On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

Purushottam Kar*, Bharath Sriperumbudur[†], Prateek Jain $^{\$}$ and Harish Karnick*

* Indian Institute of Technology Kanpur
 [†] Center for Mathematical Sciences, University of Cambridge
 § Microsoft Research India

International Conference on Machine Learning 2013

Pointwise Loss Functions

Loss functions for classification, regression ...

$$\ell:\mathcal{H}\times\mathcal{Z}\to\mathbb{R}$$

.. look at only one point $\mathbf{z} = (\mathbf{x}, y)$ at a time

Examples:

• Hinge loss:
$$\ell(h, \mathbf{z}) = [1 - y \cdot h(\mathbf{x})]_+$$

• ϵ -insensitive loss: $\ell(h, \mathbf{z}) = [|y - h(\mathbf{x})| - \epsilon]_+$

• Logistic loss:
$$\ell(h, \mathbf{z}) = \ln (1 + \exp (y \cdot h(\mathbf{x})))$$

Metric Learning for Classification

Metric needs to be penalized for bringing blue and red points together

Metric Learning for Classification

Metric needs to be penalized for bringing blue and red points together

• Loss function needs to consider two data points at a time

 $\circ \ .. \ in other words, a pairwise loss function$

• **Example**:
$$\ell(d_{\mathsf{M}}, \mathsf{z}_1, \mathsf{z}_2) = \phi(y_1 y_2 (1 - d_{\mathsf{M}}^2(\mathsf{x}_1, \mathsf{x}_2)))$$

where ϕ is the hinge loss function

ICML 2013 Online Learning for Pairwise Loss Functions

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

Examples:

- Mahalanobis metric learning
- Bipartite ranking / maximizing area under ROC curve
- Preference learning
- Two-stage Multiple kernel learning
- Similarity (indefinite kernel) learning

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

Online Learning for Pairwise Loss Functions ?

- Algorithmic Challenges
 - Attempts to reduce to pointwise learning
 - Treat pairs $(\mathbf{z}_i, \mathbf{z}_j)$ as elements of a superdomain $\tilde{\mathcal{Z}} = \mathcal{Z} \times \mathcal{Z}$?
 - Problem: one does not receive pairs in the data stream !
 - Solution: an online learning model for pairwise loss functions

- At each time t, adversary gives us a single data point $z_t = (x_t, y_t)$
- Loss ℓ_t on hypothesis h_{t-1} calculated by pairing \mathbf{z}_t with past points

$$\ell: \mathcal{H} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

- At each time *t*, adversary gives us a single data point $\mathbf{Z}_t = (\mathbf{x}_t, y_t)$
- Loss ℓ_t on hypothesis h_{t-1} calculated by pairing \mathbf{z}_t with past points

Incur loss

• Pair up with all previous points

Buffer B

$$\hat{\mathcal{L}}_t^\infty(h_{t-1}) = rac{1}{t-1} \left(\ell(h_{t-1}, \mathsf{z}_t, \mathsf{z}_1) + \ell(h_{t-1}, \mathsf{z}_t, \mathsf{z}_2) + \ldots + \ell(h_{t-1}, \mathsf{z}_t, \mathsf{z}_{t-1})
ight)$$

 $(\mathbf{z}_t, \mathbf{z}_2) \cdots (\mathbf{z}_t, \mathbf{z}_{t-1})$ Zt **Z**1

- At each time t, adversary gives us a single data point $z_t = (x_t, y_t)$
- Loss ℓ_t on hypothesis h_{t-1} calculated by pairing z_t with (some) past points

Finite Buffer B

Capacity to store s data items at a time

$$\ell: \mathcal{H} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

- At each time t, adversary gives us a single data point $z_t = (x_t, y_t)$
- Loss ℓ_t on hypothesis h_{t-1} calculated by pairing z_t with (some) past points

Finite Buffer B

 $\begin{bmatrix} \mathbf{Z}_{i_0} & \mathbf{Z}_{i_1} & \mathbf{Z}_{i_2} & \mathbf{Z}_{i_3} & \mathbf{Z}_{i_4} & \mathbf{Z}_{i_5} \end{bmatrix}$

