
A pre-Weekend Talk on
Online Learning

TGIF Talk Series

Purushottam Kar

Outline

• Some Motivating Examples
• Discovering customer preferences

• Learning investment profiles

• Detecting credit card fraud

• The Formal Online Learning Framework
• Notion of regret

• Formalization of motivating examples

• Simple Online Algorithms
• Online classification, regression

• Online ranking

• Batch solvers for large scale learning problems

• Other “Feedback-based” Learning Frameworks

2

Some Motivating Examples
Why Online Learning can be Useful

3

The Cook’s Dilemma

4

Discovering Customer Preferences

5

Loss

2

1

1

0

2

Learning Investment Profiles

• � assets ��, ��, … , �� that give returns proportional to investment

• Asset �� gives back $�� as return per dollar invested
• If I invest $�� in �� then total return is ∑���� = ���

• Return profile � depends on market forces, other investors and keeps changing

• I have corpus of $� that I decide to invest completely in these assets
• Let �� decide proportion of investment in asset ��, i.e. investment is ���

• Corpus at time � becomes � ∏ ��, ���
��� : reward to be maximized

6

��
��

� ��, ��

Detecting Credit Card Fraud

• Classify credit card payments into +, −
• Each payment p ∈ � is described by a vector �� ∈ ℜ�

• Other problems such as branch prediction/churn prediction

• Linear classification model

• Choose � ∈ ℜ� and classify � as sign ����

• Online process; at each time �
• A credit card payment �� is detected

• We propose a linear classifier �� and classify �� as sign ��
����

• True status of payment �� is made known and our mistake (if any) is revealed

• Wish to minimize the number of mistakes made by us
• Wish to propose a “good” sequence of �

7

The Formal Online Learning
Framework
How we assess Online Learning Algorithms

8

The Online Learning Model

• An attempt to model an interactive and adaptive environment
• We have a set of actions �

• Environment has a set of loss functions ℒ = ℓ: � → ℜ�

• In each round �
• We play some action �� ∈ �

• Environment responds with a loss function ℓ� ∈ ℒ

• We are forced to incur a loss ℓ� ��

• Environment can adapt to our actions (or even be adversarial)

• Our goal: minimize cumulative loss ∑ ℓ� �� �
���

• Can cumulative loss be brought down to zero : mostly no !

• More reasonable measure of performance: single best action in hindsight

• Regret: �� ≔ ∑ ℓ� �� − min
�∈�

∑ ℓ� ��
���

�
���

• Why is this a suitable notion of performance ?

9

Motivating Examples Revisited

• Detecting customer preferences
• Assume we can represent customer � ∈ � as a vector �� ∈ ℜ�

• Set of actions are linear functions predicting spice levels for that customer
�̂� = ����

• Loss function given by squared difference between true and preferred spiciness
ℓabs �, �� = �̂� − ��

�

• At time step � customer �� comes and ℓ� �� = ℓabs ��, ���

• Goal: make customers as happy as the single best spice level

• Credit card fraud detection
• Actions are the set of linear classifiers � = � ∈ ℜ�

• Loss functions are mistake functions

ℓ�/� �, �� = � ������ < 0 = �
1 if �� ≠ sign ����

0 otherwise
ℓ� �� = ℓ�/� ��, ���

• Detection of credit card fraud might change buying profiles (adversarial)

• Goal: make (almost) as few mistakes as single best classifier

10

Motivating Examples Revisited

• Learning investment profiles
• Set of actions is the �-dimensional simplex � = � ∈ ℜ�, � ≥ 0, � � = 1

• Reward received at �th step is ��, �� where �� is the return given by market

• Total reward (assume w.l.o.g. initial corpus is � = 1)

� ��, �� = exp � log ��, ��

�

���

�

���

• Returns affected by investment, other market factors (adaptive, adversarial)

• Can think of ℓ �, � = − log �, � as a negative reward or a loss
ℓ� �� = − log ��, ��

• Regret (equivalently) given by

ℛ� = � ℓ ��, ��

�

���

− min
�∈�

� ℓ �, ��

�

���

• Goal: make as much profit as the single best investment profile in hindsight

11

Simple Online Algorithms
What makes online learning click ?

