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Why “embed” distances anywhere at all

• Applications dealing with huge amounts of high dimensional data

• Prohibitive costs of performing point/range/k-NN queries in
ambient space

◦ Proximity queries become costlier with dimensionality - “Curse of
Dimensionality”

◦ Certain distance measures inherently difficult to compute (Earth
Mover’s distance)

◦ Absence of good index structures for non-metric distances
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Existing Solutions

• Obtain easily estimable upper/lower-bounds on the distance
measures (EMD/Edit distance)

• Find embeddings which allow specific proximity queries

• Embed into a metric space for which efficient algorithms for
answering proximity queries exist
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Statistical Distance Measures

• Prove to be challenging in context of embeddings

• Very useful in pattern recognition/database applications

◦ Bhattacharyya and Mahalanobis distances give better performance
than `2 measure in image retrieval

◦ Mahalanobis distance measure more useful than `2 when measuring
distances between DNA sequences

◦ Kullback-Leibler divergence well suited for use in time-critical texture
retrieval from large databases

◦ Many other applications ...

• However these are seldom metrics
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Our contributions

• We examine 3 statistical distance measures with the goal of
obtaining low-dimensional, low distortion embeddings

• We present two techniques to prove non-embeddability results
when concerned with embeddings of non-metrics into metric spaces

• Applying them we get non-embeddability results (into metric
spaces) for the Bhattacharyya and Kullback Leibler measures

• We also present dimensionality reduction schemes for the
Bhattacharyya and the Mahalanobis distance measure
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Preliminaries
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Low distortion embeddings

• Ensure that notions of distance are almost preserved

• Preserve the geometry of the original space almost exactly

• Give performance guarantees in terms of accuracy for all proximity
queries

• Presence of several index structures for metric spaces motivates
embeddings into metric spaces

• In case the embedding is into `2, added benefit of dimensionality
reduction
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Some Preliminary definitions

Definition (Metric Space)

A pair M = (X , ρ) where X is a set and ρ : X × X −→ R+ ∪ {0} is
called a metric space provided the distance measure ρ satisfies the
properties of identity, symmetry and triangular inequality.

Definition (D-embedding and Distortion)

Given two metric spaces (X , ρ) and (Y , σ), a mapping f : X −→ Y is
called a D-embedding where D ≥ 1, if there exists a number r > 0
such that for all x , y ∈ X ,

r · ρ(x , y) ≤ σ (f (x), f (y)) ≤ D · r · ρ(x , y)

The infimum of all numbers D such that f is a D-embedding is called
the distortion of f .
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The JL Lemma

• A classic result in the field of metric embeddings

• Makes it possible for large point sets in high-dimensional Euclidean
spaces to be embedded into low-dimensional Euclidean spaces with
arbitrarily small distortion

• This result was made practically applicable to databases by
Achlioptas

Theorem (Johnson-Lindenstrauss Lemma)

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.
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The JL Lemma

• The lemma ensures that even inner products are preserved to an
arbitrarily low additive error

• Will be useful for dimensionality reduction with the Bhattacharyya
distance measure

Corollary

Let u, v be unit vectors in Rd . Then, for any ε > 0, a random
projection of these vectors to yield the vectors u′ and v ′ respectively

satisfies Pr [u · v − ε ≤ u′ · v ′ ≤ u · v + ε] ≥ 1− 4e
−k
2

(
ε2

2
− ε3

3

)
.
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Some definitions ...

Definition (Representative vector)

Given a d-dimensional histogram P = (p1, . . . pd), let
√

P denote the
unit vector (

√
p1, . . . ,

√
pd). We shall call this the representative

vector of P.

Definition (α-constrained histogram)

A histogram P = (p1, p2, . . . pd) is said to be α-constrained if pi ≥ α
d

for i = 1, 2, . . . , d .

Observation
Given two α-constrained histograms P and Q, the inner product

between the representative vectors is at least α, i.e.,
〈√

P,
√

Q
〉
≥ α.

We will denote α
d by β
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The Distance Measures
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The Bhattacharyya Distance Measures

Definition (Bhattacharyya Coefficient)

For two histograms P = (p1, p2, . . . , pd) and Q = (q1, q2, . . . qd) with∑d
i=1 pi =

∑n
i=1 qi = 1 and each pi , qi ≥ 0, the Bhattacharyya

coefficient is described as BC (P,Q) =
n∑

i=1

√
piqi .

We define two distance measures using this coefficient :

Definition (Hellinger Distance)

H(P,Q) = 1− BC (P,Q) = 1
2

(∥∥∥√P −
√

Q
∥∥∥)2

.

