SIGTACS Seminar Series

Metric Embeddings and Applications in Computer Science

Presented by : Purushottam Kar

January 10, 2009

Outline

1 Introduction

- **2** Embeddings into Normed Spaces
- **3** Dimensionality Reduction
- 4 The JL Lemma

Definition (Metric)

A Metric is a structure (X, ρ) where ρ is a distance measure $\rho : X \times X \to \mathbb{R}$ which is non-negative, symmetric and satisfies the triangle inequality.

Definition (Embedding Distortion)

An embedding $f : X \to Y$ from a metric space (X, ρ) to another metric space (Y, σ) is said to have a distortion D if $D = \sup_{x,y \in X} \frac{\sigma(f(x), f(y))}{\rho(x, y)} \cdot \sup_{x,y \in X} \frac{\rho(x, y)}{\sigma(f(x), f(y))}.$

Such embeddings are also called *bi-Lipschitz* embeddings.

Embeddings

• Various criterion used to evaluate embeddings

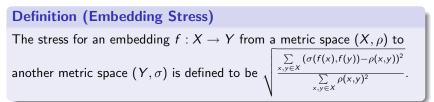
Embeddings

- Various criterion used to evaluate embeddings
- Distortion, Stress, Residual Variance ...

Definition (Embedding Stress) The stress for an embedding $f : X \to Y$ from a metric space (X, ρ) to another metric space (Y, σ) is defined to be $\sqrt{\frac{\sum\limits_{x,y \in X} (\sigma(f(x), f(y)) - \rho(x, y))^2}{\sum\limits_{x,y \in X} \rho(x, y)^2}}$.

Embeddings

- Various criterion used to evaluate embeddings
- Distortion, Stress, Residual Variance ...



• Lead to very interesting algorithmic questions

• Started out as a branch of functional analysis

- Started out as a branch of functional analysis
- Algorithmic applications

- Started out as a branch of functional analysis
- Algorithmic applications
 - Metric Embeddings for datasets operating with a non-metric

- Started out as a branch of functional analysis
- Algorithmic applications
 - Metric Embeddings for datasets operating with a non-metric
 - Dimensionality reduction to reduce storage space costs, processing time

- Started out as a branch of functional analysis
- Algorithmic applications
 - Metric Embeddings for datasets operating with a non-metric
 - Dimensionality reduction to reduce storage space costs, processing time
 - Facilitate pruning procedures in database searches

- Started out as a branch of functional analysis
- Algorithmic applications
 - Metric Embeddings for datasets operating with a non-metric
 - Dimensionality reduction to reduce storage space costs, processing time
 - Facilitate pruning procedures in database searches
 - Preserve residual variance (PCA), inter-point similarity (Random Projections), Stress (MDS)

- Started out as a branch of functional analysis
- Algorithmic applications
 - Metric Embeddings for datasets operating with a non-metric
 - Dimensionality reduction to reduce storage space costs, processing time
 - Facilitate pruning procedures in database searches
 - Preserve residual variance (PCA), inter-point similarity (Random Projections), Stress (MDS)
- Streaming Algorithms

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into I_∞

• Fréchet's Embedding technique - non-expansive

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into I_∞

- Fréchet's Embedding technique non-expansive
- Choose coordinates as projections onto some fixed sets

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into I_∞

- Fréchet's Embedding technique non-expansive
- Choose coordinates as projections onto some fixed sets
- Triangle inequality ensures contractive embeddings

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into I_∞

- Fréchet's Embedding technique non-expansive
- Choose coordinates as projections onto some fixed sets
- Triangle inequality ensures contractive embeddings
- Choice of "landmark" sets gives other algorithms

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into I_∞

- Fréchet's Embedding technique non-expansive
- Choose coordinates as projections onto some fixed sets
- Triangle inequality ensures contractive embeddings
- Choice of "landmark" sets gives other algorithms
- Embedding dimension can be reduced to O(qn^{¹/_q} ln n) by tolerating a distortion of 2q − 1.