- Can pair up only with buffer points (z_t, z_{i_1}) (z_t, z_{i_2}) \cdots (z_t, z_{i_5})
- Incur loss

$$\hat{\mathcal{L}}_t^{ ext{buf}}(h_{t-1}) = rac{1}{s} \left(\ell(h_{t-1}, \mathsf{z}_t, \mathsf{z}_{i_1}) + \ell(h_{t-1}, \mathsf{z}_t, \mathsf{z}_{i_2}) + \ldots + \ell(h_{t-1}, \mathsf{z}_t, \mathsf{z}_{i_s})
ight)$$

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Regret Bounds in this Model:

- How well are we able to do on all possible pairs
 - All-pairs Regret Bound: $\frac{1}{n-1}\sum_{t=1}^{n-1}\hat{\mathcal{L}}_t^{\infty}(h_t) \leq \inf_{h \in \mathcal{H}} \frac{1}{n-1}\sum_{t=2}^n \hat{\mathcal{L}}_t^{\infty}(h) + \mathfrak{R}_n^{\infty}$

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Regret Bounds in this Model:

• How well are we able to do on all possible pairs

• All-pairs Regret Bound:

$$\frac{1}{n-1}\sum_{t=1}^{n-1}\hat{\mathcal{L}}_t^{\infty}(h_t) \leq \inf_{h\in\mathcal{H}}\frac{1}{n-1}\sum_{t=2}^n\hat{\mathcal{L}}_t^{\infty}(h) + \mathfrak{R}_n^{\infty}$$

• How well are we able to do on pairs that we have seen

• Finite-buffer Regret Bound:

$$\frac{1}{n-1}\sum_{t=1}^{n-1}\hat{\mathcal{L}}_t^{\mathsf{buf}}(h_t) \leq \inf_{h\in\mathcal{H}}\frac{1}{n-1}\sum_{t=2}^n\hat{\mathcal{L}}_t^{\mathsf{buf}}(h) + \mathfrak{R}_n^{\mathsf{buf}}$$

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

Offline Learning for Pairwise Loss Functions ?

- Online techniques used for several batch applications
 - PEGASOS, LASVM ..
 - $\circ~\mbox{Even}$ more important for pairwise loss functions
 - Expensive latency costs in sampling i.i.d. pairs from disk.

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

Offline Learning for Pairwise Loss Functions ?

- Problem: Generalization Bounds for Online Algorithms
 - \circ Online learning process generates hypothesis $ar{h}$
 - Generalization performance $\mathcal{L}(h) := \mathbb{E}_{z_1, z_2} \llbracket \ell(h, z_1, z_2) \rrbracket$
 - Wish to bound excess risk: $\mathcal{E}_n = \mathcal{L}(\bar{h}) \inf_{h \in \mathcal{H}} \mathcal{L}(h)$
- Solution: Online-to-batch conversion bounds
 - Bound \mathcal{E}_n for learned predictor in terms of in terms of $\mathfrak{R}_n^{\mathsf{buf}}$ or \mathfrak{R}_n^{∞}
 - Problem (for later): Existing OTB techniques dont work here

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

- Online AUC Maximization [*Zhao et al, ICML 2011*]
 - Use classical stream sampling algorithm **RS**
 - All-pairs regret bound needs fixing
 - Finite-buffer regret bound holds (implicit)

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

- Online AUC Maximization [Zhao et al, ICML 2011]
 - Use classical stream sampling algorithm **RS**
 - All-pairs regret bound needs fixing
 - Finite-buffer regret bound holds (implicit)

- OLP: Online Learning for PLF [*This work*]
 - Use a **novel** stream sampling algorithm **RS-x**
 - Guaranteed sublinear regret w.r.t all-pairs
 - $\circ~$ Finite-buffer regret bound holds

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

- OTB conversion Bounds for PLF [Wang et al, COLT 2012]
 - Work only w.r.t all-pairs regret bounds
 - Unable to handle [*Zhao et al, ICML 2011*]
 - Bounds depend linearly on input dimension
 - Dont handle sparse learning formulations
 - Basic rates of convergence