12

Online Linear Classification

• Perceptron Algorithm

1. Start with �� = 0

2. Classify �� as sign ����
� ���

3. If correct classification i.e. �� = sign ��
����

, then let �� = ����

4. Else �� = ���� + �����

• Loss function ℓ�/� �, � = � ������ < 0 i.e. 1 iff � misclassifies �

• If there exists a perfect linear separator �∗ such that y�w∗�x��
≥ �,

ℛ� = ∑ℓ�/� ��, �� − ∑ℓ�/� �∗, �� ≤
1

��

• If there exists an imperfect separator �∗ such that ���∗����
≥ � − ��,

ℛ� = ∑ℓ�/� ��, �� − ∑ℓ�/� �∗, �� ≤
1

�� +
1

�
∑��

13

The Perceptron Algorithm in action

14

��

Online Regression

• The Perceptron Algorithm was (almost) a gradient descent algorithm

• Consider the loss function
ℓhinge �, � = max 1 − ����, 0

• ℓ� is a convex surrogate to the mistake function ℓ�/� �, � = � ���� < 0
ℓhinge �, � ≥ ℓ�/� �, �

• When perceptron makes a mistake i.e. ℓ�/� �, � = 1, we have
��ℓ����� �, � = −��

• Thus the perceptron update step �� = ���� + �����
is a gradient step !

15

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Hinge Loss

Mistake Loss

Online Regression via Online Gradient Descent

• Suppose we are taking actions �� ∈ � and receiving losses ℓ� ∈ ℒ
• Assume that all loss function ℓ�: � → ℜ� are convex and Lipchitz

• Examples ℓ� � = ���� − ��
�, ℓ� � = − log ���� , ℓ� � = 1 − ������ �

• Online Gradient Descent (for linear predictions problems)

1. Start with �� = 0

2. Receive object �� and predict value ����
� �� for object ��

3. Receive loss function ℓ� and update �� = ���� −
�

�
��ℓ� ����

• Some more work needed to ensure that �� ∈ � as well

• We can ensure that

R� = � ℓ�(��)

�

���

− min
�∈�

� ℓ� �

�

���

≤ � �

16

Online Bipartite Ranking

• Documents ��, ��, … ��, … arrive in a continuous stream to be ranked

• Each document in labelled either “relevant” (+) or “irrelevant” (-)

• Goal: somehow rank all relevant documents before irrelevant ones

• Method: assign relevance score �: �� → �� to document �� and sort

• We incur loss for “swaps” ℓrank �, ��, ��� = � �� − ��� �� − ��� < 0

• Minimize number of swaps ∑ ∑ ℓrank ��, ���
�
����

�
���

• Problem is equivalent to maximizing area under the ROC curve of TP/FP

• Challenges
• No reference point: no “true” relevance score

• Need pairs of documents to learn a scoring function: get only singles

• Solution: keep (some) of the past points in a buffer to construct pairs on the fly

• Several interesting algorithmic and theoretical problems still open

17

Batch Solvers

• Statistical learning gets a batch of randomly chosen training examples
��, �� , … , ��, �� ∼ � × �

• We wish to learn a function � ∈ ℱ that does well on these examples

min
�∈ℱ

1

�
� ℓ �, ��

�

���
where ℓ: ℱ × � → ℜ� is a loss function (classification, regression etc)

• Statistical Learning Theory: such an � does well on unseen points as well!

• Solving “batch” problem may be infeasible: � ≫ 1, distributed storage etc.

• Solution: solve the online problem instead

• E.g. online gradient descent will solve for a �� ∈ ℱ such that

� ℓ ��, ��

�

���

≤ min
�∈ℱ

� ℓ �, ��

�

���

+ ℛ�

where ℛ� = � �

18

Batch Solvers

• Thus we have an �� ∈ ℱ such that

1

n
� ℓ ��, ��

�

���

≤ min
�∈ℱ

1

�
� ℓ �, ��

�

���

+ �

where � =
ℛ�

�
= � 1

• Online to batch conversion bounds

• Argue for the performance of �� =
�

�
∑ ��

�
��� on random unseen points

• Expected loss of �� on a random unseen point is bounded

�� ℓ ��, � ≤
ℛ�

�
+ �

1

�

• Several batch solvers e.g. PEGASOS, MIDAS, LASVM use techniques such as
Stochastic online gradient descent for large scale learning

19

Other Feedback based Learning Frameworks

• Two axes of variation: modelling of environment and feedback

• Online Learning: some modelling of environment and full feedback
• Losses are simple functions over linear models (can be made non linear though)

• At each step the loss function itself is given to us: full information

• Models are agnostic: no realizability assumptions are made

• Multi-armed Bandits: weak modelling of environment, weak feedback
• Often no assumptions made on nature of loss function

• Limited feedback: only loss value on played action made available

• Contextual bandits try to model loss function but make realizability assumptions

• Reinforcement Learning: Strong modelling of environment, weak feedback
• Environment modelled as a state space with adaptive stochastic transitions

• Reward functions modeled as functions of state space and action

• Limited feedback available: need to learn, state space as well as reward function

20