Embedding into *l*₂

Theorem (Bourgain's Embedding)

Every n-point metric can be $O(\log n)$ -embedded into I_2

• Uses a random selection of the landmark sets

Embedding into *l*₂

Theorem (Bourgain's Embedding)

Every n-point metric can be $O(\log n)$ -embedded into l_2

- Uses a random selection of the landmark sets
- Tight The graph metric of a constant degree expander has $\Omega(\log n)$ distortion into any Euclidean space

SIGTACS Seminar Series

Embedding into *l*₂

Theorem (Bourgain's Embedding)

Every n-point metric can be $O(\log n)$ -embedded into l_2

- Uses a random selection of the landmark sets
- Tight The graph metric of a constant degree expander has $\Omega(\log n)$ distortion into any Euclidean space
- Any embedding of the Hamming cube into l_2 incurs $\Omega\left(\sqrt{\log n}\right)$ distortion

Dimensionality Reduction in *l*₁

• Impossible - A *D*-embedding of *n* points may require $n^{\Omega(1/D^2)}$ dimensions

Dimensionality Reduction in I_1

- Impossible A *D*-embedding of *n* points may require $n^{\Omega(1/D^2)}$ dimensions
- No "flattening" results known for other *l_p* metrics either ...

Dimensionality Reduction in I_1

- Impossible A *D*-embedding of *n* points may require $n^{\Omega(1/D^2)}$ dimensions
- No "flattening" results known for other *l_p* metrics either ...
- Except for p = 2

Theorem (The JL-Lemma)

Given $\epsilon > 0$ and integer n, let $k \ge k_0 = \mathcal{O}(\epsilon^{-2} \log n)$. For every set P of n points in \mathbb{R}^d there exists $f : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ such that for all $u, v \in P$

$$(1-\epsilon) \|u-v\|^2 \le \|f(u)-f(v)\|^2 \le (1+\epsilon) \|u-v\|^2$$

• Implementation as a randomized algorithm

Theorem (The JL-Lemma)

Given $\epsilon > 0$ and integer n, let $k \ge k_0 = \mathcal{O}(\epsilon^{-2} \log n)$. For every set P of n points in \mathbb{R}^d there exists $f : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ such that for all $u, v \in P$

$$(1-\epsilon)||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\epsilon)||u-v||^2$$

- Implementation as a randomized algorithm
- Equivalent interpretations random projection vs. random rotation

Theorem (The JL-Lemma)

Given $\epsilon > 0$ and integer n, let $k \ge k_0 = \mathcal{O}(\epsilon^{-2} \log n)$. For every set P of n points in \mathbb{R}^d there exists $f : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ such that for all $u, v \in P$

$$(1-\epsilon)||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\epsilon)||u-v||^2$$

- Implementation as a randomized algorithm
- Equivalent interpretations random projection vs. random rotation
- Various Proofs known [IM98], [DG99], [AV99], [A01]

Theorem (The JL-Lemma)

Given $\epsilon > 0$ and integer n, let $k \ge k_0 = \mathcal{O}(\epsilon^{-2} \log n)$. For every set P of n points in \mathbb{R}^d there exists $f : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ such that for all $u, v \in P$

$$(1-\epsilon)||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\epsilon)||u-v||^2$$

- Implementation as a randomized algorithm
- Equivalent interpretations random projection vs. random rotation
- Various Proofs known [IM98], [DG99], [AV99], [A01]
- Common Technique

Point Drafting \longrightarrow Set Drafting $\stackrel{\text{Union Bound}}{\longrightarrow}$ Set Embedding

• Instead of choosing from an uncountably infinite domain, can we choose vectors from a finite set of vectors ?

- Instead of choosing from an uncountably infinite domain, can we choose vectors from a finite set of vectors ?
- Achlioptas: In fact 'choosing' from the *d*-dimensional Hamming Cube {1, -1}^d works.

