Online Learning with Pairwise Loss Functions

MLSIG Seminar Series, Dept. of CSA, IISc

Joint work with B. Sriperumbudur, P. Jain, H. Karnick

Purushottam Kar

MLO Group, Microsoft Research India

Outline

A quick introduction to online learning Examples of pairwise loss functions An online learning model+algo for pairwise functions

Outline

Examples of pairwise loss functions

An online learning model+algo for pairwise functions

Credit Card Fraud Detection

The Online Learning Process

Benefits of Online Learning

- Don't have to wait for all data to arrive
 - Streaming data, Transactional data
- Applications to large scale learning
 - Data too large to fit in memory (or even disk)
 - Solution: stream data into memory from disk or network
- Fast learning
 - Several online learning algorithms have cheap updates

$$a_{t-1} \rightarrow a_t$$

• Online gradient descent, Mirror descent

Example: Online Classification

- Instances are vector-label pairs $z_t = (x_t, y_t)$
 - $x_t \in \mathbb{R}^d$, $y_t \in \{-1, +1\}$
- Actions are classifiers e.g. $a_t = \langle w_t, x \rangle, w_t \in \mathcal{W}$
- Loss is the hinge loss function $\ell(w_{t-1}, z_t) = [1 - y_t \cdot \langle w_{t-1}, x_t \rangle]_+$
- Total loss incurred by adaptive classfn $\sum_{t=1}^{T} \ell(w_{t-1}, z_t)$
- Loss of single best classifier $\min_{w \in W} \sum_{t=1}^{T} \ell(w, z_t)$
 - This is what a "batch" learning algorithm would have given
- The online process suffers
 - Unable to see all data in one go

Regret and Generalization

• Regret: how much the online process suffers

$$\Re_T = \sum_t^I \ell(a_{t-1}, z_t) - \min_{a \in \mathcal{A}} \sum_t^I \ell(a, z_t)$$

- Online learning can compete with batch learning
 - Excess training error $\frac{1}{T} \Re_T \downarrow 0$ if $\Re_T = o(T)$
 - Performance on unseen points: $\mathcal{L}(a) = \mathop{\mathbb{E}}_{z \sim Z} \ell(a, z)$
- Online-to-batch conversion: For random x_t , convex ℓ $\mathcal{L}(\bar{a}) \leq \inf_{a \in \mathcal{A}} \mathcal{L}(a) + \frac{1}{T} \Re_T + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ where $\bar{a} = \frac{1}{T} \sum a_t$

Outline

Pointwise Loss Functions

• Loss functions for classification, regression ...

$$\ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}$$

• ... look at the performance of function at **one** point

Examples

- Hinge loss: $\ell(w, z) = [1 y \cdot \langle w, x \rangle]_+$
- Logistic loss: $\ell(w, z) = \ln(1 + \exp(y \cdot \langle w, x \rangle))$
- Squared loss: $\ell(w, z) = (y \langle w, x \rangle)^2$

Metric Learning for Classification

- Penalize metric for bringing blue and red points close
- Loss function needs to consider two points at a time!
 - ... in other words a pairwise loss function
- Example: $\ell(M, z_1, z_2) = \begin{cases} 1, y_1 \neq y_2 \text{ and } d_M(x_1, x_2) < \gamma_1 \\ 1, y_1 = y_2 \text{ and } d_M(x_1, x_2) > \gamma_2 \\ 0, \text{ otherwise} \end{cases}$

Bipartite Ranking

- Want relevant results to be ranked above others
- Penalize scoring function $s: \mathcal{Z} \to \mathbb{R}$ for each "switch"

• $\ell(s, z_1, z_2) = 1$ iff $r(z_1) > r(z_2)$ and $s(z_1) < s(z_2)$

Pairwise Loss Functions

 $\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$

Examples:

- Mahalanobis metric learning
- Bipartite ranking
- Preference learning
- Two-stage multiple kernel learning
- Indefinite kernel learning

Learning with Pairwise Loss Functions

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

Algorithmic challenges:

