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An Introduction to Learning

Learning as problem in
Function Approximation

Pattern Detection

How can one acquire the concept of leanness [VK?4] ¢

Have someone explicitly encode it as a proposition for us
| (h < height<h,)O(w, < weight < w,) |

“Learn” it from the teacher’s behavior

Learning with small errors in almost all situations

Learn approximately in a probabilistic sense
PAC Learning
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PAC Learning

Aim : to learn a class of concepts (read dichotomies) ¢
on some domain X

The class of human traits that can be described in terms of
height and weight — the domain here is R”

Given : an concept C from this class and its behavior on
some labeled instances x,X%,,..., X, sampled from Dy

The height and weight of some persons along with leanness

Output : With high probability, a dichotomy H L1$ that
almost matches the unknown concept
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Some Points to Note

The learnt dichotomy is fested on the same distribution
as the one that generated the training samples

Can afford to make errors on low probability regions of X
However the distribution itself is unknown

Require that the learning algorithm work for every @%
A concept class € is said to be PAC-learnable if there
exists an algorithm that, for every concept CLI¢, when

given poly(d,1/ £,1/ 3) examples from any distribution D,
outputs a hypothesis H L1 $) such that
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Learnable classes

When can a concept be learnt ¢
Interpolating a linear polynomial requires at least 2 points

Interpolating a quadratic requires at least 3 points

Interpolating a cubic requires at least 4 points

Intuitively : the more complex a concept, the larger the
training set required to learn it

Simple observation : The class of finite-degree
polynomials is not learnable

What about PAC-learnability, where errors are allowed

Special Interest Group on Machine Learning - s02e02  23/1/2010



Vapnik-Chervonenkis dimension

PAC-learnability admits a beautiful characterization in
terms of the expressive power of the concept class

The VC Dimension of a concept class € is the size of the
largest set S in X such that the concepts in ¢ can
together realize all possible binary partitions over S

Intervals over the real line : 2

Halfspaces in R? 3 (not all 3-point sets are shattered)

Halfspaces in RY: d +1 (not all point sets are shattered)

Thresholded polynomials over reals :00

Convex d-polygons in the plane : 2d +1
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PAC-learning “leanness”

Concept Class : axis aligned rectangles over R?
VC dimension : 4

Algorithm :
Sample m:4/£Iog(1/ 5) points 1ID

Return the smallest rectangle that contains all the + points

The output rectangle will always be contained in the
rectangle of leanness

It is very unlikely that a sequence of samplings will trick
us into learning a bad rectangle

The key is to slip in a hitting set argument
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PAC-learnable classes

Let € be a concept class of VC dimension d, then
An algorithm that takes m= (9(1/ glog (1/ 5) +d/&log (1/ 5))

training samples and outputs a consistent concept from ¢ is
able to meet the PAC requirement for any 9,

However there always exists a concept C 1€ and a
distribution 2 for which any algorithm would require at
least Q(d /5) training samples

Polynomials are not PAC-learnable
Convex polygons are not PAC-learnable

Convex bodies (polyhedrons) are not PAC-learnable
What next ... ¢
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Some Points to Note

The VC dimension characterizes the sample complexity
of learning algorithms that work for a given class

Silent on the time complexity of algorithms
Useful only in proving time lower bounds

Only partial results known for time complexity

[KO’DS08] For learning Geometric concepts (bodies)
under the Gaussian distribution, the Gaussian Surface
Area of the bodies is a near perfect indicator of
computational complexity
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Distribution Specific Learning

Can we try to learn the concepts under certain
“natural” distributions ¢

[GRO?] : Convex bodies are hard to learn even under
the uniform distribution

More specifically, there are convex bodies which force

every learning algorithm to draw at least 2Q(m)

samples from the uniform distribution

[KO'DS08] Under the Gaussian distribution, learning is
possible in time ZO(JE)
(vd)

] Q
requires 2 samples
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