SIGTACS Seminar Series

Metric Embeddings and Applications in Computer Science

Presented by : Purushottam Kar

January 10, 2009

Outline

(1) Introduction
(2) Embeddings into Normed Spaces
(3) Dimensionality Reduction
(4) The JL Lemma
(5) Discussion

Basics

Definition (Metric)

A Metric is a structure (X, ρ) where ρ is a distance measure $\rho: X \times X \rightarrow \mathbb{R}$ which is non-negative, symmetric and satisfies the triangle inequality.

Definition (Embedding Distortion)

An embedding $f: X \rightarrow Y$ from a metric space (X, ρ) to another metric space (Y, σ) is said to have a distortion D if
$D=\sup _{x, y \in X} \frac{\sigma(f(x), f(y))}{\rho(x, y)} \cdot \sup _{x, y \in X} \frac{\rho(x, y)}{\sigma(f(x), f(y))}$.
Such embeddings are also called bi-Lipschitz embeddings.

Embeddings

- Various criterion used to evaluate embeddings

Embeddings

- Various criterion used to evaluate embeddings
- Distortion, Stress, Residual Variance ...

Definition (Embedding Stress)

The stress for an embedding $f: X \rightarrow Y$ from a metric space (X, ρ) to another metric space (Y, σ) is defined to be $\sqrt{\frac{\sum_{x, y \in X}(\sigma(f(x), f(y))-\rho(x, y))^{2}}{\sum_{x, y \in X} \rho(x, y)^{2}}}$.

Embeddings

- Various criterion used to evaluate embeddings
- Distortion, Stress, Residual Variance ...

Definition (Embedding Stress)

The stress for an embedding $f: X \rightarrow Y$ from a metric space (X, ρ) to
another metric space (Y, σ) is defined to be $\sqrt{\frac{\sum_{x, y \in X}(\sigma(f(x), f(y))-\rho(x, y))^{2}}{\sum_{x, y \in X} \rho(x, y)^{2}}}$.

- Lead to very interesting algorithmic questions

Application in Computer Science

- Started out as a branch of functional analysis

Application in Computer Science

- Started out as a branch of functional analysis
- Algorithmic applications

Application in Computer Science

- Started out as a branch of functional analysis
- Algorithmic applications
- Metric Embeddings for datasets operating with a non-metric

Application in Computer Science

- Started out as a branch of functional analysis
- Algorithmic applications
- Metric Embeddings for datasets operating with a non-metric
- Dimensionality reduction to reduce storage space costs, processing time

Application in Computer Science

- Started out as a branch of functional analysis
- Algorithmic applications
- Metric Embeddings for datasets operating with a non-metric
- Dimensionality reduction to reduce storage space costs, processing time
- Facilitate pruning procedures in database searches

Application in Computer Science

- Started out as a branch of functional analysis
- Algorithmic applications
- Metric Embeddings for datasets operating with a non-metric
- Dimensionality reduction to reduce storage space costs, processing time
- Facilitate pruning procedures in database searches
- Preserve residual variance (PCA), inter-point similarity (Random Projections), Stress (MDS)

Application in Computer Science

- Started out as a branch of functional analysis
- Algorithmic applications
- Metric Embeddings for datasets operating with a non-metric
- Dimensionality reduction to reduce storage space costs, processing time
- Facilitate pruning procedures in database searches
- Preserve residual variance (PCA), inter-point similarity (Random Projections), Stress (MDS)
- Streaming Algorithms

Embedding into I_{∞}

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into l_{∞}

- Fréchet's Embedding technique - non-expansive

Embedding into I_{∞}

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into l_{∞}

- Fréchet's Embedding technique - non-expansive
- Choose coordinates as projections onto some fixed sets

Embedding into I_{∞}

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into l_{∞}

- Fréchet's Embedding technique - non-expansive
- Choose coordinates as projections onto some fixed sets
- Triangle inequality ensures contractive embeddings

Embedding into I_{∞}

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into l_{∞}

- Fréchet's Embedding technique - non-expansive
- Choose coordinates as projections onto some fixed sets
- Triangle inequality ensures contractive embeddings
- Choice of "landmark" sets gives other algorithms

Embedding into I_{∞}

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into l_{∞}

- Fréchet's Embedding technique - non-expansive
- Choose coordinates as projections onto some fixed sets
- Triangle inequality ensures contractive embeddings
- Choice of "landmark" sets gives other algorithms
- Embedding dimension can be reduced to $O\left(q n^{\frac{1}{q}} \ln n\right)$ by tolerating a distortion of $2 q-1$.

