization problem : details out of scope

a toy example

- take $\mathcal{X} \subset \mathbb{R}^{2}$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle$ (linear kernel)

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle=\left\langle\mathbf{x}, \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right\rangle=\langle\mathbf{x}, \mathbf{w}\rangle \text { (linear hypothesis) }
$$

- if α_{i} were absent then $w=\sum_{y_{i}=1} \mathbf{x}_{i}-\sum_{y_{i}=-1} \mathbf{x}_{j}$: weaker model
- α_{i} found by solving an optimization problem : details out of scope

figure: linear classifier

figure: utility of weight variables α_{i}

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data
- in practice more complex notions of similarity are used

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data
- in practice more complex notions of similarity are used
- most often, mercer kernels are used

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data
- in practice more complex notions of similarity are used
- most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data
- in practice more complex notions of similarity are used
- most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem
- loosely speaking, they correspond to measures of similarity that are actually inner products in some hilbert space

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data
- in practice more complex notions of similarity are used
- most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem
- loosely speaking, they correspond to measures of similarity that are actually inner products in some hilbert space
- more formally, a similarity function K is a mercer kernel if there exists a map $\Phi: \mathcal{X} \longrightarrow \mathcal{H}$ to some hilbert space \mathcal{H} such that for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X}, K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\Phi\left(\mathbf{x}_{1}\right), \Phi\left(\mathbf{x}_{2}\right)\right\rangle$

enter mercer kernels

- linear hypothesis are too weak to detect complex patterns in data
- in practice more complex notions of similarity are used
- most often, mercer kernels are used
- mercer kernels satisfy the conditions of the mercer's theorem
- loosely speaking, they correspond to measures of similarity that are actually inner products in some hilbert space
- more formally, a similarity function K is a mercer kernel if there exists a map $\Phi: \mathcal{X} \longrightarrow \mathcal{H}$ to some hilbert space \mathcal{H} such that for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X}, K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\Phi\left(\mathbf{x}_{1}\right), \Phi\left(\mathbf{x}_{2}\right)\right\rangle$
- mercer kernels give us hypotheses that are linear in the hilbert space

$$
h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}_{i}\right)\right\rangle=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle \text { for some } \mathbf{w} \in \mathcal{H}
$$

a toy example

- consider $\mathcal{X} \subset \mathbb{R}^{2}$ s.t. $\mathbf{x}=(p, q)$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle+1\right)^{2}$

a toy example

- consider $\mathcal{X} \subset \mathbb{R}^{2}$ s.t. $\mathbf{x}=(p, q)$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle+1\right)^{2}$
- one can show that the corresponding map is six dimensional

$$
\Phi(\mathbf{x})=\left(p^{2}, q^{2}, \sqrt{2} p q, \sqrt{2} p, \sqrt{2} q, 1\right) \in \mathbb{R}^{6}
$$

a toy example

- consider $\mathcal{X} \subset \mathbb{R}^{2}$ s.t. $\mathbf{x}=(p, q)$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle+1\right)^{2}$
- one can show that the corresponding map is six dimensional

$$
\Phi(\mathbf{x})=\left(p^{2}, q^{2}, \sqrt{2} p q, \sqrt{2} p, \sqrt{2} q, 1\right) \in \mathbb{R}^{6}
$$

- it is able to implement quadratic hypotheses

a toy example

- consider $\mathcal{X} \subset \mathbb{R}^{2}$ s.t. $\mathbf{x}=(p, q)$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle+1\right)^{2}$
- one can show that the corresponding map is six dimensional

$$
\Phi(\mathbf{x})=\left(p^{2}, q^{2}, \sqrt{2} p q, \sqrt{2} p, \sqrt{2} q, 1\right) \in \mathbb{R}^{6}
$$

