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Pointwise Loss Functions

Loss functions for classification, regression ..

(- HxZ—->R

.. look at only one point z = (x, y) at a time

Examples:
e Hinge loss: £(h,z) = [1 -y - h(x)],
e c-insensitive loss: £(h,z) = [ly — h(x)| — €],

e Logistic loss: £(h,z) = In(1+ exp (y - h(x)))
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Metric Learning for Classification
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learned metric
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Metric needs to be penalized for bringing blue and red points together
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Metric Learning for Classification

y

learned metric

o
H
0 2
°
o

Metric needs to be penalized for bringing blue and red points together
e Loss function needs to consider two data points at a time

o .. in other words, a pairwise loss function

e Example: {(dm,z1,22) = ¢ (y1y2 (1 — du(x1,%2)))

where ¢ is the hinge loss function
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Learning with Pairwise Loss Functions

{ - HxZxZ->R

Examples:

e Mahalanobis metric learning

Bipartite ranking / maximizing area under ROC curve

Preference learning

Two-stage Multiple kernel learning

Similarity (indefinite kernel) learning
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Learning with Pairwise Loss Functions

{ - HxZxZ->R

Online Learning for Pairwise Loss Functions ?

e Algorithmic Challenges
o Attempts to reduce to pointwise learning
o Treat pairs (z,z;) as elements of a superdomain Z = Z x Z ?

e Problem: one does not receive pairs in the data stream !

e Solution: an online learning model for pairwise loss functions
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Online Learning Model for Pairwise Loss Functions

-

Learner

(- HxZxZ—->R

Adversary

e At each time t, adversary gives us a single data point = (X¢, yt)

e Loss ¢; on hypothesis h;_1 calculated by pairing z; with past points
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Online Learning Model for Pairwise Loss Functions

-

Learner

l:HxZxZ—-R

Adversary

e At each time t, adversary gives us a single data point = (X¢, yt)

e Loss ¢; on hypothesis h;_1 calculated by pairing z; with past points

Buffer B

e Pair up with all previous points

e Incur loss

L£¥(her) = 5
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Online Learning Model for Pairwise Loss Functions

3 (- HxZxZ—->R

Learner

Adversary

e At each time t, adversary gives us a single data point = (X¢, yt)

e Loss ¢; on hypothesis h;_1 calculated by pairing z; with (some) past points

Finite Buffer 5[] [] (] (] (] (]

e Capacity to store s data items at a time
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Online Learning Model for Pairwise Loss Functions

-

Learner

l:HxZxZ—-R

Adversary

e At each time t, adversary gives us a single data point = (X¢, yt)

e Loss ¢; on hypothesis h;_1 calculated by pairing z; with (some) past points

Finite Buffer B

[ [za] [za] [2a] [za] [za] [2:]]

e Can pair up only with buffer points (7) (7) (7)

e Incur loss

Abu 1
[:lt) f(ht—l) = g (g(ht—l, Zt,Zil) + Z(ht—lyzty Ziz) +...+ g(ht—l,zt,zis))
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Online Learning Model for Pairwise Loss Functions

-

Learner

(- HxZxZ—->R

Regret Bounds in this Model:

e How well are we able to do on all possible pairs

o All-pairs Regret Bound:

1

1
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Online Learning Model for Pairwise Loss Functions

3 (- HxZxZ—->R

Learner

Regret Bounds in this Model:

e How well are we able to do on all possible pairs

o All-pairs Regret Bound:

n—1 n
1 A 1 o

oo} < H oo (oo}
n—1 ;Lf (he) < jnf T3 ;Lf (h) + 9%

e How well are we able to do on pairs that we have seen

o Finite-buffer Regret Bound:

n—1 n
1 Abuf . 1 Abuf buf
n—ltzz;ﬁt (ht)ghlggin—ltz:;Lt (h) + 2%,
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Learning with Pairwise Loss Functions

{ - HxZxZ->R

Offline Learning for Pairwise Loss Functions ?

e Online techniques used for several batch applications
o PEGASOS, LASVM ..

o Even more important for pairwise loss functions

e Expensive latency costs in sampling i.i.d. pairs from disk.
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Learning with Pairwise Loss Functions

