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learning 101

I why machine learning ?

I automate tasks that are difficult for humans

I where is machine learning used ?

I point out spam mails for a gmail user
I predict stock market prices
I predict new friends for a facebook user

I how does one do machine learning ?

I discover patterns in data
I what sort of patterns ?
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ml task 1 : classification

I goal : find a way to assign the
”correct” label to a set of
objects

I observe a gmail user as he tags
his mails as spam or useful

I can we figure out a pattern ?
I can we automatically detect

spam mails for him ?
I can we use his patterns to

tag his girlfriend’s emails ?

figure: linear classification

figure: non-linear classification
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ml task 2 : regression

I goal : more like generalized
curve fitting

I observe variables such as
company performance, past
trends etc and the stock prices
of a given company

I can we predict today’s stock
prices for the company ?

I no ”labels” here

I non-discrete pattern

figure: real valued regression

figure: dangers of overfitting
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other ml tasks

I ranking

I find the top 10 facebook
users with whom I am likely
to make friends

I clustering

I given genome data, discover
familia, genera and species

I component analysis

I find principal or independent
components in data

I useful in signal processing,
dimensionality reduction

figure: clustering problems

figure: principal component analysis
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a mathematical abstraction

I domain : a set X of objects we are interested in

I emails, stocks, facebook users, living organisms, analog signals
I set may be discrete/continuous, finite/infinite
I may have a variety of structure (topological/geometric)

I label set : the property Y of the objects we are interested in
predicting

I classification : discrete label set : Y = {±1} for spam classification
I regression : continuous label set : Y ⊂ R
I ranking, clustering, component analysis : more structured label sets

I true pattern : f ∗ : X −→ Y

I mathematically captures the notion of “correct” labellings
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the learning process

I supervised learning

I includes tasks such as classification, regression, ranking
I shall not discuss unsupervised, semi-supervised learning today

I learn from the teacher

I we are given access to lots of domain elements with their true labels
I training set : {(x1, f

∗ (x1)) , (x2, f
∗ (x2)) , . . . , (xn, f ∗ (xn))}

I hypothesis : a pattern h : X −→ Y we infer using training data
I goal : learn a hypothesis that is close to the true pattern

I formalizing closeness of hypothesis to true pattern

I how often do we give out a wrong answer : P [h(x) 6= f ∗(x)]
I more generally, utilize loss functions : ` : Y × Y −→ R

I closeness defined as average loss : E J` (h(x), f ∗(x))K
I zero-one loss : `(y1, y2) = 1y1 6=y2 (for classification)
I quadratic loss : `(y1, y2) = (y1 − y2)2 (for regression)
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issues in the learning process

I how to learn a hypothesis from a training set

I how do i select my training set ?

I how many training points should i choose ?

I how do i output my hypothesis to the end user ?

I ...

I shall only address the first and the last issue in this talk

I shall find the nearest carpet for rest of the issues
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kernel learning 101

I take the example of spam classification

I assume that emails that look similar have the same label

I essentially saying that the true pattern is smooth
I can infer the label of a new email using labels of emails seen before

I how to quantify “similarity” ?

I a bivariate function K : X × X −→ R
I e.g. the dot product in euclidean spaces

I K(x1, x2) = 〈x1, x2〉 := ‖x1‖2 ‖x2‖2 cos(∠(x1, x2))

I e.g. number of shared friends on facebook
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learning using similarities

I a new email can be given the label of the most similar email in the
training set

I not a good idea : would be slow and prone to noise

I take all training emails and ask them to vote

I training emails that are similar to new email have more influence
I some training emails are more useful than others
I more resilient to noise but still can be slow

I kernel learning uses hypotheses of the form

h(x) =
n∑

i=1
αiyiK (x, xi )

I αi denotes the usefulness of training email xi
I for classification one uses sign(h(x))
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a toy example

I take X ⊂ R2 and K (x1, x2) = 〈x1, x2〉 (linear kernel)

h(x) =
n∑

i=1
αiyi 〈x, xi 〉 =

〈
x,

n∑
i=1

αiyixi

〉
= 〈x,w〉 (linear hypothesis)