- Training data available as a set $\mathcal{T} = \{z_1, z_2, \dots, z_T\}$
- Question: how to create pairs?
- Solution 1: $\min_{w \in \mathcal{W}} \frac{2}{T(T-1)} \sum_{i < j} \ell(w, z_i, z_j)$
 - Expensive for $T \gg 1$
- Solution 2: Use online techniques for a batch solver
 - Challenge: Online creation of pairs from a data stream
 - Desirable: Memory efficiency

Learning with Pairwise Loss Functions

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

Learning theoretic challenges:

- Batch learning methods: learn from pairs (z_i, z_j)
 - Intersection between pairs: training data not i.i.d.
 - Direct application of concentration inequalities not possible
- Online learning methods: let $\{z_i\}$ arrive in a stream
 - Need an appropriate **notion of regret**
 - Classical OTB proofs require i.i.d. data crucially

This talk: mostly algorithmic solutions + hint of theory

Outline

An Online Learning Model for Pairwise Losses

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

- At each time step *t*
 - We propose an action a_t (e.g. a scoring function or a metric)
 - We receive a single point $z_t = (x_t, y_t)$
- We incur loss ℓ_t on action a_{t-1}
 - Buffer *B* $[Z_1, Z_2, Z_3, ...]$
 - Pair up z_t with points in buffer $(z_t, z_1) (z_t, z_2) \dots (z_t, z_{t-1})$
 - Incur loss

$$\ell_t^{\infty}(a_{t-1}) = \frac{1}{t-1} \left(\ell(a_{t-1}, z_t, z_1) + \dots + \ell(a_{t-1}, z_t, z_{t-1}) \right)$$

An Online Learning Model for Pairwise Losses

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

- At each time step *t*
 - We propose an action a_t (e.g. a scoring function or a metric)
 - We receive a single point $z_t = (x_t, y_t)$
- We incur loss ℓ_t on action a_{t-1}
 - Finite Buffer $B \ [\Box_1, \Box_2, \dots, \Box_s]$
 - Pair up z_t with points in buffer $(z_t, z_{i_1})(z_t, z_{i_2}) \dots (z_t, z_{i_s})$
 - Incur loss

$$\ell_t^{\text{buf}}(a_{t-1}) = \frac{1}{s} \Big(\ell \big(a_{t-1}, z_t, z_{i_1} \big) + \dots + \ell \big(a_{t-1}, z_t, z_{i_s} \big) \Big)$$

An Online Learning Model for Pairwise Losses

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

Notions of Regret in this Model

- How well are we able to do on pairs that we have seen
 - Finite buffer regret

• All

$$\Re_T^{\text{buf}} = \sum_{t=1}^T \ell_t^{\text{buf}}(a_{t-1}) - \min_{a \in \mathcal{A}} \sum_{t=1}^T \ell_t^{\text{buf}}(a)$$

• How well are we able to do on all possible pairs

pairs regret

$$\Re_T^{\infty} = \sum_{t=1}^T \ell_t^{\infty}(a_{t-1}) - \min_{a \in \mathcal{A}} \sum_{t=1}^T \ell_t^{\infty}(a_t)$$

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

OLP: Online learning with pairwise losses

Simple variant of Zinkevich's GIGA

- Start with $w_0 = 0$
- At each t = 1 ... T
 - Receive a new point z_t
 - Construct appropriate loss function $\ell_t = \ell_t^{\infty}$ or $\ell_t = \ell_t^{\text{buf}}$

•
$$w_t \leftarrow w_{t-1} - \frac{\eta}{t} \nabla_w \ell_t(w_{t-1})$$

• If required, update buffer B with z_t

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

RS-x: Reservoir sampling with replacement $\sim B(1/t)$ \downarrow Z_3 Z_1 Z_t Z_3 Z_t Z_t Z_t Z_6 Z_7

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

Guarantees for OLP and RS-x

• Sampling guarantee

At any time t > s, the contents of buffer B are s i.i.d. samples from the set $\{z_1, z_2, ..., z_{t-1}\}$

