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Credit Card Fraud Detection
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The Online Learning Process
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Benefits of Online Learning

• Don’t have to wait for all data to arrive
• Streaming data, Transactional data

• Applications to large scale learning
• Data too large to fit in memory (or even disk)

• Solution: stream data into memory from disk or network

• Fast learning
• Several online learning algorithms have cheap updates

���� → ��

• Online gradient descent, Mirror descent
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Example: Online Classification

• Instances are vector-label pairs �� = ��,��

• �� ∈ ℝ � , y� ∈ − 1,+1

• Actions are classifiers e.g. �� = ��,� ,�� ∈ �

• Loss is the hinge loss function
ℓ ����,�� = 1 − �� ⋅ ����,�� �

• Total loss incurred by adaptive classfn ∑ ℓ ����,��
�
���

• Loss of single best classifier min
�∈�

∑ ℓ �,��
�
���

• This is what a “batch” learning algorithm would have given

• The online process suffers
• Unable to see all data in one go
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Regret and Generalization

• Regret: how much the online process suffers

ℜ � = � ℓ(����,��)

�

�

− min
�∈�

� ℓ �,��

�

�

• Online learning can compete with batch learning

• Excess training error 
�

�
ℜ � ↓ 0 if ℜ � = � �

• Performance on unseen points: ℒ � = �
�∼ �

ℓ �,�

• Online-to-batch conversion: For random ��, convex ℓ

ℒ �� ≤ inf
�∈�

ℒ � +
1

�
ℜ � + �

1

�
where �� =

�

�
∑ ��
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Pointwise Loss Functions

• Loss functions for classification, regression …

• … look at the performance of function at one point

Examples

• Hinge loss: ℓ �,� = 1 − � ⋅ �,� �

• Logistic loss: ℓ �,� = ln1 + exp � ⋅ �,�

• Squared loss: ℓ �,� = � − �,� �
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Metric Learning for Classification
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• Penalize metric for bringing blue and red points close

• Loss function needs to consider two points at a time!
• … in other words a pairwise loss function

• Example: ℓ �,��,�� = �
1,�� ≠ �� and �� ��,�� < ��

1,�� = �� and �� ��,�� > ��

0,otherwise                                   



Bipartite Ranking

• Want relevant results to be ranked above others

• Penalize scoring function �:  � → ℝ for each “switch”

• ℓ �,��,�� = 1 iff � �� > � ��  and � �� < � ��

Images taken from cinemahood.com, sify.com, santabanta.com and thehindu.com 12
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Pairwise Loss Functions

Examples:

• Mahalanobis metric learning

• Bipartite ranking

• Preference learning

• Two-stage multiple kernel learning

• Indefinite kernel learning
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Learning with Pairwise Loss Functions

Algorithmic challenges:

• Training data available as a set � = ��,��,… ,��

• Question: how to create pairs?

• Solution 1: min
�∈�

�

�(���)
∑ ℓ �,��,�����

• Expensive for � ≫ 1

• Solution 2: Use online techniques for a batch solver
• Challenge: Online creation of pairs from a data stream

• Desirable: Memory efficiency
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Learning with Pairwise Loss Functions

Learning theoretic challenges:

• Batch learning methods: learn from pairs ��,��

• Intersection between pairs: training data not i.i.d.

• Direct application of concentration inequalities not possible

• Online learning methods: let �� arrive in a stream
• Need an appropriate notion of regret

• Classical OTB proofs require i.i.d. data crucially

This talk: mostly algorithmic solutions + hint of theory
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An Online Learning Model for Pairwise Losses

• At each time step �
• We propose an action �� (e.g. a scoring function or a metric)

• We receive a single point �� = ��,��

• We incur loss ℓ� on action ����

• Buffer � ��,��,��,…
• Pair up �� with points in buffer ��,��  ��,��  … ��,����

• Incur loss

ℓ�
� ���� =

1

� − 1
ℓ ����,��,�� + ⋯ + ℓ ����,��,����
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• At each time step �
• We propose an action �� (e.g. a scoring function or a metric)