- Instead of choosing from an uncountably infinite domain, can we choose vectors from a finite set of vectors ?
- Achlioptas: In fact 'choosing' from the *d*-dimensional Hamming Cube $\{1, -1\}^d$ works.
- Consider a random vector $R = (X_1, X_2, ..., X_d)$, where each X_i is chosen from one of the two distributions:

$$D_1 = rac{1}{\sqrt{d}} \left\{ egin{array}{cc} -1 & ext{ with probability } 1/2 \ 1 & ext{ with probability } 1/2 \end{array}
ight.$$

$$D_2 = \frac{1}{\sqrt{d}} \begin{cases} -\sqrt{3} \\ 0 \\ \sqrt{3} \end{cases}$$

with probability 1/6with probability 2/3with probability 1/6

Discussion

Enter Achlioptas

• Pick k such random vectors $R_1, R_2, \ldots R_k$.

- Pick k such random vectors $R_1, R_2, \ldots R_k$.
- For a given unit vector α = (α₁, α₂,..., α_d), the low (k-)dimensional vector corresponding to α is

$$f(\alpha) = \sqrt{\frac{d}{k}} (\langle \alpha, R_1 \rangle, \langle \alpha, R_2 \rangle, \dots, \langle \alpha, R_k \rangle)$$

- Pick k such random vectors $R_1, R_2, \ldots R_k$.
- For a given unit vector α = (α₁, α₂,..., α_d), the low (k-)dimensional vector corresponding to α is

$$f(\alpha) = \sqrt{\frac{d}{k}} (\langle \alpha, R_1 \rangle, \langle \alpha, R_2 \rangle, \dots, \langle \alpha, R_k \rangle)$$

• Advantage: Simple and can be implemented as SQL queries.

Main Theorem

• Let
$$S = \langle \alpha, R_1 \rangle^2 + \langle \alpha, R_2 \rangle^2 + \cdots \langle \alpha, R_k \rangle^2$$

Theorem (Main Theorem)

For every d-dimensional unit vector α , integer $k \ge 1$ and $\epsilon > 0$

$$\Pr\left[S \ge (1 \pm \epsilon)\frac{k}{d} \cdot 1\right] \le e^{\frac{-k}{2}\left(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3}\right)}$$

Main Theorem

• Let
$$S = \langle \alpha, R_1 \rangle^2 + \langle \alpha, R_2 \rangle^2 + \cdots \langle \alpha, R_k \rangle^2$$

Theorem (Main Theorem)

For every d-dimensional unit vector α , integer $k \ge 1$ and $\epsilon > 0$

$$\Pr\left[S \ge (1 \pm \epsilon)\frac{k}{d} \cdot 1\right] \le e^{\frac{-k}{2}\left(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3}\right)}$$

• Hence, if $k \ge \frac{4+2\beta}{\epsilon^2/2-\epsilon^3/3} \log n$, this probability becomes smaller than $\frac{2}{n^{2+\beta}}$ which is inverse polynomial w.r.t n.

Expected Value of $||f(\alpha)||^2$

 $\bullet\,$ On expectation the length of a unit vector α is preserved.

$$E\left[\|f(\alpha)\|^2\right] = E\left[\sum_{i=1}^k \frac{d}{k} \left(\sum_{j=1}^d X_j \alpha_j\right)^2\right]$$
$$= \frac{d}{k} \sum_{i=1}^k \left(\sum_{j=1}^d E[X_j^2] \alpha_j^2 + \sum_{j
$$= \frac{d}{k} \sum_{i=1}^k \frac{1}{d} = 1 = \|\alpha\|^2$$$$

Deviation from Expectation: Proof of Main Theorem

• By Markov inequality,

$$\Pr\left[S > (1+\epsilon)\frac{k}{d}\right] < E\left[e^{hS}\right]e^{-(1+\epsilon)\frac{hk}{d}}$$
$$\Pr\left[S < (1-\epsilon)\frac{k}{d}\right] < E\left[e^{-hS}\right]e^{(1-\epsilon)\frac{hk}{d}}$$