Embedding into l_{2}

Theorem (Bourgain's Embedding)

Every n-point metric can be $O(\log n)$-embedded into I_{2}

- Uses a random selection of the landmark sets

Embedding into l_{2}

Theorem (Bourgain's Embedding)

Every n-point metric can be $O(\log n)$-embedded into I_{2}

- Uses a random selection of the landmark sets
- Tight - The graph metric of a constant degree expander has $\Omega(\log n)$ distortion into any Euclidean space

Embedding into l_{2}

Theorem (Bourgain's Embedding)

Every n-point metric can be $O(\log n)$-embedded into I_{2}

- Uses a random selection of the landmark sets
- Tight - The graph metric of a constant degree expander has $\Omega(\log n)$ distortion into any Euclidean space
- Any embedding of the Hamming cube into I_{2} incurs $\Omega(\sqrt{\log n})$ distortion

Dimensionality Reduction in I_{1}

- Impossible - A D-embedding of n points may require $n^{\Omega\left(1 / D^{2}\right)}$ dimensions

Dimensionality Reduction in I_{1}

- Impossible - A D-embedding of n points may require $n^{\Omega\left(1 / D^{2}\right)}$ dimensions
- No "flattening" results known for other I_{p} metrics either ...

Dimensionality Reduction in I_{1}

- Impossible - A D-embedding of n points may require $n^{\Omega\left(1 / D^{2}\right)}$ dimensions
- No "flattening" results known for other I_{p} metrics either ...
- Except for $p=2$

The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given $\epsilon>0$ and integer n, let $k \geq k_{0}=\mathcal{O}\left(\epsilon^{-2} \log n\right)$. For every set P of n points in \mathbb{R}^{d} there exists $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{k}$ such that for all $u, v \in P$

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2}
$$

- Implementation as a randomized algorithm

The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given $\epsilon>0$ and integer n, let $k \geq k_{0}=\mathcal{O}\left(\epsilon^{-2} \log n\right)$. For every set P of n points in \mathbb{R}^{d} there exists $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{k}$ such that for all $u, v \in P$

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2} .
$$

- Implementation as a randomized algorithm
- Equivalent interpretations - random projection vs. random rotation

The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given $\epsilon>0$ and integer n, let $k \geq k_{0}=\mathcal{O}\left(\epsilon^{-2} \log n\right)$. For every set P of n points in \mathbb{R}^{d} there exists $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{k}$ such that for all $u, v \in P$

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2} .
$$

- Implementation as a randomized algorithm
- Equivalent interpretations - random projection vs. random rotation
- Various Proofs known [IM98], [DG99], [AV99], [A01]

The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given $\epsilon>0$ and integer n, let $k \geq k_{0}=\mathcal{O}\left(\epsilon^{-2} \log n\right)$. For every set P of n points in \mathbb{R}^{d} there exists $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{k}$ such that for all $u, v \in P$

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2} .
$$

- Implementation as a randomized algorithm
- Equivalent interpretations - random projection vs. random rotation
- Various Proofs known [IM98], [DG99], [AV99], [A01]
- Common Technique

Point Drafting \longrightarrow Set Drafting $\xrightarrow{\text { Union Bound }}$ Set Embedding

Enter Achlioptas

- Instead of choosing from an uncountably infinite domain, can we choose vectors from a finite set of vectors ?

Enter Achlioptas

- Instead of choosing from an uncountably infinite domain, can we choose vectors from a finite set of vectors ?
- Achlioptas: In fact 'choosing' from the d-dimensional Hamming Cube $\{1,-1\}^{d}$ works.

Enter Achlioptas

- Instead of choosing from an uncountably infinite domain, can we choose vectors from a finite set of vectors ?
- Achlioptas: In fact 'choosing' from the d-dimensional Hamming Cube $\{1,-1\}^{d}$ works.
- Consider a random vector $R=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$, where each X_{i} is chosen from one of the two distributions:

$$
\begin{aligned}
D_{1} & =\frac{1}{\sqrt{d}} \begin{cases}-1 & \text { with probability } 1 / 2 \\
1 & \text { with probability } 1 / 2\end{cases} \\
D_{2} & =\frac{1}{\sqrt{d}} \begin{cases}-\sqrt{3} & \text { with probability } 1 / 6 \\
0 & \text { with probability } 2 / 3 \\
\sqrt{3} & \text { with probability } 1 / 6\end{cases}
\end{aligned}
$$

Enter Achlioptas

- Pick k such random vectors $R_{1}, R_{2}, \ldots R_{k}$.