I if αi were absent then w =
∑
yi=1

xi −
∑

yi=−1
xj : weaker model

I αi found by solving an optimization problem : details out of scope

figure: linear classifier figure: utility of weight variables αi
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enter mercer kernels

I linear hypothesis are too weak to detect complex patterns in data

I in practice more complex notions of similarity are used
I most often, mercer kernels are used

I mercer kernels satisfy the conditions of the mercer’s theorem

I loosely speaking, they correspond to measures of similarity that are
actually inner products in some hilbert space

I more formally, a similarity function K is a mercer kernel if there exists
a map Φ : X −→ H to some hilbert space H such that for all
x1, x2 ∈ X , K (x1, x2) = 〈Φ(x1),Φ(x2)〉

I mercer kernels give us hypotheses that are linear in the hilbert space

h(x) =
n∑

i=1
αiyi 〈Φ(x),Φ(xi )〉 = 〈Φ(x),w〉 for some w ∈ H
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a toy example

I consider X ⊂ R2 s.t. x = (p, q) and K (x1, x2) = (〈x1, x2〉+ 1)2

I one can show that the corresponding map is six dimensional

Φ(x) =
(
p2, q2,

√
2pq,

√
2p,
√

2q, 1
)
∈ R6

I it is able to implement quadratic hypotheses

I e.g. h(x) = p2 + q2 − 1 for w = (1, 1, 0, 0, 0,−1)

figure: non linear problem figure: kernel trick in action

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 14 / 27



a toy example

I consider X ⊂ R2 s.t. x = (p, q) and K (x1, x2) = (〈x1, x2〉+ 1)2

I one can show that the corresponding map is six dimensional

Φ(x) =
(
p2, q2,

√
2pq,

√
2p,
√

2q, 1
)
∈ R6

I it is able to implement quadratic hypotheses

I e.g. h(x) = p2 + q2 − 1 for w = (1, 1, 0, 0, 0,−1)

figure: non linear problem figure: kernel trick in action

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 14 / 27



a toy example

I consider X ⊂ R2 s.t. x = (p, q) and K (x1, x2) = (〈x1, x2〉+ 1)2

I one can show that the corresponding map is six dimensional

Φ(x) =
(
p2, q2,

√
2pq,

√
2p,
√

2q, 1
)
∈ R6

I it is able to implement quadratic hypotheses

I e.g. h(x) = p2 + q2 − 1 for w = (1, 1, 0, 0, 0,−1)

figure: non linear problem figure: kernel trick in action

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 14 / 27



a toy example

I consider X ⊂ R2 s.t. x = (p, q) and K (x1, x2) = (〈x1, x2〉+ 1)2

I one can show that the corresponding map is six dimensional

Φ(x) =
(
p2, q2,

√
2pq,

√
2p,
√

2q, 1
)
∈ R6

I it is able to implement quadratic hypotheses
I e.g. h(x) = p2 + q2 − 1 for w = (1, 1, 0, 0, 0,−1)

figure: non linear problem figure: kernel trick in action

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 14 / 27



a toy example

I consider X ⊂ R2 s.t. x = (p, q) and K (x1, x2) = (〈x1, x2〉+ 1)2

I one can show that the corresponding map is six dimensional

Φ(x) =
(
p2, q2,

√
2pq,

√
2p,
√

2q, 1
)
∈ R6

I it is able to implement quadratic hypotheses
I e.g. h(x) = p2 + q2 − 1 for w = (1, 1, 0, 0, 0,−1)

figure: non linear problem figure: kernel trick in action

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 14 / 27



issues in kernel learning

I frequently one requires complex kernels having high dimensional maps

I e.g. the gaussian kernel K (x1, x2) = exp
(
‖x1−x2‖2

2

2σ2

)
has an infinite

dimensional map
I cannot explicitly compute the map Φ
I the kernel trick : can compute K (x1, x2) without computing Φ

I have to use the implicit form h(x) =
n∑

i=1

αiyiK (x, xi ) : slow

I why only mercer kernels ?