• Regret guarantee

OLP guarantees** a finite buffer regret $\frac{1}{T} \Re_T^{\text{buf}} \le \frac{1}{\sqrt{T}}$ Finite-to-all-pairs regret conversion

$$\frac{1}{T}\mathfrak{R}_T^{\infty} \le \frac{1}{T}\mathfrak{R}_T^{\mathrm{buf}} + \sqrt{\frac{\log T}{s}}$$

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

OTB Guarantees for Pairwise loss functions

Define
$$\mathcal{L}(a) \coloneqq \mathbb{E}_{z,z' \sim \mathcal{Z}} \ell(a, z, z')$$

• For random x_t , convex ℓ and unbounded buffer $\mathcal{L}(\bar{a}) \leq \min_{a \in \mathcal{A}} \mathcal{L}(a) + \frac{1}{T} \Re_T^{\infty} + \mathcal{O}\left(\sqrt{\log T/T}\right)$ where $\bar{a} = \frac{1}{T} \sum_{t=1}^{T} a_t$

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

OTB Guarantees for Pairwise loss functions

Define
$$\mathcal{L}(a) \coloneqq \mathbb{E}_{z,z' \sim \mathcal{Z}} \ell(a, z, z')$$

- For random x_t , convex ℓ and finite buffer of size s $\mathcal{L}(\bar{a}) \leq \min_{a \in \mathcal{A}} \mathcal{L}(a) + \frac{1}{T} \Re_T^{\text{buf}} + \mathcal{O}\left(\sqrt{\log T/s}\right)$ where $\bar{a} = \frac{1}{T} \sum_T a_t$
- Corollary: $\mathcal{L}(\bar{a}) \leq \min_{a \in \mathcal{A}} \mathcal{L}(a) + \mathcal{O}(\sqrt{\log T/s})$

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

OTB Guarantees for Pairwise loss functions

Define
$$\mathcal{L}(a) \coloneqq \mathbb{E}_{z,z' \sim \mathcal{Z}} \ell(a, z, z')$$

• For random x_t , strongly convex ℓ and unbounded buffer $\mathcal{L}(\bar{a}) \leq \min_{a \in \mathcal{A}} \mathcal{L}(a) + \frac{1}{T} \Re_T^{\infty} + \mathcal{O}(\log^2 T/T)$ where $\bar{a} = \frac{1}{T} \sum a_t$

$$\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

OTB Guarantees for Pairwise loss functions

Define
$$\mathcal{L}(a) \coloneqq \mathbb{E}_{z,z' \sim \mathcal{Z}} \ell(a, z, z')$$

- For random x_t , strongly convex ℓ and finite buffer $\mathcal{L}(\bar{a}) \leq \min_{a \in \mathcal{A}} \mathcal{L}(a) + \frac{1}{T} \Re_T^{\text{buf}} + \mathcal{O}(\log T/s)$ where $\bar{a} = \frac{1}{T} \sum a_t$
- Corollary: $\mathcal{L}(\bar{a}) \leq \min_{a \in \mathcal{A}} \mathcal{L}(a) + \mathcal{O}(\log T/s)$

 $\ell: \mathcal{W} \times \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$

Some other details

- Our bounds give dimension independent bounds
 - For Hilbertian norm regularizations: no dependence on \boldsymbol{d}
 - For sparsity inducing regularizations: $\sqrt{\log d}$ dependence
 - Previous work [Wang et al, COLT12]: linear dependence
- Proofs use (modified notions of) Rademacher averages
 - Trickier symmetrization step
 - Previous work: covering number based analysis

Some Open Problems

• Current all-pairs regret bound for finite buffers

$$\Re_T^\infty \le \sqrt{\frac{\log T}{s}}$$

- Can we get bounds that scale as 1/f(n)?
- Similar question for OTB conversion bounds
- OTB bounds require *stream-oblivious* buffer updates
 - Update algorithm cannot look at z_t just t
 - Examples: FIFO, RS, RS-x
 - Guarantees for (suitable) stream-aware policies?