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Halfspaces

Definition (Halfspaces)

A halfspace in a d dimensional Euclidean space is a dichotomy
characterized by a weight vector w ∈ Rd and a threshold θ ∈ R.
More specifically h(x) = sgn(〈w · x〉 − θ) ∀x ∈ Rd

Studied extensively in learning theory, geometry, game theory,
complexity theory ...
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Pre [DGJ+09] ...

The Learning Theory part ...

Halfspaces are weak

... let alone regular languages

Cannot separate most interesting language classes due to high (read
infinite) VC dimension

Have been shown to be able to adapt to piecewise testable
languages using large margin methods methods (no PAC guarantees
though) [CKM07]

Whatever they can represent, can be learnt in “soft” quadratic time

given the presence of a teacher

There is a quadratic lower bound on the learning time [MT94]
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Cannot separate most interesting language classes due to high (read
infinite) VC dimension

Have been shown to be able to adapt to piecewise testable
languages using large margin methods methods (no PAC guarantees
though) [CKM07]

Whatever they can represent, can be learnt pretty fast

given the
presence of a teacher

There is a quadratic lower bound on the learning time [MT94]
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Pre [DGJ+09] ...

The Learning Theory part ...

Thresholded polynomials are stronger

can be used to represent DNFs of exponentially larger sizes

[KS04] show that s-term DNFs can be computed by polynomial
threshold functions of degree O

(
n1/3 log s

)
Matches a lower bound of Ω

(
n1/3

)
by [MP69]

The construction gives a 2O(n1/3 log s log n)-time algorithm to learn
DNFs by extending halfspace learning algorithms to ones that learn
polynomial threshold functions over boolean valued attributes
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Pre [DGJ+09] ...

The Complexity Theory part ...

Halfspaces are resilient

Cannot be simulated by low-degree polynomials or AC0

A separation like NP 6⊂ HALFSPACE2 still eludes us

Circuits composed of halfspaces can be simulated by circuits of
majority gates of almost same depth

Representational Complexity : Integer weights of size
(n+1) log(n+1)

2 − n bits suffice and n log n
2 − n are necessary [Hås94]

If approximate representations are all we want then
√

n2Õ(1/ε2) bits
suffice to get a halfplane that begs to differ only on an ε fraction of
the inputs [Ser07]
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If approximate representations are all we want then
√
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If approximate representations are all we want then
√
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The Art and Mathematics of Deception

Definition (Fooling a Function)

A distribution D on strings over {−1, 1} of length n is said to
ε-fool a boolean function f : {−1, 1}n → {−1, 1} if
|Ex←D[f (x)]− Ex←U [f (x)]| ≤ ε

But why would one want to indulge in such a trivial pursuit ?
The uniform distribution U fools every function - but it requires
too many random bits to implement

Can we fool certain functions using distributions that we can
“create” ourselves given smaller amount of randomness ?
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Less than random distributions

Definition (k-wise Independence)

A distribution D on {−1,+1}n is said to be k-wise independent if
the projection of D on any k indices is uniformly distributed over
{−1,+1}k



0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Construction

Optimal constructions of such distributions exist

Randomness Requirement

Given a sequence of k log n random bits, one can
generate a sequence of n random bits that is k-wise
independent.

Example taken from http://www.nada.kth.se/~johanh/verktyg/lecture3.pdf
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Pre [DGJ+09] ...

The Complexity Theory part ... contd

We know how to fool low-degree polynomials, constant depth
boolean circuits , ...

Some of these constructions imply that halfspaces with small
weights can be fooled

The question of fooling general halfspaces ...

[DGJ+09]

The question being asked is that of a property fooling a class of
functions rather than a distribution doing so

8 / 45

How to Hoodwink a Halfspace



Pre [DGJ+09] ...

The Complexity Theory part ... contd

We know how to fool low-degree polynomials, constant depth
boolean circuits , ...

Some of these constructions imply that halfspaces with small
weights can be fooled

The question of fooling general halfspaces ...

[DGJ+09]

The question being asked is that of a property fooling a class of
functions rather than a distribution doing so

8 / 45

How to Hoodwink a Halfspace



Pre [DGJ+09] ...

The Complexity Theory part ... contd

We know how to fool low-degree polynomials, constant depth
boolean circuits , ...

Some of these constructions imply that halfspaces with small
weights can be fooled

The question of fooling general halfspaces ...

[DGJ+09]

The question being asked is that of a property fooling a class of
functions rather than a distribution doing so

8 / 45

How to Hoodwink a Halfspace



Pre [DGJ+09] ...

The Complexity Theory part ... contd

We know how to fool low-degree polynomials, constant depth
boolean circuits , ...