Definition (Bhattacharyya Distance)

BD(P,Q) = − ln BC (P,Q).
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Kullback Leibler Divergence

Definition (Kullback Leibler Divergence)

Given two histograms P = {p1, p2, . . . , pd} and Q = {q2, q2 . . . qd},
the Kullback-Leibler divergence between the two distributions is

defined as KL(P,Q) =
d∑

i=1
pi ln pi

qi
.

• Non-symmetric and unbounded, i.e., for any given c > 0, one can
construct histograms whose Kullback-Leibler divergence exceeds c .

• In order to avoid these singularities, we assume that the histograms
are β-constrained

Lemma
Given two β-constrained histograms P, Q, 0 ≤ KL(P,Q) ≤ ln 1

β .
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The Class of Quadratic Form Distance Measures

Definition (Quadratic Form Distance Measure)

A d × d positive definite matrix A defines a Quadratic Form Distance
measure over Rd given by QA(x , y) =

√
(x − y)T A(x − y).

• Can be defined for any matrix but the resulting distance measure is
a metric if and only if the matrix is positive definite

• The Mahalanobis distance is a special case of QFD where the
underlying distance measure is the covariance matrix of some
distribution
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Results on Dimensionality Reduction
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Hellinger Distance

The fact that H(P,Q) is the Euclidean distance between the points√
P and

√
Q allows us to state the following theorem.

Theorem
The Hellinger distance admits a low distortion dimensionality
reduction.

Proof. (Sketch).

Given a set of histograms, subject the corresponding set of
representative vectors to a JL-type embedding and output a set of
vectors for which the embedded set of vectors are the
representatives.
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Bhattacharyya Distance

• The Bhattacharyya distance is unbounded even on the probability
simplex - precisely when α is small

• Our result works well if distributions are α-constrained for large α

Theorem
The Bhattacharyya distance admits a low additive distortion
dimensionality reduction.

Proof. (Sketch).

Given a set of α-constrained histograms, subject them to a JL-type
embedding with the error parameter set to ε′ = ε·α

2 . With high
probability the following occurs : if P,Q are embedded respectively to
P ′,Q ′, then BD(P,Q)− ε ≤ BD(P ′,Q ′) ≤ BD(P,Q) + ε.
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Quadratic Form Distance Measures

Theorem
The family of metric quadratic form distance measures admit a low
distortion JL-type embedding into a Euclidean spaces.

Proof.
Every quadratic form distance measure forming a metric is
characterized by a positive definite matrix A. Such matrices can be
subjected to a Cholesky Decomposition of the form A = LT L.
Given a set of vectors subject them to the transformation x 7−→ Lx
and subject there resulting vectors to a JL-type embedding.

The proposed transformation essentially reduces the problem to an
undistorted Euclidean space where the JL Lemma can be applied.
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How to prove Non-embeddability
results into metric spaces
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The Asymmetry Technique

Definition (γ-Relaxed Symmetry)

A set X equipped with a distance function d : X ×X −→ R+ ∪{0}, is
said to satisfy γ-relaxed symmetry if there exists γ ≥ 0 such that for
all point pairs p, q ∈ X , the following holds |d(p, q)− d(q, p)| ≤ γ.

Metrics satisfy the γ-relaxed triangle inequality for γ = 0

Lemma
Given a set X equipped with a distance function d that does not
satisfy the γ-relaxed symmetry such that d(x , y) ≤ M for all
x , y ∈ X , any embedding of X into a metric space incurs a distortion
of at least 1 + γ

M .

22 of 32



The Asymmetry Technique

Definition (γ-Relaxed Symmetry)

A set X equipped with a distance function d : X ×X −→ R+ ∪{0}, is
said to satisfy γ-relaxed symmetry if there exists γ ≥ 0 such that for
all point pairs p, q ∈ X , the following holds |d(p, q)− d(q, p)| ≤ γ.

Metrics satisfy the γ-relaxed triangle inequality for γ = 0

Lemma
Given a set X equipped with a distance function d that does not
satisfy the γ-relaxed symmetry such that d(x , y) ≤ M for all
x , y ∈ X , any embedding of X into a metric space incurs a distortion
of at least 1 + γ

M .

22 of 32



The Asymmetry Technique

Definition (γ-Relaxed Symmetry)

A set X equipped with a distance function d : X ×X −→ R+ ∪{0}, is
said to satisfy γ-relaxed symmetry if there exists γ ≥ 0 such that for
all point pairs p, q ∈ X , the following holds |d(p, q)− d(q, p)| ≤ γ.