{ - HxZxZ->R

Offline Learning for Pairwise Loss Functions ?

e Problem: Generalization Bounds for Online Algorithms
o Online learning process generates hypothesis h

o Generalization performance L£(h) :== E [{(h,z1,2,)]
21,22
o Wish to bound excess risk: £, = L(h) — hIQLL(h)

e Solution: Online-to-batch conversion bounds
o Bound &, for learned predictor in terms of in terms of REf or :RS°

o Problem (for later): Existing OTB techniques dont work here
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Learning with Pairwise Loss Functions

¢ - HxZxZ—-R

e Online AUC Maximization
[Zhao et al, ICML 2011]

o Use classical stream sampling
algorithm RS

o All-pairs regret bound needs
fixing

o Finite-buffer regret bound holds
(implicit)
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Learning with Pairwise Loss Functions

{ - HxZxZ-—-R

e Online AUC Maximization e OLP: Online Learning for PLF
[Zhao et al, ICML 2011] [This work]

o Use classical stream sampling o Use a novel stream sampling
algorithm RS algorithm RS-x

o All-pairs regret bound needs o Guaranteed sublinear regret w.r.t
fixing all-pairs

o Finite-buffer regret bound holds o Finite-buffer regret bound holds
(implicit)
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Learning with Pairwise Loss Functions

{ - HxZxZ->R

e OTB conversion Bounds for PLF
[Wang et al, COLT 2012

o Work only w.r.t all-pairs regret
bounds

o Unable to handle
[Zhao et al, ICML 2011]

o Bounds depend linearly on input
dimension

o Dont handle sparse learning
formulations

o Basic rates of convergence
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Learning with Pairwise Loss Functions

¢ - HxZxZ—-R

e OTB conversion Bounds for PLF
[Wang et al, COLT 2012

[e]

ICML 2013

Work only w.r.t all-pairs regret
bounds

Unable to handle
[Zhao et al, ICML 2011]

Bounds depend linearly on input
dimension

Dont handle sparse learning
formulations

Basic rates of convergence

Online Learning for Pairwise Loss Functions

[e]

e OTB conversion Bounds for PLF
[This work]

Work with all-pairs and finite-buffer
regret

Able to handle
[Zhao et al, ICML 2011]

Bounds independent of input
dimension

Handle sparse learning formulations

Fast rates for strongly convex
pairwise loss functions
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Online Learning with Pairwise Loss Functions

-

Learner

Learning Algorithm:
e Hypothesis update

e Buffer update

o Guarantees

Regret Bounds:
e Finite-buffer regret

e All-pairs regret

(- HxZxZ—->R
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Online Learning with Pairwise Loss Functions

3 l:HxZxZ—-R

Learner Adversary

Learning Algorithm: OLP : Online Learning for Pairwise Loss Functions

e Hypothesis update 1. Start off with ho = 0 and empty buffer B

e Buffer update At each timestept=1...n

o Guarantees 2. Receive new training point z;

Regret Bounds: 3. Construct loss function ¢, = £

e Finite-buffer regret 4. he+ Mg k1 — %Vhﬁt(ht,l)

e All-pairs regret 5. Update buffer B with z;

6. Return h = %Z::_Ol hy
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Online Learning with Pairwise Loss Functions

-

Learner

Learning Algorithm:
e Hypothesis update

e Buffer update

o Guarantees

Regret Bounds:
e Finite-buffer regret

e All-pairs regret

(- HxZxZ—->R

RS-x : Reservoir Sampling with Replaxement

Adversary
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Online Learning with Pairwise Loss Functions

3 (- HxZxZ—->R

Learner Adversary

Learning Algorithm: RS-x : Reservoir Sampling with Replaxement
e Hypothesis update

e Buffer update

o Guarantees Ry

Regret Bounds:

e Finite-buffer regret

e All-pairs regret
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Online Learning with Pairwise Loss Functions

3 (- HxZxZ—->R

Learner Adversary

Learning Algorithm: RS-x : Reservoir Sampling with Replaxement
e Hypothesis update

e Buffer update

o Guarantees [|zo||21|| || || || |]

Regret Bounds:

e Finite-buffer regret

e All-pairs regret
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Online Learning with Pairwise Loss Functions