Some of these constructions imply that halfspaces with small
weights can be fooled

The question of fooling general halfspaces ... [DGJ+09]

The question being asked is that of a property fooling a class of
functions rather than a distribution doing so

8 / 45

How to Hoodwink a Halfspace



Pre [DGJ+09] ...

The Complexity Theory part ... contd

We know how to fool low-degree polynomials, constant depth
boolean circuits , ...

Some of these constructions imply that halfspaces with small
weights can be fooled

The question of fooling general halfspaces ... [DGJ+09]

The question investigated by [DGJ+09] is not directly related to
construction of pseudo-random generators for halfspaces
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A Key Result

Theorem ([Baz07])

A boolean function f : {−1, 1}n → {−1, 1} can be ε-fooled by the
class of k-wise independent distributions iff there exist multivariate
polynomials u : {−1, 1}n → {−1, 1}, l : {−1, 1}n → {−1, 1}, such
that

deg(u), deg(l) ≤ k

u(x) ≥ f (x) ≥ l(x) ∀x ∈ {−1, 1}n

Ex←U [u(x)− f (x)],Ex←U [f (x)− l(x)] ≤ ε
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Pre [DGJ+09] ...

The Complexity Theory part ... contd

Has been used very productively to fool

DNFs [Baz07] [Raz08]
AC0 functions [Bra09]
halfspaces [DGJ+09][GOWZ10][KNW10]

Note : Servedio’s construction in [Ser07] gives us PRGs for
halfspaces if ε = Ω(1/

√
log n). The [DGJ+09] construction itself

stops working if ε = O(1/
√

n)
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√

n)
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Now [DGJ+09]
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Plan of attack

Goal : Find two low-degree polynomials that sandwich our
halfspace function while closely approximating it

Plan of attack :

Construct a polynomial that gives a nice point wise approximation
to the sgn function

Use it to construct a polynomial that upper bounds the sgn function
while closely approximating it

Use it to construct a polynomial that lower bounds the sgn function
while closely approximating it
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Plan of attack

Plan of attack :

Construct a polynomial that gives a nice point wise approximation
to the sgn function

Use it to construct a polynomial that upper bounds the sgn function
while closely approximating it

Use it to construct a polynomial that lower bounds the sgn function
while closely approximating it

Wait ... what happened to the halfspace ??
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Plan of attack

Plan of attack :

Construct a polynomial that gives a nice point wise approximation
to the sgn function

Use it to construct a polynomial that upper bounds the sgn function
while closely approximating it

Use it to construct a polynomial that lower bounds the sgn function
while closely approximating it

Probably need to restate some of the goals
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Plan of attack

Plan of attack :

Construct a polynomial that gives a nice point wise approximation
to the sgn function

Use it to construct a polynomial that upper bounds the sgn function
while closely approximating it under the Gaussian distribution

Use it to construct a polynomial that lower bounds the sgn function
while closely approximating it
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Plan of attack

Plan of attack :

Construct a polynomial that gives a nice point wise approximation
to the sgn function

Use it to construct a polynomial that upper bounds the sgn function
while closely approximating it under the Gaussian distribution

Use it to construct a polynomial that lower bounds the sgn function
while closely approximating it under the Gaussian distribution

Use the fact that values taken by homogeneous ’regular’ linear
polynomials are distributed normally
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Step 1
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Step 2
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Step 3
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Approximating Real-valued Functions - I

Theorem (Jackson)

Any bounded continuous function f : [−1, 1]→ R admits a
6ωf

(
1
`

)
-pointwise approximation by a degree-` polynomial in the

domain [−1, 1].

Use Jackson’s theorem to O(1)-approximate sgn by a degree
O(1/a) polynomial (a = ε2/log(1/ε))

Use an amplifying polynomial of degree O(log(1/ε)) to reduce the
error to ε2

Lemma

There is a polynomial p1(x) of degree 2m = O(1/ε2 log2(1/ε))
which gives a pointwise ε2-approximation to the sgn function in
the range [−1,−a] ∪ [a, 1].
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Approximating Real-valued Functions - II

Theorem (Chebyshev)

For any bounded continuous function f : [k , l ]→ R and any
non-zero continuous function f : [k, l ]→ R, for every m, there is a
unique degree-m polynomial r(z) that minimizes the maximum
pointwise error max

x∈[k,l ]
|f (x)− s(x)r(x)| and is characterized by the

fact that the function s(x)r(x) achieves this maximum error m + 2
times in the interval [k , l ] with alternating signs.