Enter Achlioptas

- Pick k such random vectors $R_{1}, R_{2}, \ldots R_{k}$.
- For a given unit vector $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)$, the low $(k$-)dimensional vector corresponding to α is

$$
f(\alpha)=\sqrt{\frac{d}{k}}\left(\left\langle\alpha, R_{1}\right\rangle,\left\langle\alpha, R_{2}\right\rangle, \ldots,\left\langle\alpha, R_{k}\right\rangle\right)
$$

Enter Achlioptas

- Pick k such random vectors $R_{1}, R_{2}, \ldots R_{k}$.
- For a given unit vector $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)$, the low $(k$-)dimensional vector corresponding to α is

$$
f(\alpha)=\sqrt{\frac{d}{k}}\left(\left\langle\alpha, R_{1}\right\rangle,\left\langle\alpha, R_{2}\right\rangle, \ldots,\left\langle\alpha, R_{k}\right\rangle\right)
$$

- Advantage: Simple and can be implemented as SQL queries.

Main Theorem

- Let $S=\left\langle\alpha, R_{1}\right\rangle^{2}+\left\langle\alpha, R_{2}\right\rangle^{2}+\cdots\left\langle\alpha, R_{k}\right\rangle^{2}$

Theorem (Main Theorem)
For every d-dimensional unit vector α, integer $k \geq 1$ and $\epsilon>0$

$$
\operatorname{Pr}\left[S \geq(1 \pm \epsilon) \frac{k}{d} \cdot 1\right] \leq e^{\frac{-k}{2}\left(\frac{\epsilon^{2}}{2}-\frac{e^{3}}{3}\right)}
$$

Main Theorem

- Let $S=\left\langle\alpha, R_{1}\right\rangle^{2}+\left\langle\alpha, R_{2}\right\rangle^{2}+\cdots\left\langle\alpha, R_{k}\right\rangle^{2}$

Theorem (Main Theorem)

For every d-dimensional unit vector α, integer $k \geq 1$ and $\epsilon>0$

$$
\operatorname{Pr}\left[S \geq(1 \pm \epsilon) \frac{k}{d} \cdot 1\right] \leq e^{\frac{-k}{2}\left(\frac{\epsilon^{2}}{2}-\frac{\sigma^{3}}{3}\right)}
$$

- Hence, if $k \geq \frac{4+2 \beta}{\epsilon^{2} / 2-\epsilon^{3} / 3} \log n$, this probability becomes smaller than $\frac{2}{n^{2+\beta}}$ which is inverse polynomial w.r.t n.

Expected Value of $\|f(\alpha)\|^{2}$

- On expectation the length of a unit vector α is preserved.

$$
\begin{aligned}
E\left[\|f(\alpha)\|^{2}\right] & =E\left[\sum_{i=1}^{k} \frac{d}{k}\left(\sum_{j=1}^{d} X_{j} \alpha_{j}\right)^{2}\right] \\
& =\frac{d}{k} \sum_{i=1}^{k}\left(\sum_{j=1}^{d} E\left[X_{j}^{2}\right] \alpha_{j}^{2}+\sum_{j<l}^{d} E\left[X_{j} X_{I}\right] \alpha_{j} \alpha_{l}\right) \\
& =\frac{d}{k} \sum_{i=1}^{k} \frac{1}{d}=1=\|\alpha\|^{2}
\end{aligned}
$$

Deviation from Expectation: Proof of Main Theorem

- By Markov inequality,

$$
\begin{aligned}
& \operatorname{Pr}\left[S>(1+\epsilon) \frac{k}{d}\right]<E\left[e^{h S}\right] e^{-(1+\epsilon) \frac{h k}{d}} \\
& \operatorname{Pr}\left[S<(1-\epsilon) \frac{k}{d}\right]<E\left[e^{-h S}\right] e^{(1-\epsilon) \frac{h k}{d}}
\end{aligned}
$$

Deviation from Expectation: Proof of Main Theorem

- By Markov inequality,

$$
\begin{aligned}
& \operatorname{Pr}\left[S>(1+\epsilon) \frac{k}{d}\right]<E\left[e^{h S}\right] e^{-(1+\epsilon) \frac{h k}{d}} \\
& \operatorname{Pr}\left[S<(1-\epsilon) \frac{k}{d}\right]<E\left[e^{-h S}\right] e^{(1-\epsilon) \frac{h k}{d}}
\end{aligned}
$$