I for algorithmic convenience and a clean theory
I can use non-mercer indefinite kernels as well : out of scope
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fast kernel learning : the basic idea

I two ways of representing mercer kernel hypotheses

I h(x) =
n∑

i=1

αiyiK (x, xi )

I requires upto n (and in practice Ω (n)) operations

I h(x) = 〈Φ(x),w〉 for some w ∈ H

I requires a single operation but in a high dimensional space

I can we find an approximate map for the kernel in some low
dimensional space ?

I Z : X −→ RD such that for all x1, x2 ∈ X , 〈Z (x1),Z (x2)〉 ≈ K (x1, x2)
I h(x) = 〈Z (x),w〉 for some w ∈ RD

I would get power of kernel as well as speed of linear hypothesis
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the underlying math

I why should such approximate maps exist ?

I johnson-lindenstrauss flattening lemma [cont. math., 26:189–206, 1984.]

I given n points x1, . . . , xn ∈ H, there exists a map Ψ : H −→ RD

I for all i , j , 〈Ψ(xi ),Ψ(xj)〉 = 〈xi , xj〉 ± ε
I need D = O

(
log n
ε2

)
dimensional map

I problem ??

I all algorithmic implementations of the jl-lemma require explicit access
to xi ∈ H

I for us, calculating vectors in the hilbert space is prohibitive

I the number of dimensions depends upon the number of points

I not satisfactory
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structure theorems

I characterization of certain kernel families

bochner’s theorem [rudin, fourier analysis on groups, 1962]

every translation invariant mercer kernel on a locally compact abelian
group is the fourier-steiltjes transform of some bounded positive measure
on the pontryagin dual group, K (x1, x2) =

∫
Γ γ (x1 − x2) dµ(γ)

schoenberg’s theorem [duke math. journ., 9(1):96–108, 1942]

every dot product mercer kernel arises from an analytic function having a

maclaurin series with non-negative coefficients, K (x1, x2) =
∞∑
i=0

an 〈x1, x2〉n

I allows us to develop fast routines for radial basis, homogeneous and
dot product kernels
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random features : the basic idea

I a kernel whose map is one-dimensional is called a rank-one kernel

I one can interpret structure theorems as telling us that every kernel is
a positive combination of rank-one kernels, i.e. for µ ≥ 0

K (x1, x2) =
∫

Ω Kω(x1, x2)dµ(ω) = E
ω∼µ

JKω(x1, x2)K

where for all ω ∈ Ω, Kω : X × X −→ R is a rank-one kernel i.e. for
some Φω : X −→ R, for all x1, x2 ∈ X , Kω(x1, x2) = Φω(x1) · Φω(x1)

I a random Kω gives us an unbiased estimate of K on all pairs of points

I once we have an unbiased estimate for a quantity, independent
repetitions can help reduce variance
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random features : implementation

I select D values {ω1, ω2, . . . , ωD} randomly from distribution µ over Ω

I create the map

Z (x) = (Φω1(x),Φω2(x), . . . ,ΦωD
(x)) ∈ RD

theorem (approximation guarantee for random features)

for a compact domain X ⊂ Rd , for any ε, δ > 0, take D = O
(
d
ε2 log 1

εδ

)
and construct a D-dimensional map, then with probability (1− δ),

sup
x1,x2∈X

|K (x1, x2)− 〈Z (x1),Z (x2)〉| ≤ ε
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random features : properties

I the guarantee is uniform unlike the jl-lemma guarantee

I holds for all (possibly infinite) pairs of points from X

I hypothesis is of the form h(x) = 〈Z (x),w〉, for some w ∈ RD

I evaluating a hypothesis takes O (D) time

I procedure gives approximation to the kernel function directly

I same random features can be used for different tasks : classification,
regression etc

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 22 / 27



random features : properties

I the guarantee is uniform unlike the jl-lemma guarantee
I holds for all (possibly infinite) pairs of points from X

I hypothesis is of the form h(x) = 〈Z (x),w〉, for some w ∈ RD

I evaluating a hypothesis takes O (D) time

I procedure gives approximation to the kernel function directly

I same random features can be used for different tasks : classification,
regression etc

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 22 / 27



random features : properties

I the guarantee is uniform unlike the jl-lemma guarantee
I holds for all (possibly infinite) pairs of points from X

