Semantic Structure of the Indian Sign Language

Purushottam Kar and Achla M. Raina Indian Institute of Technology Kanpur

6 January 2008

Overview

- Indian Sign Language An Introduction
 - Sociolinguistic and Linguistic perspectives
 - Past Research in Sign Languages
 - Research in ISL
- Surface Characterization of ISL
 - Sentence level constructs
 - Inter-sentential constructs
- A Schematization model for ISL
 - The **COMPOSE** schema, Perceptual Schema ...

Indian Sign Language

- Used by the deaf communities in the India
 - Dialectal variations observed
 - Not much known about geographical extent
- A much neglected "minority language"
 - Overwhelming oralist approach to deaf education
 - (Deshmukh '96)
 - Has seen very little research

Indian Sign Language

- Visuo-spatial language
 - Extensive use of space
 - Iconic signs, Role play, Directional verbs, Non-manual markers, Person and Space deixis
- "Sentences" are predicate final
- Non manuals markers
 - Facial Expression, Body Posture, Head orientation
 - Negation, Interrogatives, Causal Expressions, Conditionals

Past Research in Sign Languages

- Theoretical
 - Structural/Descriptive
 - (Zeshan '02), (Sexton '99), (Stokoe '60)
 - Neuro-physiological
 - (Damasio '86), (Gordon '04)
- Computational
 - Representation Schemes
 - (Speers '02)
 - Translation Systems
 - (Kar *et al* '07), (Wray *et al* '04), (Zhao *et al* '00)

Research in Indian Sign Language

- Structural/Descriptive
 - (Zeshan '00, '03, '04) Description of surface forms
 - (Vasishta '86) Sign language dictionaries
- Deaf Education
 - (Deshmukh '96) Deaf education in India
- Computational
 - (Kar *et al* '07) INGIT MT from Hindi to ISL*
 - (Dasgupta *et al* '08) Text to ISL MT

* **INGIT**: Limited Domain Formulaic Translation from Hindi to Indian Sign Language, In *Proceedings of ICON '07*.

Simple Predication

SIGN:TIME-YESTERDAY {
top 3PERS-IND-DEIX
pos1 } $\langle D \rangle$ PLACE-IND-DEIX GO
TRAN:वह कल दिल्ली गया था

- Predicate final structure
- Absence of articles, copula
- Tense is a discourse level phenomenon
- Spatial deixis markers of grammatical roles
 - Spatial Location
 - Body Orientation
- Mono-transitive events
 - Constituent ordering doesn't play a major role

SIGN:{ nom 3PERS-IND-DEIX pos1 } WALK INCEPTRAN:उसने चलना शुरु किया

Simple Predication

- Di-transitive events
 - In case of asymmetric relation between similar participating entities directional signs used
 - Constituent order flexible

SIGN: {^{nom} 1PERS-IND-DEIX } BOOK READ COMPL TRAN: मैने किताब पढ़ ली है SIGN: {^{top} RAM 3PERS-IND-DEIX^{pos1} } ^{pos1}TEACH_{pos-1pers} TRAN: राम मुझे पढ़ाता है

- Trivalent events
 - Similar structure directional verbs used to indicate grammatical roles

Simple Predication

- Constituent orderings
 - Rarely involved in marking grammatical relations

SIGN:{nomRAM{ nomSITA} HEARTRAN:रामने सीताको सुना

- Mostly the "relation" between the constituents is specified last
- If entities E_1, E_2, \ldots, E_n are related as $\mathcal{R}(E_1, E_2, \ldots, E_n)$ then the signing is $\langle E_1, E_2, \ldots, E_n, \mathcal{R}(E_1, E_2, \ldots, E_n) \rangle$
- However relaxation in ordering if constituent is a fully specified relation
- SIGN: { nom 1PERS-IND-DEIX } THINK { nom 3PERS-IND-DEIX pos1 } TEACHER

 SIGN: { nom 3PERS-IND-DEIX pos1 } TEACHER { nom 1PERS-IND-DEIX } THINK

 TRAN:
 मुझे लगता है कि वह अध्यापक है

Sentence level constructs

- Negative Assertions
 - Associated with a manual sign for negation
 - Parallel non manual component
 SIGN: {^{top} 1PERS-IND-DEIX } SCHOOL {^{neg} GO NEG }
 TRAN: मै स्कूल नही जा रहा
- Affirmative Interrogative
 - Non redundant role played by non manual markers
 - Manual signing identical to corresponding affirmative

 SIGN:
 {^{yninter}
 {^{top}
 FEM
 3PERS-IND-DEIX^{pos1}
 {^{hold}
 TEACHER
 }

 TRAN:
 क्या
 वह
 औरत
 अध्यापक
 है
 ?

Sentence level constructs

- Sentential Embeddings
 - Two signing patterns observed

 SIGN: {nom 1PERS-IND-DEIX } THINK {cinter Q } {nom 3PERS-IND-DEIX^{pos1} } TEACHER

 SIGN: {nom 3PERS-IND-DEIX^{pos1} } TEACHER {nom 1PERS-IND-DEIX } THINK

 TRAN:
 मुझे लगता है कि वह अध्यापक है

- Content Interrogatives
 - Both manual as well as non-manual component
 - Composed signs for temporal, location, person queries

SIGN:{cinterSHOP OPEN TIME-QTRAN:दुकान कव खुलती है ?