- Since the vectors $R_{i}^{\prime} s$ are all chosen independently we can rewrite the above as

$$
\begin{aligned}
& \operatorname{Pr}\left[S>(1+\epsilon) \frac{k}{d}\right]<\left(E\left[e^{h Q_{1}^{2}}\right]\right)^{k} e^{-(1+\epsilon) \frac{h k}{d}} \\
& \operatorname{Pr}\left[S<(1-\epsilon) \frac{k}{d}\right]<\left(E\left[e^{-h Q_{1}^{2}}\right]\right)^{k} e^{(1-\epsilon) \frac{h k}{d}}
\end{aligned}
$$

where $Q_{1}=\left\langle\alpha, R_{1}\right\rangle$

Proof of Main Theorem

- By Taylor's Expansion,

$$
\begin{aligned}
\operatorname{Pr}\left[S<(1-\epsilon) \frac{k}{d}\right] & <\left(E\left[1-h Q_{1}^{2}+\frac{h Q_{1}^{4}}{2}\right]\right)^{k} e^{-(1+\epsilon) \frac{h k}{d}} \\
& =\left(1-\frac{h}{d}+\frac{h^{2} E\left[Q_{1}^{4}\right]}{2}\right)^{k} e^{(1-\epsilon) \frac{h k}{d}}
\end{aligned}
$$

Lemma

For $h \in[0, d / 2)$ and all $d \geq 1$,

$$
\begin{align*}
E\left[e^{h Q_{1}^{2}}\right] & \leq \frac{1}{\sqrt{1-2 h / d}} \tag{1}\\
E\left[Q_{1}^{4}\right] & \leq \frac{3}{d^{2}} \tag{2}
\end{align*}
$$

Proof of Main Theorem using Inequalities (1) and (2)

- If we take $h=\frac{d \epsilon}{2(1+\epsilon)}$, for the upper bound we have the following:

$$
\begin{aligned}
\operatorname{Pr}\left[S>(1+\epsilon) \frac{k}{d}\right] & <\left(\frac{1}{\sqrt{1-2 h / d}}\right)^{k} e^{-(1+\epsilon) \frac{h k}{d}} \\
& =\left((1+\epsilon) e^{-\epsilon}\right)^{k / 2}<e^{\frac{-k}{2}\left(\frac{\epsilon^{2}}{2}-\frac{3^{3}}{3}\right)} .
\end{aligned}
$$

Proof of Main Theorem using Inequalities (1) and (2)

- If we take $h=\frac{d \epsilon}{2(1+\epsilon)}$, for the upper bound we have the following:

$$
\begin{aligned}
\operatorname{Pr}\left[S>(1+\epsilon) \frac{k}{d}\right] & <\left(\frac{1}{\sqrt{1-2 h / d}}\right)^{k} e^{-(1+\epsilon) \frac{h k}{d}} \\
& =\left((1+\epsilon) e^{-\epsilon}\right)^{k / 2}<e^{\frac{-k}{2}\left(\frac{\epsilon^{2}}{2}-\frac{3^{3}}{3}\right)} .
\end{aligned}
$$

- For the same value of h, for the lower bound we get:

$$
\begin{aligned}
\operatorname{Pr}\left[S<(1-\epsilon) \frac{k}{d}\right] & <\left(1-h / d+\frac{3 h^{2}}{2 d^{2}}\right)^{k} e^{(1-\epsilon) \frac{h k}{d}} \\
& <e^{\frac{-k}{2}\left(\frac{\epsilon^{2}}{2}-\frac{\epsilon^{3}}{3}\right)}
\end{aligned}
$$

Proof of Inequality (2)

- For inequality (2)
$E\left[Q_{1}^{4}\right]=\left(\sum_{i=1}^{d} X_{i} \alpha_{i}\right)^{4}=\sum_{i} E\left[X_{i}^{4}\right] \alpha_{i}^{4}+$
$\binom{4}{1,3} \sum_{i<j} E\left[X_{i}^{3}\right] E\left[X_{j}\right] \alpha_{i}^{3} \alpha_{i}+\binom{4}{2,2} \sum_{i<j} E\left[X_{i}^{2}\right] E\left[X_{j}^{2}\right] \alpha_{i}^{2} \alpha_{j}^{2}+$
$\binom{4}{2,1,1} \sum_{i<j<k} E\left[X_{i}^{2}\right] E\left[X_{j}\right] E\left[X_{k}\right] \alpha_{i}^{2} \alpha_{j} \alpha_{k}+$
$\binom{4}{1,1,1,1} \sum_{i<j<k<1} E\left[X_{i}\right] E\left[X_{j}\right] E\left[X_{k}\right] E\left[X_{l}\right] \alpha_{i} \alpha_{j} \alpha_{k} \alpha_{l}$
$=\frac{1}{d^{2}}\left(\alpha^{4}+6 \sum_{i<j} \alpha_{i}^{2} \alpha_{j}^{2}\right) \leq \frac{3}{d^{2}}$.