- it is able to implement quadratic hypotheses
- e.g. $h(\mathbf{x})=p^{2}+q^{2}-1$ for $\mathbf{w}=(1,1,0,0,0,-1)$

a toy example

- consider $\mathcal{X} \subset \mathbb{R}^{2}$ s.t. $\mathbf{x}=(p, q)$ and $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle+1\right)^{2}$
- one can show that the corresponding map is six dimensional

$$
\Phi(\mathbf{x})=\left(p^{2}, q^{2}, \sqrt{2} p q, \sqrt{2} p, \sqrt{2} q, 1\right) \in \mathbb{R}^{6}
$$

- it is able to implement quadratic hypotheses
- e.g. $h(\mathbf{x})=p^{2}+q^{2}-1$ for $\mathbf{w}=(1,1,0,0,0,-1)$

figure: non linear problem

figure: kernel trick in action

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map
- cannot explicitly compute the map Φ

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map
- cannot explicitly compute the map Φ
- the kernel trick : can compute $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ without computing Φ

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map
- cannot explicitly compute the map Φ
- the kernel trick: can compute $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ without computing Φ
- have to use the implicit form $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$: slow

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map
- cannot explicitly compute the map Φ
- the kernel trick: can compute $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ without computing Φ
- have to use the implicit form $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$: slow
- why only mercer kernels ?

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map
- cannot explicitly compute the map Φ
- the kernel trick: can compute $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ without computing Φ
- have to use the implicit form $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$: slow
- why only mercer kernels ?
- for algorithmic convenience and a clean theory

issues in kernel learning

- frequently one requires complex kernels having high dimensional maps
- e.g. the gaussian kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$ has an infinite dimensional map
- cannot explicitly compute the map Φ
- the kernel trick: can compute $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ without computing Φ
- have to use the implicit form $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$: slow
- why only mercer kernels ?
- for algorithmic convenience and a clean theory
- can use non-mercer indefinite kernels as well : out of scope

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x})=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathcal{H}$

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x})=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathcal{H}$
- requires a single operation but in a high dimensional space

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x})=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathcal{H}$
- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space?

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x})=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathcal{H}$
- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space?
- $Z: \mathcal{X} \longrightarrow \mathbb{R}^{D}$ such that for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X},\left\langle Z\left(\mathbf{x}_{1}\right), Z\left(\mathbf{x}_{2}\right)\right\rangle \approx K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x})=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathcal{H}$
- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space?
- $Z: \mathcal{X} \longrightarrow \mathbb{R}^{D}$ such that for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X},\left\langle Z\left(\mathbf{x}_{1}\right), Z\left(\mathbf{x}_{2}\right)\right\rangle \approx K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
- $h(\mathbf{x})=\langle Z(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathbb{R}^{D}$

fast kernel learning : the basic idea

- two ways of representing mercer kernel hypotheses
- $h(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)$
- requires upto n (and in practice $\Omega(n)$) operations
- $h(\mathbf{x})=\langle\Phi(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathcal{H}$
- requires a single operation but in a high dimensional space
- can we find an approximate map for the kernel in some low dimensional space?
- $Z: \mathcal{X} \longrightarrow \mathbb{R}^{D}$ such that for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X},\left\langle Z\left(\mathbf{x}_{1}\right), Z\left(\mathbf{x}_{2}\right)\right\rangle \approx K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
- $h(\mathbf{x})=\langle Z(\mathbf{x}), \mathbf{w}\rangle$ for some $\mathbf{w} \in \mathbb{R}^{D}$
- would get power of kernel as well as speed of linear hypothesis

the underlying math

- why should such approximate maps exist ?

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.]

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.] - given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.] - given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.]
- given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$
- need $D=\mathcal{O}\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional map

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.] - given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$
- need $D=\mathcal{O}\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional map
- problem ??