 $\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

- OTB conversion Bounds for PLF [Wang et al, COLT 2012]
 - Work only w.r.t all-pairs regret bounds
 - Unable to handle [*Zhao et al, ICML 2011*]
 - Bounds depend linearly on input dimension
 - Dont handle sparse learning formulations
 - $\circ~$ Basic rates of convergence

- OTB conversion Bounds for PLF [This work]
 - Work with all-pairs and finite-buffer regret
 - Able to handle
 [Zhao et al, ICML 2011]
 - Bounds independent of input dimension
 - Handle sparse learning formulations
 - Fast rates for strongly convex pairwise loss functions

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - \circ Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

OLP : Online Learning for Pairwise Loss Functions

1. Start off with $h_0 = \mathbf{0}$ and empty buffer B

At each time step $t = 1 \dots n$

2. Receive new training point \mathbf{z}_t

3. Construct loss function
$$\ell_t = \hat{\mathcal{L}}_t^{\text{buf}}$$

$$h_t \leftarrow \Pi_\Omega \left[h_{t-1} - rac{\eta}{\sqrt{t}}
abla_h \ell_t(h_{t-1})
ight]$$

5. Update buffer B with \mathbf{z}_t

6. Return
$$\bar{h} = \frac{1}{n} \sum_{t=0}^{n-1} h_t$$

4

Our Contributions

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

RS-x : Reservoir Sampling with Replaxement

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

RS-x : Reservoir Sampling with Replaxement

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

RS-x : Reservoir Sampling with Replaxement

. . .

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - \circ Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

RS-x : Reservoir Sampling with Replaxement

Sampling Guarantee for RS-x :

Theorem: At any fixed time t > s, every buffer element is an **i.i.d.** sample from the set $\{z_1, \ldots, z_{t-1}\}$

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

Finite-buffer regret bound for OLP

How well are we able to do on pairs that we have seen

Theorem: $\mathfrak{R}_n^{\text{buf}} \leq \frac{1}{\sqrt{n}}$

Proof: **OLP** is a GIGA variant: the analysis follows.

$$\ell:\mathcal{H}\times\mathcal{Z}\times\mathcal{Z}\to\mathbb{R}$$

Learning Algorithm:

- Hypothesis update
- Buffer update
 - \circ Guarantees

Regret Bounds:

- Finite-buffer regret
- All-pairs regret

All-pairs regret bound for OLP

How well are we able to do on all pairs

Theorem:
$$\mathfrak{R}_n^{\infty} \leq \mathbf{C}_{\mathsf{d}} \sqrt{\frac{\log n}{s}}$$
 w.h.p.

Proof: Use properties of **RS**-x to show that w.h.p.

$$\hat{\mathcal{L}}_t^{\mathsf{buf}} - \epsilon \leq \hat{\mathcal{L}}_t^\infty \leq \hat{\mathcal{L}}_t^{\mathsf{buf}} + \epsilon$$

Use regret bound on \mathfrak{R}_n^{buf} to finish off.

Generalization Bounds for Pairwise Loss Functions

- Recall: Online learning process generates hypothesis $\bar{h} = \frac{1}{n} \sum_{t=0}^{n-1} h_t$
 - Wish to bound excess risk: $\mathcal{E}_n = \mathcal{L}(\bar{h}) \inf_{h \in \mathcal{H}} \mathcal{L}(h)$
 - Online-to-batch conversion: bound \mathcal{E}_n in terms of $\mathfrak{R}_n^{\text{buf}}$ (or \mathfrak{R}_n^{∞})

Generalization Bounds for Pairwise Loss Functions

• Recall: Online learning process generates hypothesis $\bar{h} = \frac{1}{n} \sum_{t=0}^{n-1} h_t$

• Wish to bound excess risk: $\mathcal{E}_n = \mathcal{L}(\bar{h}) - \inf_{h \in \mathcal{H}} \mathcal{L}(h)$