Use Chebyshev’s theorem to get the best degree m approximation
r(x) which minimizes max

x∈[a2,1]
|1−

√
xr(x)|

Let p(x) = x · r(x2).
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Completing Step 1

Write p1(x) in the form x · r1(x2)

Use it to bound the error of p(x) in the interval [−1, a] ∪ [a, 1] by ε2

and get some more properties ...

Lemma

There is a polynomial p(x) of degree 2m + 1 = O(1/ε2 log2(1/ε))
such that

p(x) ∈ sgn(x)± ε2 for all |x | ∈ [a, 1]

p(x) ∈ ±(1 + ε2) for all |x | ∈ [0, a]

p(x) is increasing in (∞,−1] ∪ [1,∞).
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Completing Step 2

Let P(x) = 1
2

(
1 + ε2 + p(x + a)

)2 − 1

... to get the following result

Lemma

There is a polynomial P(x) of degree K = O(1/ε2 log2(1/ε)) such
that

P(x) ≥ sgn(x) for all x ∈ R

P(x) ∈ [sgn(x), sgn(x) + ε] for all x ∈ [−1/2,−2a] ∪ [0, 1/2]

P(x) ∈ [−1, 1 + ε] for all x ∈ (−2a, 0)

|P(x)| ≤ 2 · (4x)K for all |x | ≥ 1/2.
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Use simple case analyses
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Completing Step 3(i)/3(ii)

Left as an exercise -
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Step 3
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Plan of attack

Plan of attack :

Construct a polynomial that gives a nice point wise approximation
to the sgn function

Use it to construct a polynomial that upper bounds the sgn function
while closely approximating it under the Gaussian distribution

Use it to construct a polynomial that lower bounds the sgn function
while closely approximating it under the Gaussian distribution

Now use the fact that values taken by homogeneous ’regular’ linear
polynomials are distributed normally

A regular halfspace is one in which no weight is ”large”, i.e. if
wi ≤ ε‖w‖2 for all i , then we call the halfspace ε-regular
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An Effective Central Limit Theorem

Theorem (Berry-Esséen)

Let X1, . . . ,Xn be a sequence of independent random variables

satisfying E[Xi ] = 0 for all i ,
√∑

i E
[
X 2

i

]
= σ and∑

i E
[∣∣X 3

i

∣∣] = ρ. Let S = (X1+, . . . ,+Xn)/σ and let F be the
cumulative distribution function of S and Φ be the same for
N(0, 1). Then

sup
x
|F (x)− Φ(x)| ≤ ρ/σ3.
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Regular Halfspaces generate Normally
distributed outputs

Theorem

Let x1, . . . , xn ∈R −1, 1,w1, . . . ,wn ∈ R. Let σ = ‖w‖2 and
assume wi ≤ τ · σ. Then for any [a, b] ⊂ R,∣∣∣∣Pr[a ≤ w1x1 + . . .+ wnxn ≤ b]− Φ

(
a

σ
,

b

σ

)∣∣∣∣ ≤ 2τ.

Let Xi = wixi , then E[Xi ] = 0,E[X 2
i ] = w2

i ,E[|Xi |3] = |wi |3

Theorem (Hoeffding)

For any w ∈ Rn. For any γ > 0, we have

Pr
x←U

[|w · x | > γ‖w‖] ≤ e−γ
2/2
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Let the con begin !

... for a regular halfspace h(x) = sgn(〈w · x〉 − θ) with small
threshold (|θ| ≤ Z/4), Z = ε/2a = O(1/ε log(1/ε))

Upper bound the halfspace with u(x) = P
(
〈w ·x〉−θ

Z

)
Ex [u(x)− h(x)] ≤ Ex∈[−ε/Z ,0] + E|x|≤1/2 + E|x|≥1/2[u(x)− h(x)]

In all we get Ex [u(x)− h(x)] ≤ O(ε)

Note : The normalization by Z only required to bound the
contribution of events 3(. . . )
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Let the con continue !

... for a regular halfspace h(x) = sgn(〈w · x〉 − θ) with large
threshold (|θ| > Z/4) - assume that θ > Z/4 w.l.o.t.m.g.

Let g(x) = sgn(〈w · x〉 − Z/4), note g(x) ≥ h(x)

Upper bound the halfspace with u(x) = P
(
〈w ·x〉−Z/4

Z

)
Ex [u(x)− h(x)] = O(ε) +O(ε)

In all we get Ex [u(x)− h(x)] ≤ O(ε)

Lower bound the halfspace using l(x) = −1 : it works since the
halfspace almost always outputs −1
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Goal Accomplished !

Theorem

Any K (ε)-wise distribution O(ε)-fools any ε-regular halfspace
where K (ε) = O(1/ε2 log2(1/ε)).