• We receive a single point �� = ��,��

• We incur loss ℓ� on action ����

• Finite Buffer � □�,□�,… ,□�

• Pair up �� with points in buffer ��,���
 ��,���

 … ��,���

• Incur loss
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1

�
ℓ ����,��,���
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An Online Learning Model for Pairwise Losses

Notions of Regret in this Model

• How well are we able to do on pairs that we have seen
• Finite buffer regret

ℜ �
��� = � ℓ�

��� ����

�

���

− min
�∈�

� ℓ�
��� �

�

���

• How well are we able to do on all possible pairs
• All pairs regret

ℜ �
� = � ℓ�

� ����

�

���

− min
�∈�

� ℓ�
� �

�

���
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An Online Learning Algorithm for Pairwise Losses

OLP: Online learning with pairwise losses

Simple variant of Zinkevich’s GIGA

• Start with �� = 0

• At each � = 1 … �
• Receive a new point ��

• Construct appropriate loss function ℓ� = ℓ�
� or ℓ� = ℓ�

���

• �� ← w��� −
�

�
��ℓ� ����

• If required, update buffer � with ��
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An Online Learning Algorithm for Pairwise Losses

RS-x: Reservoir sampling with replacement
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∼ � � �⁄
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An Online Learning Algorithm for Pairwise Losses

Guarantees for OLP and RS-x

• Sampling guarantee
At any time � > �, the contents of buffer � are � i.i.d. 
samples from the set ��,��,… ,����

• Regret guarantee

OLP guarantees** a finite buffer regret 
�

�
ℜ �

��� ≤
�

�
Finite-to-all-pairs regret conversion

1

�
ℜ �

� ≤
1

�
ℜ �

��� +
log�

�
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An Online Learning Algorithm for Pairwise Losses

OTB Guarantees for Pairwise loss functions

Define ℒ � ≔ �
�,��∼ �

ℓ �,�,��

• For random ��, convex ℓ and unbounded buffer

ℒ �� ≤ min
�∈�

ℒ � +
1

�
ℜ �

� + � log� �⁄

where �� =
�

�
∑ ��
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An Online Learning Algorithm for Pairwise Losses

OTB Guarantees for Pairwise loss functions

Define ℒ � ≔ �
�,��∼ �

ℓ �,�,��

• For random ��, convex ℓ and finite buffer of size �

ℒ �� ≤ min
�∈�

ℒ � +
1

�
ℜ �

��� + � log� �⁄

where �� =
�

�
∑ ��

• Corollary: ℒ �� ≤ min
�∈�

ℒ � + � log� �⁄
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An Online Learning Algorithm for Pairwise Losses

OTB Guarantees for Pairwise loss functions

Define ℒ � ≔ �
�,��∼ �

ℓ �,�,��

• For random ��, strongly convex ℓ and unbounded buffer

ℒ �� ≤ min
�∈�

ℒ � +
1

�
ℜ �

� + � log� � �⁄

where �� =
�

�
∑ ��
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�
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An Online Learning Algorithm for Pairwise Losses

Some other details

• Our bounds give dimension independent bounds
• For Hilbertian norm regularizations: no dependence on �

• For sparsity inducing regularizations: log� dependence

• Previous work [Wang et al, COLT12]: linear dependence

• Proofs use (modified notions of) Rademacher averages
• Trickier symmetrization step

• Previous work: covering number based  analysis

MLSIG seminar series, Dept. of CSA, IISc 27

ℓ: � × � × � → ℝ



Some Open Problems

• Current all-pairs regret bound for finite buffers

ℜ �
� ≤

log�

�

• Can we get bounds that scale as 1 �(�)⁄ ?

• Similar question for OTB conversion bounds

• OTB bounds require stream-oblivious buffer updates
• Update algorithm cannot look at �� just �

• Examples: FIFO, RS, RS-x

• Guarantees for (suitable) stream-aware policies?
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