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Pointwise Loss Functions

Loss functions for classification, regression ..

` : H×Z → R

.. look at only one point z = (x, y) at a time

Examples:

• Hinge loss: `(h, z) = [1− y · h(x)]+

• ε-insensitive loss: `(h, z) = [|y − h(x)| − ε]+

• Logistic loss: `(h, z) = ln (1 + exp (y · h(x)))

ICML 2013 Online Learning for Pairwise Loss Functions Introduction 2/11



Metric Learning for Classification

learned metric

Metric needs to be penalized for bringing blue and red points together

• Loss function needs to consider two data points at a time

◦ .. in other words, a pairwise loss function

• Example: `(dM, z1, z2) = φ
(
y1y2

(
1− d2

M(x1, x2)
))

where φ is the hinge loss function
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Learning with Pairwise Loss Functions

` : H×Z ×Z → R

Examples:

• Mahalanobis metric learning

• Bipartite ranking / maximizing area under ROC curve

• Preference learning

• Two-stage Multiple kernel learning

• Similarity (indefinite kernel) learning
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Learning with Pairwise Loss Functions

` : H×Z ×Z → R

Online Learning for Pairwise Loss Functions ?

• Algorithmic Challenges

◦ Attempts to reduce to pointwise learning

◦ Treat pairs (zi , zj) as elements of a superdomain Z̃ = Z × Z ?

• Problem: one does not receive pairs in the data stream !

• Solution: an online learning model for pairwise loss functions

ICML 2013 Online Learning for Pairwise Loss Functions Introduction 4/11



Online Learning Model for Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

• At each time t, adversary gives us a single data point zt = (xt , yt)

• Loss `t on hypothesis ht−1 calculated by pairing zt with past points
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Online Learning Model for Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

• At each time t, adversary gives us a single data point zt = (xt , yt)

• Loss `t on hypothesis ht−1 calculated by pairing zt with past points

Buffer B [ z0 z1 z2 z3 . . . . . . ]

• Pair up with all previous points ( zt , z1 ) ( zt , z2 ) . . . ( zt ,zt−1 )

• Incur loss

L̂∞t (ht−1) =
1

t − 1
(`(ht−1, zt , z1) + `(ht−1, zt , z2) + . . .+ `(ht−1, zt , zt−1))
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Online Learning Model for Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

• At each time t, adversary gives us a single data point zt = (xt , yt)

• Loss `t on hypothesis ht−1 calculated by pairing zt with (some) past points

Finite Buffer B [ ]

• Capacity to store s data items at a time
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Online Learning Model for Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

• At each time t, adversary gives us a single data point zt = (xt , yt)

• Loss `t on hypothesis ht−1 calculated by pairing zt with (some) past points

Finite Buffer B [ zi0 zi1 zi2 zi3 zi4 zi5 ]

• Can pair up only with buffer points ( zt , zi1 ) ( zt , zi2 ) . . . ( zt , zi5 )

• Incur loss

L̂buf
t (ht−1) =

1

s
(`(ht−1, zt , zi1 ) + `(ht−1, zt , zi2 ) + . . .+ `(ht−1, zt , zis ))
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Online Learning Model for Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Regret Bounds in this Model:

• How well are we able to do on all possible pairs

◦ All-pairs Regret Bound:

1

n − 1

n−1∑
t=1

L̂∞t (ht) ≤ inf
h∈H

1

n − 1

n∑
t=2

L̂∞t (h) + R∞n

• How well are we able to do on pairs that we have seen

◦ Finite-buffer Regret Bound:

1

n − 1

n−1∑
t=1

L̂buf
t (ht) ≤ inf

h∈H

1

n − 1

n∑
t=2

L̂buf
t (h) + Rbuf

n
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Learning with Pairwise Loss Functions

` : H×Z ×Z → R

Offline Learning for Pairwise Loss Functions ?

• Online techniques used for several batch applications

◦ PEGASOS, LASVM ..

◦ Even more important for pairwise loss functions

• Expensive latency costs in sampling i.i.d. pairs from disk.
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Learning with Pairwise Loss Functions

` : H×Z ×Z → R

Offline Learning for Pairwise Loss Functions ?