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.]
- given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$
- need $D=\mathcal{O}\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional map
- problem ??
- all algorithmic implementations of the jl-lemma require explicit access to $\mathbf{x}_{i} \in \mathcal{H}$

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.]
- given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$
- need $D=\mathcal{O}\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional map
- problem ??
- all algorithmic implementations of the jl-lemma require explicit access to $\mathbf{x}_{i} \in \mathcal{H}$
- for us, calculating vectors in the hilbert space is prohibitive

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.]
- given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$
- need $D=\mathcal{O}\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional map
- problem ??
- all algorithmic implementations of the jl-lemma require explicit access to $\mathbf{x}_{i} \in \mathcal{H}$
- for us, calculating vectors in the hilbert space is prohibitive
- the number of dimensions depends upon the number of points

the underlying math

- why should such approximate maps exist ?
- johnson-lindenstrauss flattening lemma [cont. math., 26:189-206, 1984.]
- given n points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{H}$, there exists a map $\psi: \mathcal{H} \longrightarrow \mathbb{R}^{D}$
- for all $i, j,\left\langle\Psi\left(\mathbf{x}_{i}\right), \Psi\left(\mathbf{x}_{j}\right)\right\rangle=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \pm \epsilon$
- need $D=\mathcal{O}\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensional map
- problem ??
- all algorithmic implementations of the jl-lemma require explicit access to $\mathbf{x}_{i} \in \mathcal{H}$
- for us, calculating vectors in the hilbert space is prohibitive
- the number of dimensions depends upon the number of points
- not satisfactory

the underlying math

figure: dimensionality reduction via jl transform

structure theorems

- characterization of certain kernel families

structure theorems

- characterization of certain kernel families
bochner's theorem [rudin, fourier analysis on groups, 1962]
every translation invariant mercer kernel on a locally compact abelian group is the fourier-steiltjes transform of some bounded positive measure on the pontryagin dual group, $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{\Gamma} \gamma\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) d \mu(\gamma)$

structure theorems

- characterization of certain kernel families
bochner's theorem [rudin, fourier analysis on groups, 1962]
every translation invariant mercer kernel on a locally compact abelian group is the fourier-steiltjes transform of some bounded positive measure on the pontryagin dual group, $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{\Gamma} \gamma\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) d \mu(\gamma)$
schoenberg's theorem [duke math. journ., 9(1):96-108, 1942]
every dot product mercer kernel arises from an analytic function having a maclaurin series with non-negative coefficients, $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\sum_{i=0}^{\infty} a_{n}\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{n}$

structure theorems

- characterization of certain kernel families

bochner's theorem [rudin, fourier analysis on groups, 1962]

every translation invariant mercer kernel on a locally compact abelian group is the fourier-steiltjes transform of some bounded positive measure on the pontryagin dual group, $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{\Gamma} \gamma\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) d \mu(\gamma)$

schoenberg's theorem [duke math. journ., 9(1):96-108, 1942]

every dot product mercer kernel arises from an analytic function having a maclaurin series with non-negative coefficients, $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\sum_{i=0}^{\infty} a_{n}\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{n}$

- allows us to develop fast routines for radial basis, homogeneous and dot product kernels

random features : the basic idea

- a kernel whose map is one-dimensional is called a rank-one kernel

random features : the basic idea

- a kernel whose map is one-dimensional is called a rank-one kernel
- one can interpret structure theorems as telling us that every kernel is a positive combination of rank-one kernels, i.e. for $\mu \geq 0$

$$
K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{\Omega} K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \mu(\omega)=\underset{\omega \sim \mu}{\mathbb{E}} \llbracket K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \rrbracket
$$

where for all $\omega \in \Omega, K_{\omega}: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a rank-one kernel i.e. for some $\Phi_{\omega}: \mathcal{X} \longrightarrow \mathbb{R}$, for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X}, K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\Phi_{\omega}\left(\mathbf{x}_{1}\right) \cdot \Phi_{\omega}\left(\mathbf{x}_{1}\right)$

random features : the basic idea

- a kernel whose map is one-dimensional is called a rank-one kernel
- one can interpret structure theorems as telling us that every kernel is a positive combination of rank-one kernels, i.e. for $\mu \geq 0$

$$
K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{\Omega} K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \mu(\omega)=\underset{\omega \sim \mu}{\mathbb{E}} \llbracket K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \rrbracket
$$

where for all $\omega \in \Omega, K_{\omega}: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a rank-one kernel i.e. for some $\Phi_{\omega}: \mathcal{X} \longrightarrow \mathbb{R}$, for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X}, K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\Phi_{\omega}\left(\mathbf{x}_{1}\right) \cdot \Phi_{\omega}\left(\mathbf{x}_{1}\right)$