Inter-sentential constructs

- Conditional Statements
 - Exhibit embeddings in ISL
 - The premise is terminated with a non manual marker
 - A variant observed involves use of a finger-spelled IF
 SIGN: { ^{incomp} TIME-TODAY HOLIDAY { ^{neg} NEG } } { ^{top} SHOP } OPEN
 TRAN: यदि आज छुट्टी नहीं है तो दुकान खुली होगी
- Conjunctions Disjunctions
 - "ISL has no ... conjunctions" (Zeshan '03)
 - However finger-spelled AND is encountered
 - More investigation required

Inter-sentential constructs

- Causal Expressions
 - Realized in a dialogic form as a question answer tuple

SIGN:{top 1PERS-IND-DEIX SON } SCHOOL { neg GO NEG } { cinter Q } SICK 3PERS-IND-DEIXTRAN:मेरा बेटा स्कूल नहीं जा रहा क्योंकि वह बिमार है

- Relational Embeddings
 - Embedded clause signed after a non manual marker
 - Example of surface embeddings in ISL
 - More detailed investigation required

```
SIGN: {<sup>top</sup> BOOK 3PERS-IND-DEIX<sup>pos1</sup> } ...
... {<sup>top</sup> TIME-YESTERDAY 1PERS-IND-DEIX <sup>pos-1pers</sup>GIVE<sub>pos-2pers</sub> } ...
... {<sup>top</sup> 3PERS-IND-DEIX<sup>pos1</sup> } 1PERS-IND-DEIX
TRAN: मैने जो किताब तुम्हे कल दी थी वह मेरी है
```

Semantic Schematization in ISL

Semantic Schematization in ISL

The Interface

- Autonomous, amodal, CI System
- CI Representations (CIR) "Semantic parses"
- Schematized forms (s-forms)
 - weakly structured trees
 - Leaves contain individual signs
 - Leaves have a template

```
MANUAL = *
FACIAL = *
BODY-POSTURE = *
BODY-ORIENTATION = *
```

- Non-leaves contain temporal sequencing information

The Global store

- A mutable store being modified constantly
- Stores discourse level information
 - Tense Information
 - Spatial deixis type used one of the following
 - Spatial Location (SL)
 - Body Orientation (BO)
 - Mappings of type
 - Spatial Location → Participating entity
 - Body Orientation → Pairs of participating entities

The COMPOSE schema

- Takes as input a CIR and a template
- Schematizes the CIR according to the template and outputs an s-form that adheres to the template
- COMPOSE(book) is simply an articulation of the sign
- COMPOSE(give(ram,sita,book)) is handled by a schema for the concept GIVE
- Schema can recursively call COMPOSE for arguments

The Sentence schema

- Negation
 - CIR is of form C = neg(E): negation of the event E
 - Template

$$\left\langle C, O, seq \left[\begin{array}{c} MANUAL = * \\ FACIAL = f \\ BODY-POSTURE = bp \\ BODY-ORIENTATION = bo \end{array} \right] \right\rangle$$

- Simply call COMPOSE with the arguments

$$\left\langle T, O, seq \left(\begin{bmatrix} MANUAL = * \\ FACIAL = f \\ BODY-POSTURE = bp \\ BODY-ORIENTATION = bo \end{bmatrix} \right\rangle, \begin{bmatrix} MANUAL = * \\ FACIAL = f + negexp \\ BODY-POSTURE = bp + leanback \\ BODY-ORIENTATION = bo \end{bmatrix} \right) \right\rangle$$

The Event Schema

- SEE
 - Has a Perceptual Articulatory Schema (PAS)
 - The CIR see(ram, sita) would be "composed" as seq(COMPOSE(ram), COMPOSE(sita), PA_{see}(loc_{ram}, loc_{sita}))
- GIVE
 - The PAS for GIVE
 - is similar to that of SEE: both involve directed movement
 - Is dissimilar from SEE: different hand shapes
- THINK
 - Non- directional verb
 - PAS simply consists of the hand shape, orientation and place of articulation

An Example

Sentence corresponding to a CIR s-form output

[global store]

[Φ]

Initial Global Store

Yesterday, Ram met Sita seq(COMPOSE(yesterday), COMPOSE(ram), COMPOSE(sita), COMPOSE(meet))

He gave her a book seq(COMPOSE(book),PA_give(loc1,loc2))

[past,SL,{ram→loc1,sita→loc2}]

 $[past,SL,{ram} \rightarrow loc1,sita \rightarrow loc2]]$

He thought that she should go to school seq(IND(loc1),COMPOSE(think),COMPOSE(Q),seq(IND(loc2),COMPOSE(school), COMPOSE(go),COMPOSE(imperative)))

[past,SL,{ram→loc1,sita→loc2}]

Radha, who is Sita's sister, goes to school seq(COMPOSE(radha),POSS(loc2),COMPOSE(sister),HOLD,seq(IND(loc3), COMPOSE(school),COMPOSE(go)))

[null,SL,{ram→loc1,sita→loc2,radha→loc3}]

Future Work

- A broader surface characterization based on a larger corpus of data
 - adverbials, adjectives, adjuncts
 - conjunctions, disjunctions
- May lead to a refined schematization model
- Explore the COMPOSE schema in detail
 - Possibility of arriving at a unified schematization model for spoken and sign languages

For questions or suggestions, please contact Purushottam Kar at purushot@cse.iitk.ac.in or Achla M. Raina at achla@iitk.ac.in