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Part I: Introduction
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What is a loss function?

L:H - RT

* We observe empirical losses on data S = {x, ... x,,}
£y, () = £(h, x;)

*...and try to minimize them (e.g. classfn, regression)

~ A A 1

h = hlgjf[ Lg(h), Lg(h) = ngxi (h)
*...in the hope that

Hl/n foi(') _ Efx()Hoo <€

*...sothat

L(h) < Lh*) +€,  L(h) = E£,(h)
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Metric Learning
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* Penalize metric for bringing blue and red points close

* Loss function needs to consider two points at a time!
e ... in other words a pairwise loss function

(1,y, # y, and M(xq1,x;) < 74

0, otherwise
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Pairwise Loss Functions

 Typically, loss functions are based on ground truth
£,(h) = £(h(x),y(x))
* Thus, for metric learning, loss functions look like
TS (h) = f(h(xp x2), y(x1, xz))

*In previous example, we had
h(xq,x3) = M(xq1,x3) and y(xq1,x3) = y1¥3

e Useful to learn patterns that capture data interactions
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Pairwise Loss Functions

Examples: (¢ is any margin loss function e.g. hinge loss)
* Metric learning [Jin et al NIPS ‘09]

f(xl,xz)(M) =¢ ()’13’2(1 — M(xpxz)))
* Preference learning [Xing et al NIPS ‘02]
*S-goodness [Balcan-Blum ICML ‘06]

£y ) (K) = d(y172K (21, x2))

e Kernel-target alignment [Cortes et al ICML ‘10]
* Bipartite ranking, (p)AUC [Narasimhan-Agarwal ICML “13]

Loy (F) = & (F ) = F(x2)) 1 — ¥2) )
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Learning Objectives in Pairwise Learning

* Given training data x¢, X5, ... X,
eLearn h: X X X — Y such that
L(ﬁ) < L(h*) + €
(will define £(-) and £(+) shortly)

Challenges:

* Training data given as singletons, not pairs
* Algorithmic efficiency

* Generalization error bounds
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Part Il: Batch Learning
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Part Il: Batch Learning

Batch Learning for Unary Losses
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Training with Unary Loss Functions

* Notion of empirical loss
L:H - R*
* Given training data S = {x4, ..., x,,}, natural notion

A 1
[’S() — E Z{(, xi)

* Empirical risk minimization dictates us to find h, s.t.
Lo N < . A
A Ls(h) < inf Lg(h)
* Note that L(-) is a U-statistic

» U-statistic: a notion of “training loss” Ls: H — R* s.t.

vh € H,E (Ls(h)) = L(h)
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Generalization bounds for Unary Loss Functions

*Step 1: Bound excess risk by suprémus excess risk
L(h) = Ls(h) < sup L(h) — Ls(R)
heH

*Step 2: Apply McDiarmid’s inequality
L (h) is not perturbed by changing any x;

L(h)—Ls(h) <E [sup L(h) — LW+ 0O (1/ \/_)

*Step 3: Analyze the expected supremus excess risk

E [sup L) — ()| =
heH

<E [sup Ls(h) — Ls(MW|(

heH

sup E[£5(0)] - Ls(h)]

LheH

ensen'’s inequality)
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Analyzing the Expected Suprémus Excess Risk

;| sup £5(h) — £5(h)
heH

* For unary losses Lg(-) = 34, ()

* Analyzing this term through symmetrization easy

%IE [sup YAy, () — ’E;gi(h)] <-—E lsup Y€ily,(h)

2
heH n heH
1

2L
<o pap o] =0 )
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Part Il: Batch Learning

Batch Learning for Pairwise Loss Functions

EO 370: Statistical Learning Theory

14




Training with Pairwise Loss Functions

* Given training data x4, x5, ... X,;, choose a U-statistic

e U-statistic should use terms like f(x,;,xj) (h) (the kernel)

* Population risk defined as L(-) = Ef(x,x')(')
Examples:

* For any index set () c [n] X [n], define

A 1
Es(34) = Q] z(i,j)EQ ) )

* Choice of O = {(i,j):i # j} maximizes data utilization

« Various ways of optimizing inf L£c(h) (e.g. SSG)
hex >
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Generalization bounds for Pairwise Loss Functions

*Step 1: Bound excess risk by suprémus excess risk
L(h) = Ls(h) < sup L(h) — Ls(R)
heH

*Step 2: Apply McDiarmid’s inequality
Check that £¢(h) is not perturbed by changing any x;

L(h)—Ls(h) <E [sup L(h) — LW+ 0O (1/ \/_)
*Step 3: Analyze the expected supremus excess risk

E [sup L(h) — £s(W) | = B[ sup E[Zs(n)] - LS(h)]

heH LheH
<E lsup Ls(h) — Lg(h)| (Jensen's inequality)
heH
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Analyzing the Expected Suprémus Excess Risk