-

Learner

Learning Algorithm:
e Hypothesis update

e Buffer update

(- HxZxZ—->R

RS-x : Reservoir Sampling with Replaxement

Adversary

o Guarantees [ | 20 | | 21 | |
Regret Bounds:
e Finite-buffer regret
e All-pairs regret
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Online Learning with Pairwise Loss Functions

-

Learner

Learning Algorithm:
e Hypothesis update

e Buffer update

(- HxZxZ—->R

Adversary

RS-x : Reservoir Sampling with Replaxement

o Guarantees [ | 20 | | 21 | | = | |
Regret Bounds:
e Finite-buffer regret
e All-pairs regret
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Online Learning with Pairwise Loss Functions

g (- HxZxZ—->R

Learner

Learning Algorithm:
e Hypothesis update

e Buffer update

o Guarantees

Regret Bounds:
e Finite-buffer regret

e All-pairs regret
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Online Learning with Pairwise Loss Functions

3 L:HxZxZ—=R xj

Learner Adversary

Learning Algorithm: RS-x : Reservoir Sampling with Replaxement

e Hypothesis update

e Buffer update ‘f r EI

o Guarantees [ | Zio | Ziy | Ziy | Ziy | Ziy Zi ]

SPRCPRGPREPRCIRED

Regret Bounds:
e Finite-buffer regret

e All-pairs regret
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Online Learning with Pairwise Loss Functions

3 (- HxZxZ—->R

Learner Adversary

Learning Algorithm: RS-x : Reservoir Sampling with Replaxement
e Hypothesis update

e Buffer update

|Zt| |zi2

|Zt| |Zi5

o Guarantees [ | Zio

Regret Bounds:
e Finite-buffer regret

e All-pairs regret
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Online Learning with Pairwise Loss Functions

3 (- HxZxZ—->R

Learner Adversary
Learning Algorithm: RS-x : Reservoir Sampling with Replaxement
e Hypothesis update
Sampling Guarantee for RS-x :
e Buffer update . .
Theorem: At any fixed time t > s, every buffer element
o Guarantees is an i.i.d. sample from the set {z1,...,z¢—1}

Regret Bounds:

e Finite-buffer regret

e All-pairs regret

Our Contributions 7/11
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Online Learning with Pairwise Loss Functions

3 (:HxZxZR xj
Adversary

Learner

Learning Algorithm: Finite-buffer regret bound for OLP

How well are we able to do on pairs that we have seen

o Buffer update Theorem: R < L
n — ﬁ

e Hypothesis update

o Guarantees
Proof: OLP is a GIGA variant: the analysis follows.

Regret Bounds:

e Finite-buffer regret

e All-pairs regret

Our Contributions 7/11

ICML 2013 Online Learning for Pairwise Loss Functions



Online Learning with Pairwise Loss Functions

-

Learner

Learning Algorithm:
e Hypothesis update
e Buffer update
o Guarantees
Regret Bounds:
e Finite-buffer regret

e All-pairs regret

(- HxZxZ—->R

Adversary

All-pairs regret bound for OLP

How well are we able to do on all pairs

|
Theorem: R;° < Cq4/ oin w.h.p.

Proof: Use properties of RS-x to show that w.h.p.

L — e <LY < LMt e

Use regret bound on 2 to finish off.
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions

e Recall: Online learning process generates hypothesis h = %Z::_Ol h:

o Wish to bound excess risk: £, = L(h) — ’JQLL(h)

e Online-to-batch conversion: bound &, in terms of |5 (or R2°)
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions
e Recall: Online learning process generates hypothesis h = %Z::_Ol h
o Wish to bound excess risk: £, = L(h) — JnLL(h)
c
e Online-to-batch conversion: bound &, in terms of R (or |Ry°)

e Classical Proof Techniques: for pointwise loss functions
o {l:(he—1) — L(hi—1)} forms an MDS
o [Cesa-Bianchi et al, NIPS 2001], Azuma-Heoffding
o [Kakade and Tewari, NIPS 2008], Bernstein
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions
e Problem: Existing techniques do not apply
o {€i(he—1) — L(h:—1)} not an MDS due to coupling
e Solution: decompose {¢¢(h:—1) — L(hs—1)} into MDS and residual terms
o First proposed by [Wang et al, COLT 2012]