I hypothesis is of the form h(x) = 〈Z (x),w〉, for some w ∈ RD

I evaluating a hypothesis takes O (D) time

I procedure gives approximation to the kernel function directly

I same random features can be used for different tasks : classification,
regression etc

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 22 / 27



random features : properties

I the guarantee is uniform unlike the jl-lemma guarantee
I holds for all (possibly infinite) pairs of points from X

I hypothesis is of the form h(x) = 〈Z (x),w〉, for some w ∈ RD

I evaluating a hypothesis takes O (D) time

I procedure gives approximation to the kernel function directly

I same random features can be used for different tasks : classification,
regression etc

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 22 / 27



random features : properties

I the guarantee is uniform unlike the jl-lemma guarantee
I holds for all (possibly infinite) pairs of points from X

I hypothesis is of the form h(x) = 〈Z (x),w〉, for some w ∈ RD

I evaluating a hypothesis takes O (D) time

I procedure gives approximation to the kernel function directly

I same random features can be used for different tasks : classification,
regression etc

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 22 / 27



random features : properties

I the guarantee is uniform unlike the jl-lemma guarantee
I holds for all (possibly infinite) pairs of points from X

I hypothesis is of the form h(x) = 〈Z (x),w〉, for some w ∈ RD

I evaluating a hypothesis takes O (D) time

I procedure gives approximation to the kernel function directly
I same random features can be used for different tasks : classification,

regression etc

purushottam kar (iit kanpur) accelerated kernel learning november 27, 2012 22 / 27



random features : properties

figure: random features providing dimensionality reduction
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random features : in action

I several constructions for various families

I translation invariant kernels [rahimi, recht, nips 2007]
I homogeneous kernels [vedaldi, zisserman, cvpr 2010]
I dot product kernels [k., karnick, aistats 2012]
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random features : in action

dataset K + libsvm RF + liblinear H0/1 + liblinear

nursery

N = 13000
d = 8

acc = 99.8%
trn = 10.8s
tst = 1.7s

acc = 99.6%
trn = 2.52s (4.3×)
tst = 0.6s (2.8×)
D = 500

acc = 97.96%
trn = 0.4s (27×)
tst = 0.18s (9.4×)
D = 100

cod-rna

N = 60000
d = 8

acc = 95.2%
trn = 91.5s
tst = 17.1s

acc = 94.9%
trn = 11.5s (8×)
tst = 2.8s (6.1×)
D = 500

acc = 93.8%
trn= 0.67s (136×)
tst = 1.4s (12×)
D = 50

adult

N = 49000
d = 123

acc = 83.7%
trn = 263.3s
tst = 33.4s

acc = 82.9%
trn = 39.8s (6.6×)
tst = 14.3s (2.3×)
D = 500

acc = 84.8%
trn = 7.18s (37×)
tst = 9.4s (3.6×)
D = 100

covertype

N=581000
d = 54

acc = 80.6%
trn = 194.1s
tst = 695.8s

acc = 76.2%
trn = 21.4s (9×)
tst = 207s (3.6×)
D = 1000

acc = 75.5%
trn = 3.7s (52×)
tst = 80.4s (8.7×)
D = 100

figure: speedups for exponential kernel K(x1, x2) = exp
(
〈x1,x2〉
σ2

)
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other approaches

I alternative approaches exist that given a set of training points
x1, . . . , xn, approximate the gram matrix G = [gij ], gij = K (xi , xj)

I cholesky decomposition : finds a rank D approximation to G
I nyström method : chooses a subsample of training points x̂1, . . . , x̂D as

anchor points and creates a D dimensional map

I advantages

I data dependency helps in hard learning instances [yang et al, nips 2010]

I disadvantages

I slower than random features as the hypothesis takes Ω
(
D2
)

time to
evaluate in worst case : O (D) time using random features

I expensive preprocessing required : increases time taken to learn
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conclusion

I what all families admit such random feature constructions ?

I there do exist that dont [balcan et al., mach. learn., 65(1): 79–94, 2006]

I introduce data awareness in methods

I explore applications in other kernel learning tasks

I some work in clustering [chitta et al., icdm 2012]
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