Proof of Inequality (1)

- The idea is to first make the random variable Q_{1} independent of α and then compare the even moments of Q_{1} with a properly scaled normal distribution.

Lemma (Worst Vector Lemma)

For all unit vectors $\alpha, E\left[Q_{1}^{2 k}(\alpha)\right] \leq E\left[Q_{1}^{2 k}(w)\right]$, where $w=\frac{1}{\sqrt{d}}(1,1, \ldots, 1)$ for $k=1,2, \ldots$.

Lemma (Normal Bound Lemma)

If $T \sim N(0,1 / d)$, then $E\left[Q_{1}^{2 k}(w)\right] \leq E\left[T^{2 k}\right]$, where $w=\frac{1}{\sqrt{d}}(1,1, \ldots, 1)$ for $k=1,2, \ldots$.

Proof of Inequality (1)

$$
\begin{aligned}
E\left[e^{h T^{2}}\right] & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\lambda^{2} / 2} e^{h \lambda^{2} / d} d \lambda \\
& =\frac{1}{\sqrt{1-2 h / d}} \\
& =E\left[\sum_{k=0}^{\infty} \frac{h^{k} T^{2 k}}{k!}\right] \quad \quad \quad \text { using MCT) } \\
& =\sum_{k=0}^{\infty} \frac{h^{k} E\left[T^{2 k}\right]}{k!} \\
& \geq \sum_{k=0}^{\infty} \frac{h^{k} E\left[Q_{1}^{2 k}(w)\right]}{k!}=E\left[e^{h Q_{1}(w)^{2}}\right] \geq E\left[e^{h Q_{1}(\alpha)^{2}}\right]
\end{aligned}
$$

Proving the Worst Vector Lemma

- Let r_{1} and r_{2} be i.i.d. r.v. distributed as $\{-1,+1\}$ with equal probability. Furthermore let a, b, T be any reals and $c=\sqrt{\left(a^{2}+b^{2}\right) / 2}$ and $k>0$ be any integer, then

$$
E\left[\left(T+a r_{1}+b r_{2}\right)^{2 k}\right] \leq E\left[\left(T+c r_{1}+c r_{2}\right)^{2 k}\right]
$$

Proving the Worst Vector Lemma

- Let r_{1} and r_{2} be i.i.d. r.v. distributed as $\{-1,+1\}$ with equal probability. Furthermore let a, b, T be any reals and $c=\sqrt{\left(a^{2}+b^{2}\right) / 2}$ and $k>0$ be any integer, then

$$
E\left[\left(T+a r_{1}+b r_{2}\right)^{2 k}\right] \leq E\left[\left(T+c r_{1}+c r_{2}\right)^{2 k}\right]
$$

- Let $R_{1}=\frac{1}{\sqrt{d}}\left(r_{1}, r_{2}, \ldots, r_{d}\right)$. Thus we have

$$
\begin{aligned}
E\left[Q_{1}(\alpha)^{2 k}\right] & =\frac{1}{d^{k}} \sum_{R} E\left[\left(R+\alpha_{1} r_{1}+\alpha_{2} r_{2}\right)^{2 k}\right] \operatorname{Pr}\left[\sum_{i=3}^{d} \alpha_{i} r_{i}=\frac{R}{\sqrt{d}}\right] \\
& \leq \frac{1}{d^{k}} \sum_{R} E\left[\left(R+c r_{1}+c r_{2}\right)^{2 k}\right] \operatorname{Pr}\left[\sum_{i=3}^{d} \alpha_{i} r_{i}=\frac{R}{\sqrt{d}}\right] \\
& =E\left[Q_{1}(\theta)^{2 k}\right]
\end{aligned}
$$

where $c=\sqrt{\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) / 2}$

Proving the Worst Vector Lemma

- Let r_{1} and r_{2} be i.i.d. r.v. distributed as $\{-1,+1\}$ with equal probability. Furthermore let a, b, T be any reals and $c=\sqrt{\left(a^{2}+b^{2}\right) / 2}$ and $k>0$ be any integer, then

$$
E\left[\left(T+a r_{1}+b r_{2}\right)^{2 k}\right] \leq E\left[\left(T+c r_{1}+c r_{2}\right)^{2 k}\right]
$$