- a random K_{ω} gives us an unbiased estimate of K on all pairs of points

random features : the basic idea

- a kernel whose map is one-dimensional is called a rank-one kernel
- one can interpret structure theorems as telling us that every kernel is a positive combination of rank-one kernels, i.e. for $\mu \geq 0$

$$
K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{\Omega} K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \mu(\omega)=\underset{\omega \sim \mu}{\mathbb{E}} \llbracket K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \rrbracket
$$

where for all $\omega \in \Omega, K_{\omega}: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a rank-one kernel i.e. for some $\Phi_{\omega}: \mathcal{X} \longrightarrow \mathbb{R}$, for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X}, K_{\omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\Phi_{\omega}\left(\mathbf{x}_{1}\right) \cdot \Phi_{\omega}\left(\mathbf{x}_{1}\right)$

- a random K_{ω} gives us an unbiased estimate of K on all pairs of points
- once we have an unbiased estimate for a quantity, independent repetitions can help reduce variance

random features : implementation

- select D values $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{D}\right\}$ randomly from distribution μ over Ω

random features : implementation

- select D values $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{D}\right\}$ randomly from distribution μ over Ω
- create the map

$$
Z(\mathbf{x})=\left(\Phi_{\omega_{1}}(\mathbf{x}), \Phi_{\omega_{2}}(\mathbf{x}), \ldots, \Phi_{\omega_{D}}(\mathbf{x})\right) \in \mathbb{R}^{D}
$$

random features : implementation

- select D values $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{D}\right\}$ randomly from distribution μ over Ω
- create the map

$$
Z(\mathbf{x})=\left(\Phi_{\omega_{1}}(\mathbf{x}), \Phi_{\omega_{2}}(\mathbf{x}), \ldots, \Phi_{\omega_{D}}(\mathbf{x})\right) \in \mathbb{R}^{D}
$$

theorem (approximation guarantee for random features)

for a compact domain $\mathcal{X} \subset \mathbb{R}^{d}$, for any $\epsilon, \delta>0$, take $D=\mathcal{O}\left(\frac{d}{\epsilon^{2}} \log \frac{1}{\epsilon \delta}\right)$ and construct a D-dimensional map, then with probability $(1-\delta)$,

$$
\sup _{\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{X}}\left|K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-\left\langle Z\left(\mathbf{x}_{1}\right), Z\left(\mathbf{x}_{2}\right)\right\rangle\right| \leq \epsilon
$$

random features : properties

- the guarantee is uniform unlike the jl-lemma guarantee

random features : properties

- the guarantee is uniform unlike the jl-lemma guarantee
- holds for all (possibly infinite) pairs of points from \mathcal{X}

random features : properties

- the guarantee is uniform unlike the jl-lemma guarantee
- holds for all (possibly infinite) pairs of points from \mathcal{X}
- hypothesis is of the form $h(\mathbf{x})=\langle Z(\mathbf{x}), \mathbf{w}\rangle$, for some $\mathbf{w} \in \mathbb{R}^{D}$

random features : properties

- the guarantee is uniform unlike the jl-lemma guarantee
- holds for all (possibly infinite) pairs of points from \mathcal{X}
- hypothesis is of the form $h(\mathbf{x})=\langle Z(\mathbf{x}), \mathbf{w}\rangle$, for some $\mathbf{w} \in \mathbb{R}^{D}$
- evaluating a hypothesis takes $\mathcal{O}(D)$ time