Deviation from Expectation: Proof of Main Theorem

• By Markov inequality,

$$\Pr\left[S > (1+\epsilon)\frac{k}{d}\right] < E\left[e^{hS}\right]e^{-(1+\epsilon)\frac{hk}{d}}$$
$$\Pr\left[S < (1-\epsilon)\frac{k}{d}\right] < E\left[e^{-hS}\right]e^{(1-\epsilon)\frac{hk}{d}}$$

• Since the vectors $R'_i s$ are all chosen independently we can rewrite the above as

$$\Pr\left[S > (1+\epsilon)\frac{k}{d}\right] < \left(E\left[e^{hQ_1^2}\right]\right)^k e^{-(1+\epsilon)\frac{hk}{d}}$$

$$\Pr\left[S < (1-\epsilon)\frac{k}{d}\right] < \left(E\left[e^{-hQ_1^2}\right]\right)^k e^{(1-\epsilon)\frac{hk}{d}}$$

where $Q_1 = \langle lpha, R_1
angle$

Proof of Main Theorem

• By Taylor's Expansion,

$$\Pr\left[S < (1-\epsilon)\frac{k}{d}\right] < \left(E\left[1-hQ_1^2 + \frac{hQ_1^4}{2}\right]\right)^k e^{-(1+\epsilon)\frac{hk}{d}}$$
$$= \left(1-\frac{h}{d} + \frac{h^2 E[Q_1^4]}{2}\right)^k e^{(1-\epsilon)\frac{hk}{d}}$$

Lemma

For $h \in [0, d/2)$ and all $d \ge 1$,

$$E\left[e^{hQ_1^2}\right] \leq \frac{1}{\sqrt{1-2h/d}}$$
(1)
$$E\left[Q_1^4\right] \leq \frac{3}{d^2}$$
(2)

Proof of Main Theorem using Inequalities (1) and (2)

• If we take $h = \frac{d\epsilon}{2(1+\epsilon)}$, for the upper bound we have the following:

$$\Pr\left[S > (1+\epsilon)\frac{k}{d}\right] < \left(\frac{1}{\sqrt{1-2h/d}}\right)^k e^{-(1+\epsilon)\frac{hk}{d}}$$
$$= ((1+\epsilon)e^{-\epsilon})^{k/2} < e^{\frac{-k}{2}(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3})}.$$

Proof of Main Theorem using Inequalities (1) and (2)

• If we take $h = \frac{d\epsilon}{2(1+\epsilon)}$, for the upper bound we have the following:

$$\Pr\left[S > (1+\epsilon)\frac{k}{d}\right] < \left(\frac{1}{\sqrt{1-2h/d}}\right)^k e^{-(1+\epsilon)\frac{hk}{d}}$$
$$= ((1+\epsilon)e^{-\epsilon})^{k/2} < e^{\frac{-k}{2}(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3})}.$$

• For the same value of *h*, for the lower bound we get:

$$\Pr\left[S < (1-\epsilon)\frac{k}{d}\right] < \left(1-h/d + \frac{3h^2}{2d^2}\right)^k e^{(1-\epsilon)\frac{hk}{d}} < e^{\frac{-k}{2}(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3})}.$$

Introduction

Discussion

Proof of Inequality (2)

• For inequality (2)

$$E[Q_{1}^{4}] = \left(\sum_{i=1}^{d} X_{i} \alpha_{i}\right)^{4} = \sum_{i} E[X_{i}^{4}] \alpha_{i}^{4} + \left(\binom{4}{1,3} \sum_{i < j} E[X_{i}^{3}] E[X_{j}] \alpha_{i}^{3} \alpha_{i} + \binom{4}{2,2} \sum_{i < j} E[X_{i}^{2}] E[X_{j}^{2}] \alpha_{i}^{2} \alpha_{j}^{2} + \left(\binom{4}{2,1,1} \sum_{i < j < k} E[X_{i}^{2}] E[X_{j}] E[X_{j}] E[X_{k}] \alpha_{i}^{2} \alpha_{j} \alpha_{k} + \left(\binom{4}{1,1,1,1} \sum_{i < j < k < l} E[X_{i}] E[X_{i}] E[X_{j}] E[X_{k}] E[X_{i}] \alpha_{i} \alpha_{j} \alpha_{k} \alpha_{l} \right) \\ = \frac{1}{d^{2}} (\alpha^{4} + 6 \sum_{i < j} \alpha_{i}^{2} \alpha_{j}^{2}) \le \frac{3}{d^{2}}.$$