- Let $R_{1}=\frac{1}{\sqrt{d}}\left(r_{1}, r_{2}, \ldots, r_{d}\right)$. Thus we have

$$
\begin{aligned}
E\left[Q_{1}(\alpha)^{2 k}\right] & =\frac{1}{d^{k}} \sum_{R} E\left[\left(R+\alpha_{1} r_{1}+\alpha_{2} r_{2}\right)^{2 k}\right] \operatorname{Pr}\left[\sum_{i=3}^{d} \alpha_{i} r_{i}=\frac{R}{\sqrt{d}}\right] \\
& \leq \frac{1}{d^{k}} \sum_{R} E\left[\left(R+c r_{1}+c r_{2}\right)^{2 k}\right] \operatorname{Pr}\left[\sum_{i=3}^{d} \alpha_{i} r_{i}=\frac{R}{\sqrt{d}}\right] \\
& =E\left[Q_{1}(\theta)^{2 k}\right]
\end{aligned}
$$

where $c=\sqrt{\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) / 2}$

- θ is a more "uniform" unit vector than α.

Proving the Normal Bound Lemma

- Let $\left\{T_{i}\right\}_{i=1}^{d}$ be i.i.d. normal r.v.. By stability of normal distribution

$$
T=\frac{1}{d} \sum_{i=1}^{d} T_{i} \sim N(0,1 / d)
$$

Proving the Normal Bound Lemma

- Let $\left\{T_{i}\right\}_{i=1}^{d}$ be i.i.d. normal r.v.. By stability of normal distribution

$$
T=\frac{1}{d} \sum_{i=1}^{d} T_{i} \sim N(0,1 / d)
$$

- We also have $Q_{1}(w)=\frac{1}{d} \sum_{i=1}^{d} r_{1}$

$$
\begin{aligned}
E\left[Q_{1}^{2 k}(w)\right] & =\frac{1}{d^{2 k}} \sum_{i_{1}=1}^{d} \ldots \sum_{i_{2 k}=1}^{d} E\left[r_{i_{1}} \ldots r_{i_{2 k}}\right] \\
E\left[T^{2 k}\right] & =\frac{1}{d^{2 k}} \sum_{i_{1}=1}^{d} \ldots \sum_{i_{2 k}=1}^{d} E\left[T_{i_{1}} \ldots T_{i_{2 k}}\right]
\end{aligned}
$$

Proving the Normal Bound Lemma

- Let $\left\{T_{i}\right\}_{i=1}^{d}$ be i.i.d. normal r.v.. By stability of normal distribution

$$
T=\frac{1}{d} \sum_{i=1}^{d} T_{i} \sim N(0,1 / d)
$$

- We also have $Q_{1}(w)=\frac{1}{d} \sum_{i=1}^{d} r_{1}$

$$
\begin{aligned}
E\left[Q_{1}^{2 k}(w)\right] & =\frac{1}{d^{2 k}} \sum_{i_{1}=1}^{d} \ldots \sum_{i_{2 k}=1}^{d} E\left[r_{i_{1}} \ldots r_{i_{2 k}}\right] \\
E\left[T^{2 k}\right] & =\frac{1}{d^{2 k}} \sum_{i_{1}=1}^{d} \ldots \sum_{i_{2 k}=1}^{d} E\left[T_{i_{1}} \ldots T_{i_{2 k}}\right]
\end{aligned}
$$

- For each index assignment we have

$$
E\left[r_{i_{1}} \ldots r_{i_{2 k}}\right] \leq E\left[T_{i_{1}} \ldots T_{i_{2 k}}\right]
$$

Open questions

- Plenty !

Open questions

- Plenty !
- No-flattening results for other I_{p} metrics, non metrics

Open questions

- Plenty !
- No-flattening results for other I_{p} metrics, non metrics
- Embeddability of non-metrics into metric spaces - useful in databases, learning

Open questions

- Plenty !
- No-flattening results for other I_{p} metrics, non metrics
- Embeddability of non-metrics into metric spaces - useful in databases, learning
- Information Theoretic Metrics - KL, Bhattacharyya, Mahalanobis widely used

THANK YOU