random features : properties

- the guarantee is uniform unlike the jl-lemma guarantee
- holds for all (possibly infinite) pairs of points from \mathcal{X}
- hypothesis is of the form $h(\mathbf{x})=\langle Z(\mathbf{x}), \mathbf{w}\rangle$, for some $\mathbf{w} \in \mathbb{R}^{D}$
- evaluating a hypothesis takes $\mathcal{O}(D)$ time
- procedure gives approximation to the kernel function directly

random features : properties

- the guarantee is uniform unlike the jl-lemma guarantee
- holds for all (possibly infinite) pairs of points from \mathcal{X}
- hypothesis is of the form $h(\mathbf{x})=\langle Z(\mathbf{x}), \mathbf{w}\rangle$, for some $\mathbf{w} \in \mathbb{R}^{D}$
- evaluating a hypothesis takes $\mathcal{O}(D)$ time
- procedure gives approximation to the kernel function directly
- same random features can be used for different tasks : classification, regression etc

random features : properties

figure: random features providing dimensionality reduction

random features : in action

- several constructions for various families

random features : in action

- several constructions for various families
- translation invariant kernels [rahimi, recht, nips 2007]

random features : in action

- several constructions for various families
- translation invariant kernels [rahimi, recht, nips 2007]
- homogeneous kernels [vedaldi, zisserman, cvpr 2010]

random features : in action

- several constructions for various families
- translation invariant kernels [rahimi, recht, nips 2007]
- homogeneous kernels [vedaldi, zisserman, cvpr 2010]
- dot product kernels [k., karnick, aistats 2012]

random features : in action

- several constructions for various families
- translation invariant kernels [rahimi, recht, nips 2007]
- homogeneous kernels [vedaldi, zisserman, cvpr 2010]
- dot product kernels [k., karnick, aistats 2012]

figure: approximation error in reconstructing kernel values

random features : in action

dataset	K + libsvm	RF + liblinear	H0/1 + liblinear
$\begin{aligned} & \text { nursery } \\ & N=13000 \\ & d=8 \end{aligned}$	$\begin{aligned} & \mathrm{acc}=99.8 \% \\ & \text { trn }=10.8 \mathrm{~s} \\ & \text { tst }=1.7 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { acc }=99.6 \% \\ & \text { trn }=2.52 \mathrm{~s}(4.3 \times) \\ & \text { tst }=0.6 \mathrm{~s}(2.8 \times) \\ & D=500 \end{aligned}$	$\begin{aligned} & \text { acc }=97.96 \% \\ & \text { trn }=0.4 \mathrm{~s}(27 \times) \\ & \text { tst }=0.18 \mathrm{~s}(9.4 \times) \\ & D=100 \end{aligned}$
$\begin{aligned} & \text { cod-rna } \\ & \mathrm{N}=60000 \\ & d=8 \end{aligned}$	$\begin{aligned} & \mathrm{acc}=95.2 \% \\ & \mathrm{trn}=91.5 \mathrm{~s} \\ & \mathrm{tst}=17.1 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { acc }=94.9 \% \\ & \text { trn }=11.5 \mathrm{~s}(8 \times) \\ & \text { tst }=2.8 \mathrm{~s}(6.1 \times) \\ & D=500 \end{aligned}$	$\begin{aligned} & \text { acc }=93.8 \% \\ & \text { trn }=0.67 \mathrm{~s}(136 \times) \\ & \text { tst }=1.4 \mathrm{~s}(12 \times) \\ & D=50 \end{aligned}$
$\begin{aligned} & \text { adult } \\ & \mathrm{N}=49000 \\ & d=123 \end{aligned}$	$\begin{aligned} & \mathrm{acc}=83.7 \% \\ & \mathrm{trn}=263.3 \mathrm{~s} \\ & \mathrm{tst}=33.4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { acc }=82.9 \% \\ & \text { trn }=39.8 \mathrm{~s}(6.6 \times) \\ & \text { tst }=14.3 \mathrm{~s}(2.3 \times) \\ & D=500 \end{aligned}$	$\begin{aligned} & \text { acc }=84.8 \% \\ & \text { trn }=7.18 \mathrm{~s}(37 \times) \\ & \text { tst }=9.4 \mathrm{~s}(3.6 \times) \\ & D=100 \end{aligned}$
$\begin{aligned} & \text { covertype } \\ & \mathrm{N}=581000 \\ & d=54 \end{aligned}$	$\begin{aligned} & \mathrm{acc}=80.6 \% \\ & \mathrm{trn}=194.1 \mathrm{~s} \\ & \text { tst }=695.8 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { acc }=76.2 \% \\ & \text { trn }=21.4 \mathrm{~s}(9 \times) \\ & \text { tst }=207 \mathrm{~s}(3.6 \times) \\ & D=1000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { acc }=75.5 \% \\ & \text { trn }=3.7 \mathrm{~s}(52 \times) \\ & \text { tst }=80.4 \mathrm{~s}(8.7 \times) \\ & D=100 \end{aligned}$