Proof of Inequality (1)

 The idea is to first make the random variable Q₁ independent of α and then compare the even moments of Q₁ with a properly scaled normal distribution.

Lemma (Worst Vector Lemma)

For all unit vectors
$$\alpha$$
, $E[Q_1^{2k}(\alpha)] \leq E[Q_1^{2k}(w)]$, where $w = \frac{1}{\sqrt{d}}(1, 1, \dots, 1)$ for $k = 1, 2, \dots$

Lemma (Normal Bound Lemma)

If $T \sim N(0, 1/d)$, then $E[Q_1^{2k}(w)] \leq E[T^{2k}]$, where $w = \frac{1}{\sqrt{d}}(1, 1, ..., 1)$ for k = 1, 2, ...

Proof of Inequality (1)

$$E\left[e^{hT^{2}}\right] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\lambda^{2}/2} e^{h\lambda^{2}/d} d\lambda$$

$$= \frac{1}{\sqrt{1-2h/d}}$$

$$= E\left[\sum_{k=0}^{\infty} \frac{h^{k}T^{2k}}{k!}\right] \qquad \text{(using MCT)}$$

$$= \sum_{k=0}^{\infty} \frac{h^{k}E\left[T^{2k}\right]}{k!}$$

$$\geq \sum_{k=0}^{\infty} \frac{h^{k}E\left[Q_{1}^{2k}(w)\right]}{k!} = E\left[e^{hQ_{1}(w)^{2}}\right] \geq E\left[e^{hQ_{1}(\alpha)^{2}}\right]$$

Proving the Worst Vector Lemma

• Let r_1 and r_2 be i.i.d. r.v. distributed as $\{-1, +1\}$ with equal probability. Furthermore let a, b, T be any reals and $c = \sqrt{(a^2 + b^2)/2}$ and k > 0 be any integer, then

$$E\left[(T+ar_1+br_2)^{2k}\right] \leq E\left[(T+cr_1+cr_2)^{2k}\right]$$

Proving the Worst Vector Lemma

• Let
$$r_1$$
 and r_2 be i.i.d. r.v. distributed as $\{-1, +1\}$ with equal probability. Furthermore let a, b, T be any reals and $c = \sqrt{(a^2 + b^2)/2}$ and $k > 0$ be any integer, then

$$E\left[(T + ar_1 + br_2)^{2k}\right] \le E\left[(T + cr_1 + cr_2)^{2k}\right]$$

• Let $R_1 = \frac{1}{\sqrt{d}}(r_1, r_2, \dots, r_d)$. Thus we have

$$E\left[Q_{1}(\alpha)^{2k}\right] = \frac{1}{d^{k}} \sum_{R} E\left[(R + \alpha_{1}r_{1} + \alpha_{2}r_{2})^{2k}\right] \Pr\left[\sum_{i=3}^{d} \alpha_{i}r_{i} = \frac{R}{\sqrt{d}}\right]$$

$$\leq \frac{1}{d^{k}} \sum_{R} E\left[(R + cr_{1} + cr_{2})^{2k}\right] \Pr\left[\sum_{i=3}^{d} \alpha_{i}r_{i} = \frac{R}{\sqrt{d}}\right]$$

$$= E\left[Q_{1}(\theta)^{2k}\right]$$
where $c = \sqrt{(\alpha_{1}^{2} + \alpha_{2}^{2})/2}$