• Online-to-batch conversion: bound \mathcal{E}_n in terms of $\mathfrak{R}_n^{\text{buf}}$ (or \mathfrak{R}_n^{∞})

- Classical Proof Techniques: for pointwise loss functions
 - $\circ \{\ell_t(h_{t-1}) \mathcal{L}(h_{t-1})\}$ forms an MDS
 - o [Cesa-Bianchi et al, NIPS 2001], Azuma-Heoffding
 - o [Kakade and Tewari, NIPS 2008], Bernstein

Generalization Bounds for Pairwise Loss Functions

- Problem: Existing techniques do not apply
 - $\circ \{\ell_t(h_{t-1}) \mathcal{L}(h_{t-1})\}$ not an MDS due to coupling
- Solution: decompose $\{\ell_t(h_{t-1}) \mathcal{L}(h_{t-1})\}$ into MDS and residual terms
 - First proposed by [Wang et al, COLT 2012]
 - o Apply Azuma-Hoeffding to one and Uniform Convergence to other
 - $\circ~$ We use Rademacher average route: great flexibility and tight bounds

Generalization Bounds for Pairwise Loss Functions

- Problem: Existing techniques do not apply
 - $\circ \{\ell_t(h_{t-1}) \mathcal{L}(h_{t-1})\}$ not an MDS due to coupling
- Solution: decompose $\{\ell_t(h_{t-1}) \mathcal{L}(h_{t-1})\}$ into MDS and residual terms
 - First proposed by [Wang et al, COLT 2012]
 - o Apply Azuma-Hoeffding to one and Uniform Convergence to other
 - $\circ~$ We use Rademacher average route: great flexibility and tight bounds
- Problem: Coupling yet again prevents classical symmetrization
- Solution: Symmetrization of Expectations!

Generalization Bounds for Pairwise Loss Functions

- Problem: What should be notion of Rademacher averages ?
- Solution: We define

$$\mathcal{R}_n(\mathcal{H}) := \mathbb{E}_{\mathbf{z}, \mathbf{z}_{\tau}, \epsilon_{\tau}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{\tau=1}^{n} \epsilon_{\tau} h(\mathbf{z}, \mathbf{z}_{\tau}) \right]$$

- One head term and *n* tail terms
- $\circ~$ We show that for several problems, the R.A. have the following form

$$\mathcal{R}_n(\mathcal{H}) \sim \mathbf{C_d} \cdot rac{1}{\sqrt{n}}$$

• Derivations do not follow directly from existing techniques

Our Online-to-batch Conversion Bounds

$$\mathcal{L}(ar{h}) \leq \inf_{h \in \mathcal{H}} \mathcal{L}(h) + \mathcal{E}_n$$

Bounded Losses

- All-pairs regret bounds, w.h.p. $\mathcal{E}_n \leq \mathfrak{R}_n^{\infty} + \frac{C_d + \sqrt{\log n}}{\sqrt{n}}$
- Finite-buffer regret bounds, w.h.p. $\mathcal{E}_n \leq \mathfrak{R}_n^{buf} + \frac{C_d + \sqrt{\log n}}{\sqrt{s}}$
- \circ **Proofs**: Uniform convergence with SoE + Azuma-Hoeffding inequality

Our Online-to-batch Conversion Bounds

$$\mathcal{L}(ar{h}) \leq \inf_{h \in \mathcal{H}} \mathcal{L}(h) + \mathcal{E}_n$$

• Strongly Convex Losses

- All-pairs regret bounds, w.h.p. $\mathcal{E}_n \leq \mathfrak{R}_n^{\infty} + \frac{\mathsf{C}_d^2 \log^2 n}{n}$
- Finite-buffer regret bounds, w.h.p. $\mathcal{E}_n \leq \mathfrak{R}_n^{\text{buf}} + \frac{\mathsf{C}_d^2 \log n}{s}$
- Proofs: Novel use of *fast* rate results for batch algorithms + Bernstein-type martingale inequalities