figure: speedups for exponential kernel $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(\frac{\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle}{\sigma^{2}}\right)$

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition : finds a rank D approximation to G

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition: finds a rank D approximation to G
- nyström method : chooses a subsample of training points $\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{D}$ as anchor points and creates a D dimensional map

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition: finds a rank D approximation to G
- nyström method: chooses a subsample of training points $\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{D}$ as anchor points and creates a D dimensional map
- advantages

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition: finds a rank D approximation to G
- nyström method: chooses a subsample of training points $\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{D}$ as anchor points and creates a D dimensional map
- advantages
- data dependency helps in hard learning instances [yang et al, nips 2010]

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition : finds a rank D approximation to G
- nyström method: chooses a subsample of training points $\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{D}$ as anchor points and creates a D dimensional map
- advantages
- data dependency helps in hard learning instances [yang et al, nips 2010]
- disadvantages

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition : finds a rank D approximation to G
- nyström method: chooses a subsample of training points $\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{D}$ as anchor points and creates a D dimensional map
- advantages
- data dependency helps in hard learning instances [yang et al, nips 2010]
- disadvantages
- slower than random features as the hypothesis takes $\Omega\left(D^{2}\right)$ time to evaluate in worst case : $\mathcal{O}(D)$ time using random features

other approaches

- alternative approaches exist that given a set of training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, approximate the gram matrix $G=\left[g_{i j}\right], g_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- cholesky decomposition: finds a rank D approximation to G
- nyström method : chooses a subsample of training points $\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{D}$ as anchor points and creates a D dimensional map
- advantages
- data dependency helps in hard learning instances [yang et al, nips 2010]
- disadvantages
- slower than random features as the hypothesis takes $\Omega\left(D^{2}\right)$ time to evaluate in worst case : $\mathcal{O}(D)$ time using random features
- expensive preprocessing required : increases time taken to learn

conclusion

- what all families admit such random feature constructions ?

conclusion

- what all families admit such random feature constructions ?
- there do exist that dont [balcan et al., mach. learn., 65(1): 79-94, 2006]

conclusion

- what all families admit such random feature constructions ?
- there do exist that dont [balcan et al., mach. learn., 65(1): 79-94, 2006]
- introduce data awareness in methods

conclusion

- what all families admit such random feature constructions ?
- there do exist that dont [balcan et al., mach. learn., 65(1): 79-94, 2006]
- introduce data awareness in methods
- explore applications in other kernel learning tasks

conclusion

- what all families admit such random feature constructions ?
- there do exist that dont [balcan et al., mach. learn., 65(1): 79-94, 2006]
- introduce data awareness in methods
- explore applications in other kernel learning tasks
- some work in clustering [chitta et al., icdm 2012]