Proving the Worst Vector Lemma

• Let
$$r_1$$
 and r_2 be i.i.d. r.v. distributed as $\{-1, +1\}$ with equal probability. Furthermore let a, b, T be any reals and $c = \sqrt{(a^2 + b^2)/2}$ and $k > 0$ be any integer, then

$$E\left[(T + ar_1 + br_2)^{2k}\right] \le E\left[(T + cr_1 + cr_2)^{2k}\right]$$

• Let $R_1 = \frac{1}{\sqrt{d}}(r_1, r_2, \dots, r_d)$. Thus we have

$$E\left[Q_{1}(\alpha)^{2k}\right] = \frac{1}{d^{k}} \sum_{R} E\left[\left(R + \alpha_{1}r_{1} + \alpha_{2}r_{2}\right)^{2k}\right] \Pr\left[\sum_{i=3}^{d} \alpha_{i}r_{i} = \frac{R}{\sqrt{d}}\right]$$

$$\leq \frac{1}{d^{k}} \sum_{R} E\left[\left(R + cr_{1} + cr_{2}\right)^{2k}\right] \Pr\left[\sum_{i=3}^{d} \alpha_{i}r_{i} = \frac{R}{\sqrt{d}}\right]$$

$$= E\left[Q_{1}(\theta)^{2k}\right]$$

where $c = \sqrt{(\alpha_1^2 + \alpha_2^2)/2}$

• θ is a more "uniform" unit vector than α .

Proving the Normal Bound Lemma

• Let $\{T_i\}_{i=1}^d$ be i.i.d. normal r.v.. By stability of normal distribution

$$T = \frac{1}{d}\sum_{i=1}^{d} T_i \sim N(0, 1/d)$$

۲

Discussion

Proving the Normal Bound Lemma

• Let $\{T_i\}_{i=1}^d$ be i.i.d. normal r.v.. By stability of normal distribution

$$T=rac{1}{d}\sum\limits_{i=1}^d T_i\sim N(0,1/d)$$
 We also have $Q_1(w)=rac{1}{d}\sum\limits_{i=1}^d r_1$

$$E[Q_1^{2k}(w)] = \frac{1}{d^{2k}} \sum_{i_1=1}^d \dots \sum_{i_{2k}=1}^d E[r_{i_1} \dots r_{i_{2k}}]$$
$$E[T^{2k}] = \frac{1}{d^{2k}} \sum_{i_1=1}^d \dots \sum_{i_{2k}=1}^d E[T_{i_1} \dots T_{i_{2k}}]$$

Proving the Normal Bound Lemma

• Let $\{T_i\}_{i=1}^d$ be i.i.d. normal r.v.. By stability of normal distribution

$$T = rac{1}{d}\sum_{i=1}^{d}T_i \sim N(0, 1/d)$$

• We also have
$$Q_1(w) = rac{1}{d}\sum_{i=1}^d r_1$$

$$E[Q_1^{2k}(w)] = \frac{1}{d^{2k}} \sum_{i_1=1}^d \dots \sum_{i_{2k}=1}^d E[r_{i_1} \dots r_{i_{2k}}]$$
$$E[T^{2k}] = \frac{1}{d^{2k}} \sum_{i_1=1}^d \dots \sum_{i_{2k}=1}^d E[T_{i_1} \dots T_{i_{2k}}]$$

• For each index assignment we have

$$E[r_{i_1}\ldots r_{i_{2k}}] \leq E[T_{i_1}\ldots T_{i_{2k}}]$$

Open questions

- Plenty !
- No-flattening results for other l_p metrics, non metrics

Open questions

- Plenty !
- No-flattening results for other l_p metrics, non metrics
- Embeddability of non-metrics into metric spaces useful in databases, learning

SIGTACS Seminar Series

22 / 23

Open questions

- Plenty !
- No-flattening results for other l_p metrics, non metrics
- Embeddability of non-metrics into metric spaces useful in databases, learning
- Information Theoretic Metrics KL, Bhattacharyya, Mahalanobis widely used

THANK YOU