Wait till the end for some fun facts about this statement ...
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Non-regular Halfspaces and Critical Indices

Assume |w1| ≥ |w2| ≥ . . . |wn| i.e. in decreasing order

The first point from where the (sub)-halfspace (wi , . . . .wn) becomes
ε-regular is the critical index at ε

We shall condition on how far do we need to go in order to get a
regular halfspace
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Small Critical Index

“Most” of the halfspace is ε-regular

Feed in full independence for the non-regular part to fool it -
hopefully not much would be needed

If the critical index at ε is less than L(ε) = O(1/ε2 log2(1/ε)) then
we are done

Theorem

Any K (ε) + L(ε)-wise distribution O(ε)-fools any halfspace with
critical index less than L(ε).
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Large Critical Index

Exploit “structural properties” of non-regular halfspaces

Weights decrease rather rapidly in non-regular regions of the
halfspace

... and so do the norms of the weight vectors (i.e.
√∑

w2
i )

l(ε) = O(1/ε2 log(1/ε))
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Some Technical Results
Intuition later ...

Theorem

Let v1 > v2 > . . . > vt > 0 such that vi ≥ 3vi+1, then for any
x , y ∈ {−1, 1}t , x 6= y, we have |〈v · x〉 − 〈v · y〉| ≥ vt .

Theorem

Let k = 4/ε2 log2(10/ε), then with probability at least 1− ε/10,∣∣∣∣∣θ − L(ε)∑
i=1

wixi

∣∣∣∣∣ ≥ |wk |/4.

Theorem (Chebyshev)

For any random variable X with E[X ] = µ,Var[X ] = σ2, for any
k > 0, Pr[|X − µ| > kσ] ≤ 1/k2.
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Just a few more steps ...

If σT =

√
n∑

L(ε)

w2
i , then w.h.p.

∣∣∣∣∣θ − L(ε)∑
i=1

wixi

∣∣∣∣∣ ≥ σT/4ε

In such a situation unless

∣∣∣∣∣ n∑
L(ε)

wixi

∣∣∣∣∣ > σT/4ε, the output of the

halfspace is completely decided by the first L(ε) variables

But Chebyshev tells us that

∣∣∣∣∣ n∑
L(ε)

wixi

∣∣∣∣∣ ≤ σT/4ε w.h.p.

Theorem

Any L(ε) + 2-wise distribution O(ε)-fools any halfspace with
critical index more than L(ε).
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Done !

Theorem

Any K (ε)-wise distribution O(ε)-fools any halfspace where
K (ε) =O(1/ε2 log2(1/ε)).

i.e. the result is non-trivial only if n > .

The results are tight :

Theorem ([BGGP])

There exists a C > 0 such that for every k ≥ 2,

max
D∈A(n,k)

∣∣∣∣ Pr
x∈D

[Maj(x) = 1]− 1

2

∣∣∣∣ ≥ C√
k log k

.

Easier to verify for k = n − 1
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Post [DGJ+09] ...

[KNW10] give an alternate proof of the [DGJ+09] based on new
techniques - there is some worsening of parameters
K (ε) = ε−2 log2+o(1)(1/ε)

[DKN] extend ideas used in [KNW10] to show that thresholded
quadratic polynomials can be ε-fooled by Ω̃(ε−9) independence

the result extends to intersection of constant number of halfspaces -
dependence on number of halfspaces is polynomial
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Post [DGJ+09] ...

[MZ] give explicit pseudorandom generators with seed length
2O(d) log n/ε8d+3for thresholded polynomials of degree d

The construction gives improved PRG constructions for halfspaces
with seed length O(log n log(1/ε)) for ε = Ω(1/poly(n))

and seed length O(log n) for ε = Ω(1/poly(log n))

However non-explicit arguments show the existence of
O(d log n + log(1/ε)) seed length PRGs to fool degree d Polynomial
threshold functions [MZ]
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Post [DGJ+09] ...

[GOWZ10] consider fooling functions of halfspaces

under various
Product Distributions

Give a modification of the [MZ] construction to yield a
O((d log(ds/ε) + log n) · log(ds/ε)) seed length PGR for arbitrary
decision trees of halfspaces of size s and depth d

i.e. TC0 can be fooled by a seed length of O(log2(n/ε))

Also extend the construction given in [DGJ+09] to show that
Õ(d4s2/ε2)-wise independence fools arbitrary decision trees of
halfspaces of size s and depth d

[HKM09] do slightly better at fooling intersection of k regular
halfspaces using seed length O

(
ε−5 log n log9.1 k log(1/ε)

)
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