o Apply Azuma-Hoeffding to one and Uniform Convergence to other

o We use Rademacher average route: great flexibility and tight bounds
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions
e Problem: Existing techniques do not apply
o {€i(he—1) — L(h:—1)} not an MDS due to coupling

e Solution: decompose {¢¢(h:—1) — L(hs—1)} into MDS and residual terms
o First proposed by [Wang et al, COLT 2012]
o Apply Azuma-Hoeffding to one and Uniform Convergence to other

o We use Rademacher average route: great flexibility and tight bounds
e Problem: Coupling yet again prevents classical symmetrization

e Solution: Symmetrization of Expectations!
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Generalization Bounds for Pairwise Loss Functions

e Problem: What should be notion of Rademacher averages ?

e Solution: We define

1 n
Ro(H):= E |sup = ZeTh(z,zT)
Z,Zr.€r ||peH N p—t

o One head term and n tail terms

o We show that for several problems, the R.A. have the following form

1
Rn(H) ~ Cd .

7

e Derivations do not follow directly from existing techniques
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Our Online-to-batch Conversion Bounds

—
L(R) < jnf L(h) + &,

e Bounded Losses

o All-pairs regret bounds, w.h.p. &, <R + ——F———

7

Ca + /logn
NG

o Proofs: Uniform convergence with SoE + Azuma-Hoeffding inequality

Cyq + /logn
n

o Finite-buffer regret bounds, w.h.p. & < R +
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Generalization Bounds for Online Algorithms for Pairwise Loss
Functions

Our Online-to-batch Conversion Bounds

L(h) < inf L(h) + &,

heH

e Strongly Convex Losses

CJ log?
o All-pairs regret bounds, w.h.p. &, <R, + ~d 08 1

2
o Finite-buffer regret bounds, w.h.p. & < R + Cqlogn

o Proofs: Novel use of fast rate results for batch algorithms + Bernstein-type
martingale inequalities

ICML 2013 Online Learning for Pairwise Loss Functions Our Contributions 8/11



Applications

Bipartite Ranking
e Objective: h:x+— (w,x) such that h(x1) > h(x2) if y1 =1,y = —1
e Equivalent to maximizing the area under the ROC curve
e Loss function: {(w,z1,22) = ¢ ((y1 — yg)wT (x1 — X2))

e Rademacher Averages:
o L, regularized w, p > 1: C4 = O (1)
o L regularized sparse w: Cq = O (v/logd)
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Applications

Mahalanobis Metric Learning
e Objective: d”: (x1,x%2) — (x1 — x2) " M(x1 — x2) such that
o d2(x1,X2) >1ify1 #y
o d’(x1,x2) <1lify1 =y
e Loss function: £(M,z1,22) = ¢ (y1y2 (1 — d(x1,%2)))
e Rademacher Averages:

o Frobenius norm regularized M: Cq = O (1)
o Trace norm regularized M: C4 = O (\/Iog d)
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Applications

log n C2log?n
d
%20 < Cd ) 5’n < %20 +
S n
Two-stage Multiple Kernel Learning
e Objective: K : (x1,x2) — Ky (x1,x2) such that K, = >°F | p:K;

e Desire kernel-target alignment
e Loss function: £(p,z1,22) = ¢ (VY2 Ku(x1, x2))

e Rademacher Averages:
o L, norm regularized pu: Cq = O (\/ﬁ)
o L; norm regularized pu: Cq = O (\/Iog p)
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Future Work

/1
1. Our all-pairs regret bound for OLP + RS-x is Ofn

e Is w(log n) buffer size necessary for sublinear regret ?

2. Our OTB results for finite-buffer regret bounds behave as \/IO% (resp log n

e Can we get O < > rates 7
f(n)

3. Our generalization bounds require buffer update policies to be stream oblivious
e Update algorithm cannot look at z;, just the index t
e Examples: FIFO/LRU, RS , RS-x ..

e Guarantees for (suitable) stream aware policies ?
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Thank You!

For more, visit our poster this evening !!!
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