Metrics satisfy the γ-relaxed triangle inequality for γ = 0

Lemma
Given a set X equipped with a distance function d that does not
satisfy the γ-relaxed symmetry such that d(x , y) ≤ M for all
x , y ∈ X , any embedding of X into a metric space incurs a distortion
of at least 1 + γ

M .

22 of 32



The Relaxed Triangle Inequality Technique

Definition (λ-Relaxed Triangle Inequality)

A set X equipped with a distance function d : X × X −→ R+ ∪ {0},
is said to satisfy the λ-relaxed triangle inequality if there exists some
constant λ ≤ 1 such that for all triplets p, q, r ∈ X , the following
holds d(p, r) + d(r , q) ≥ λ · d(p, q).

Metrics satisfy the λ-relaxed triangle inequality for λ = 1

Lemma
Any embedding of a set X equipped with a distance function d that
does not satisfy the λ-relaxed triangle inequality into a metric space
incurs a distortion of at least 1

λ .
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Non-“metric-embeddability” Results
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Metric Embeddings for Bhattacharyya Distance

Theorem
There exist d-dimensional β-constrained distributions such that any
embedding of these distributions under the Bhattacharyya distance
measure into a metric space must incur a distortion of

D =


Ω

(
ln 1

dβ

ln d

)
when β > 4

d2

Ω

(
ln 1

β

ln d

)
when β ≤ 4

d2

Proof. (Sketch).

Choose three distributions that violate the relaxed triangle inequality
with appropriate λ.
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Metric Embeddings for Bhattacharyya Distance

Theorem
For any two d-dimensional β-constrained distributions P and Q with
β < 1

2d , we have H(P,Q) ≤ BD(P,Q) ≤ d
1−2βd ln 1

(d−1)βH(P,Q).

• Since the Hellinger distance forms a metric in the positive orthant,
this constitutes a metric embedding

• The result can be interpreted to show that the non-embeddability
theorem stated earlier is tight upto an O(d ln d) factor

• Additionally this embedding allows for dimensionality reduction as
well
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Metric Embeddings for Kullback-Leibler Divergence

An application of the Asymmetry technique gives us the following
result

Theorem
For sufficiently large d and small β, there exists a set S of
d-dimensional β-constrained histograms and a constant c > 0 such
that any embedding of S into a metric space incurs a distortion of at
least 1 + c.

• It can be shown that this proof technique cannot give more than a
constant lower bound in this case

• However the situation is much worse ...
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Metric Embeddings for Kullback-Leibler Divergence

An application of the Relaxed Triangle Inequality Technique gives
us the following result

Theorem
For sufficiently large d, there exist d-dimensional β-constrained
distributions such that embedding these under the Kullback-Leibler
divergence into a metric space must incur a distortion of

Ω

(
ln 1

dβ

ln
(
d ln 1

β

)
)

.

• The lower bound diverges for small β

• Thus, by choosing point sets appropriately, we can force the
embedding distortion to be arbitrarily large !
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Metric Embeddings for Kullback-Leibler Divergence

• The above bounds show how the Kullback-Leibler divergence
behaves near the uniform distribution and near the boundaries of
the probability simplex

• Near the uniform distribution, asymmetry makes the
Kullback-Leibler divergence hard to approximate by a metric

• As we move away from the uniform distribution the hardness is due
to violation of the triangle inequality

• For large β (say β = Ω
(

1
d

)
), the Asymmetry Technique gives a

better bound

• For smaller β (say β = o
(

1
d4

)
) we get a better lower bound using

the Relaxed Triangle Inequality Technique - this lower bound
diverges
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A Useful Embedding for Kullback-Leibler Divergence

Theorem
For any two d-dimensional β-constrained distributions P and Q,

`22(P,Q)
2 ≤ KL(P,Q) ≤

(
1
2β + 1

3β5

)
`22(P,Q).

Uses a result from information theory called Pinsker’s inequality

• The `22 measure is not a metric - however very close to one

• It also admits dimensionality reduction via the JL Lemma

• Hence despite the poor bound on distortion, can be useful
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Future Directions
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Open Questions

• A low multiplicative distortion dimensionality reduction scheme for
the Bhattacharyya distance measure

• A low distortion dimensionality reduction scheme for the
Kullback-Leibler distance measure

• Tightening of the bounds for the Bhattacharyya distance measure
shown in this paper

• In short - a theory of Non-Metric Embeddings
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