Applications

$$\mathfrak{R}_n^{\infty} \leq \mathbf{C_d} \sqrt{\frac{\log n}{s}}, \quad \mathcal{E}_n \leq \mathfrak{R}_n^{\infty} + \frac{\mathbf{C_d^2} \log^2 n}{n}$$

Bipartite Ranking

- Objective: $h: \mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle$ such that $h(\mathbf{x}_1) > h(\mathbf{x}_2)$ if $y_1 = 1, y_2 = -1$
- Equivalent to maximizing the area under the ROC curve
- Loss function: $\ell(\mathbf{w}, \mathbf{z}_1, \mathbf{z}_2) = \phi\left((y_1 y_2)\mathbf{w}^\top (\mathbf{x}_1 \mathbf{x}_2)\right)$
- Rademacher Averages:

•
$$L_p$$
 regularized **w**, $p > 1$: $C_d = \mathcal{O}(1)$

• L_1 regularized sparse w: $C_d = \mathcal{O}\left(\sqrt{\log d}\right)$

Applications

$$\mathfrak{R}_n^{\infty} \leq \mathbf{C}_{\mathbf{d}} \sqrt{\frac{\log n}{s}}, \quad \mathcal{E}_n \leq \mathfrak{R}_n^{\infty} + \frac{\mathbf{C}_{\mathbf{d}}^2 \log^2 n}{n}$$

Mahalanobis Metric Learning

• Objective: $d^2 : (\mathbf{x}_1, \mathbf{x}_2) \mapsto (\mathbf{x}_1 - \mathbf{x}_2)^\top \mathbf{M}(\mathbf{x}_1 - \mathbf{x}_2)$ such that $\circ d^2(\mathbf{x}_1, \mathbf{x}_2) > 1$ if $y_1 \neq y_2$ $\circ d^2(\mathbf{x}_1, \mathbf{x}_2) < 1$ if $y_1 = y_2$

• Loss function:
$$\ell(M, z_1, z_2) = \phi(y_1 y_2 (1 - d_M^2(x_1, x_2)))$$

• Rademacher Averages:

- Frobenius norm regularized M: $C_d = O(1)$
- Trace norm regularized M: $C_d = O(\sqrt{\log d})$

ICML 2013

Applications

$$\mathfrak{R}_n^{\infty} \leq \mathbf{C_d} \sqrt{\frac{\log n}{s}}, \quad \mathcal{E}_n \leq \mathfrak{R}_n^{\infty} + \frac{\mathbf{C_d^2 \log^2 n}}{n}$$

Two-stage Multiple Kernel Learning

- Objective: $K : (\mathbf{x}_1, \mathbf{x}_2) \mapsto K_{\mu}(\mathbf{x}_1, \mathbf{x}_2)$ such that $K_{\mu} = \sum_{i=1}^p \mu_i K_i$
- Desire kernel-target alignment
- Loss function: $\ell(\mu, \mathsf{z}_1, \mathsf{z}_2) = \phi(y_1 y_2 \mathcal{K}_{\mu}(\mathsf{x}_1, \mathsf{x}_2))$
- Rademacher Averages:
 - L_2 norm regularized μ : $C_d = \mathcal{O}(\sqrt{p})$
 - L_1 norm regularized μ : $C_d = \mathcal{O}\left(\sqrt{\log p}\right)$

Future Work

- 1. Our all-pairs regret bound for **OLP** + **RS-x** is $\sqrt{\frac{\log n}{s}}$
 - Is $\omega(\log n)$ buffer size necessary for sublinear regret ?

2. Our OTB results for finite-buffer regret bounds behave as $\sqrt{\frac{\log n}{s}}$ (resp. $\frac{\log n}{s}$)

• Can we get
$$\mathcal{O}\left(\frac{1}{f(n)}\right)$$
 rates ?

- 3. Our generalization bounds require buffer update policies to be stream oblivious
 - Update algorithm cannot look at z_t, just the index t
 - Examples: FIFO/LRU, RS , RS-x ...
 - Guarantees for (suitable) stream aware policies ?

Thank You!

For more, visit our **poster** this evening !!!