• Problem: Generalization Bounds for Online Algorithms

◦ Online learning process generates hypothesis h̄

◦ Generalization performance L(h) := E
z1,z2

J`(h, z1, z2)K

◦ Wish to bound excess risk: En = L(h̄)− inf
h∈H
L(h)

• Solution: Online-to-batch conversion bounds

◦ Bound En for learned predictor in terms of in terms of Rbuf
n or R∞n

◦ Problem (for later): Existing OTB techniques dont work here
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Learning with Pairwise Loss Functions

` : H×Z ×Z → R

• Online AUC Maximization
[Zhao et al, ICML 2011]

◦ Use classical stream sampling
algorithm RS

◦ All-pairs regret bound needs
fixing

◦ Finite-buffer regret bound holds
(implicit)

• OLP: Online Learning for PLF
[This work]

◦ Use a novel stream sampling
algorithm RS-x

◦ Guaranteed sublinear regret w.r.t
all-pairs

◦ Finite-buffer regret bound holds
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Learning with Pairwise Loss Functions

` : H×Z ×Z → R

• OTB conversion Bounds for PLF
[Wang et al, COLT 2012]

◦ Work only w.r.t all-pairs regret
bounds

◦ Unable to handle
[Zhao et al, ICML 2011]

◦ Bounds depend linearly on input
dimension

◦ Dont handle sparse learning
formulations

◦ Basic rates of convergence

• OTB conversion Bounds for PLF
[This work]

◦ Work with all-pairs and finite-buffer
regret

◦ Able to handle
[Zhao et al, ICML 2011]

◦ Bounds independent of input
dimension

◦ Handle sparse learning formulations

◦ Fast rates for strongly convex
pairwise loss functions
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

OLP : Online Learning for Pairwise Loss Functions

1. Start off with h0 = 0 and empty buffer B

At each time step t = 1 . . . n

2. Receive new training point zt

3. Construct loss function `t = L̂buf
t

4. ht ← ΠΩ

[
ht−1 −

η√
t
∇h`t(ht−1)

]
5. Update buffer B with zt

6. Return h̄ = 1
n

∑n−1
t=0 ht
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

[ ]

z0
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

[ z0 z1 ]

z2

ICML 2013 Online Learning for Pairwise Loss Functions Our Contributions 7/11



Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

[ z0 z1 z2 ]
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

. . .
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

[ zi0 zi1 zi2 zi3 zi4 zi5 ]

zt
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

∼ B(1/t)
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

[ zi0

T

zi1

H

zi2

T

zi3

T

zi4

H

zi5

T

]

zt
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

[ zi0 zi2 zi3 zi5zt zt ]
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

RS-x : Reservoir Sampling with Replaxement

Sampling Guarantee for RS-x :

Theorem: At any fixed time t > s, every buffer element
is an i.i.d. sample from the set {z1, . . . , zt−1}
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

Finite-buffer regret bound for OLP

How well are we able to do on pairs that we have seen

Theorem: Rbuf
n ≤

1√
n

Proof: OLP is a GIGA variant: the analysis follows.
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Online Learning with Pairwise Loss Functions

Learner

` : H×Z ×Z → R
Adversary

Learning Algorithm:

• Hypothesis update

• Buffer update

◦ Guarantees

Regret Bounds:

• Finite-buffer regret

• All-pairs regret

All-pairs regret bound for OLP

How well are we able to do on all pairs

Theorem: R∞n ≤ Cd

√
log n

s
w.h.p.

Proof: Use properties of RS-x to show that w.h.p.

L̂buf
t − ε ≤ L̂∞t ≤ L̂buf

t + ε

Use regret bound on Rbuf
n to finish off.
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions

• Recall: Online learning process generates hypothesis h̄ = 1
n

∑n−1
t=0 ht

◦ Wish to bound excess risk: En = L(h̄)− inf
h∈H
L(h)

• Online-to-batch conversion: bound En in terms of Rbuf
n (or R∞n )

• Classical Proof Techniques: for pointwise loss functions

◦ {`t(ht−1)− L(ht−1)} forms an MDS

◦ [Cesa-Bianchi et al, NIPS 2001], Azuma-Heoffding

◦ [Kakade and Tewari, NIPS 2008], Bernstein
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions

• Problem: Existing techniques do not apply

◦ {`t(ht−1)− L(ht−1)} not an MDS due to coupling

• Solution: decompose {`t(ht−1)− L(ht−1)} into MDS and residual terms

◦ First proposed by [Wang et al, COLT 2012]

◦ Apply Azuma-Hoeffding to one and Uniform Convergence to other

◦ We use Rademacher average route: great flexibility and tight bounds

• Problem: Coupling yet again prevents classical symmetrization

• Solution: Symmetrization of Expectations!
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions

• Problem: What should be notion of Rademacher averages ?

• Solution: We define

Rn(H) := E
z,zτ ,ετ

t

sup
h∈H

1

n

n∑
τ=1

ετh(z, zτ )

|

◦ One head term and n tail terms

◦ We show that for several problems, the R.A. have the following form

Rn(H) ∼ Cd ·
1√
n

• Derivations do not follow directly from existing techniques
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Our Online-to-batch Conversion Bounds

L(h̄) ≤ inf
h∈H
L(h) + En

• Bounded Losses

◦ All-pairs regret bounds, w.h.p. En ≤ R∞n +
Cd +

√
log n√
n

◦ Finite-buffer regret bounds, w.h.p. En ≤ Rbuf
n +

Cd +
√

log n√
s

◦ Proofs: Uniform convergence with SoE + Azuma-Hoeffding inequality
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Our Online-to-batch Conversion Bounds

L(h̄) ≤ inf
h∈H
L(h) + En

• Strongly Convex Losses

◦ All-pairs regret bounds, w.h.p. En ≤ R∞n +
C2

d log2 n

n

◦ Finite-buffer regret bounds, w.h.p. En ≤ Rbuf
n +

C2
d log n

s

◦ Proofs: Novel use of fast rate results for batch algorithms + Bernstein-type
martingale inequalities
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Applications

R∞n ≤ Cd

√
log n

s
, En ≤ R∞n +

C2
d log

2 n

n

Bipartite Ranking

• Objective: h : x 7→ 〈w, x〉 such that h(x1) > h(x2) if y1 = 1, y2 = −1

• Equivalent to maximizing the area under the ROC curve

• Loss function: `(w, z1, z2) = φ
(
(y1 − y2)w> (x1 − x2)

)
• Rademacher Averages:

◦ Lp regularized w, p > 1: Cd = O (1)

◦ L1 regularized sparse w: Cd = O
(√

log d
)
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Applications

R∞n ≤ Cd

√
log n

s
, En ≤ R∞n +

C2
d log

2 n

n

Mahalanobis Metric Learning

• Objective: d2 : (x1, x2) 7→ (x1 − x2)>M(x1 − x2) such that

◦ d2(x1, x2) > 1 if y1 6= y2

◦ d2(x1, x2) < 1 if y1 = y2

• Loss function: `(M, z1, z2) = φ
(
y1y2

(
1− d2

M(x1, x2)
))

• Rademacher Averages:

◦ Frobenius norm regularized M: Cd = O (1)

◦ Trace norm regularized M: Cd = O
(√

log d
)
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Applications

R∞n ≤ Cd

√
log n

s
, En ≤ R∞n +

C2
d log

2 n

n

Two-stage Multiple Kernel Learning

• Objective: K : (x1, x2) 7→ Kµ(x1, x2) such that Kµ =
∑p

i=1 µiKi

• Desire kernel-target alignment

• Loss function: `(µ, z1, z2) = φ (y1y2Kµ(x1, x2))

• Rademacher Averages:

◦ L2 norm regularized µ: Cd = O
(√

p
)

◦ L1 norm regularized µ: Cd = O
(√

log p
)
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Future Work

1. Our all-pairs regret bound for OLP + RS-x is

√
log n

s

• Is ω(log n) buffer size necessary for sublinear regret ?

2. Our OTB results for finite-buffer regret bounds behave as

√
log n

s
(resp.

log n

s
)

• Can we get O
(

1

f (n)

)
rates ?

3. Our generalization bounds require buffer update policies to be stream oblivious

• Update algorithm cannot look at zt , just the index t

• Examples: FIFO/LRU, RS , RS-x ..

• Guarantees for (suitable) stream aware policies ?
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Thank You!

For more, visit our poster this evening !!!
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