;| sup £5(h) — £5(h)
heH

* For pairwise losses L¢(+) = Yt f(xi’xj)(-)

*Clean symmetrization not possible due to coupling

=2 Z Z HEENIOMRICEID

e Solutions [see Clemengon et al Ann. Stat. ‘O8]
* Alternate representation of U-statistics
* Hoeffding decomposition

EO 370: Statistical Learning Theory

17




Part lll: Online Learning
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Part lll: Online Learning

A Whirlwind Tour of Online Learning for Unary Losses
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Model for Online Learning with Unary Losses

Propose
hypothesis
hi{_1 €H

Receive loss
'Et() — 'E(xtf)
* Regret —
Ry = Dle(heoq) — }}gjf[ >t (h)
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Online Learning Algorithms

* Generalized Infinitesimal Gradient Ascent (GIGA)
[Zinkevich 03]
he = heeqg — 0V fe(he—q)
* Follow the Regularized Leader (FTRL)
[Hazan et al ‘06]

t—1
h, = argminz £.(h) + o;||h]|?
hex L

 Under some conditions
Ry < O(VT)

* Under stronger conditions
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Online to Batch Conversion for Unary Losses

*Key insight: h;_, is evaluated on an unseen point
[Cesa-Bianchi et al ‘01]

E[£:(he—)|o(xq, oy Xe—1)] = E€(he_q, %) = L(he_4)
*Set up a martingale difference sequence
Vi = L(he—q) — € (heq)
E[Vilo(x1, s x¢—1)] = 0

* Azuma-Hoeffding gives us
2L(he—q) < Yli(he—q) + (5(\/7)
Y. (h*) = TL(h") — O(VT)
* Together we get
YL(hi—q) — TL(RY) < Ry + O(VT)
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Online to Batch Conversion for Unary Losses

* Hypothesis selection

.o~ 1
* Convex loss function h = ;th

“ 1 ‘R (1
L(h) < TZL(ht) < L(h") + 7T 4+ 0 <\/_T>

* More involved for non convex losses

* Better results possible [Tewari-Kakade ‘08]
* Assume strongly convex loss functions

YL(hi—1) < TL(RY) + Ry + O(JR7)
* For Ry = O(log T), this reduces to

£(R) < %ZL(ht) <L) +0 <1°§ T)
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Part lll: Online Learning

Online Learning for Pairwise Loss Functions
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Model for Online Learning with Pairwise Losses

Propose
hypothesis
hi{_1 €H

Receive loss
ft(') =7

* Regret
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Defining Instantaneous Loss and Regret

* At time t, we receive point x;

* Natural definition of instantaneous loss:
All the pairwise interactions x; has with previous points

t—1
£:() = 2 f(xt,xr)(')
=1

* Corresponding notion of regret
— ) — Inf
Ry = 2l (he_q) AL Y. (h)
* Note that this notion of instantaneous loss satisfies

1,
Vh € K, 52, (h) = z_< L)) = 5 Ls(B)
i<j
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Online Learning Algorithm with Pairwise Losses

* For regularity, we use a normalized loss

t—1
1
£ () = t—_lz £ e x ) ()
=1

* Note that #,(-) is convex, bounded and Lipchitz if £ is so

* Turns out GIGA works just fine
he = heq — NVt (he—q)
* Guarantees similar regret bounds

Ry < O(VT)
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Online Learning Algorithm with Pairwise Losses

* Implementing GIGA requwes stormg previous history

Vhft() - 12 Vhf(xtx )()

* To reduce memory usage, keep a snapshot of history
* Limited memory buffer B = [0, 0,, ..., O]
* Modified instantaneous loss

1
LU =D ()
xEBt_l

* Responsibilities: at each time step ¢

* Update hypothesis h;_; = h; (same as GIGA but with £2Uf (1))
* Update buffer UPDATE (B;_4,x;) — B;
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Buffer Update Algorithm

* Online sampling algorithm for i.i.d. samples
[K. et al ‘13]

RS-x: Reservoir sampling with replacement

«_ > ~BQ1/v

4 b 3
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Regret Analysis for GIGA with RS-x

* RS-x gives the following guarantee
At any fixed time t, the buffer B contains s i.i.d. samples
from the previous history Hy = {Xq, ..., X¢_1}

 Use this to prove a Regret Conversion Bound

* Basic idea
* Prove a finite buffer regret bound

1 1
S Xt (he—y) < inf = Zi’b“f (W +0 ( ﬁ)

* Use uniform convergence style bounds to show

£.(h,_,) ~ P4 (h )+@i
t t—1 t t—1) — \/E
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Regret Analysis for GIGA with RS-x: Step 1

Finite Buffer Regret
» The modified algo. uses £ (\)to update hypothesis
°€}?“f (-) is also convex, bounded and Lipchitz given B
e Standard GIGA analysis gives us
1 buf - 1 buf ER?"Uf
fot (he1) < hlgjfﬁZi’t (h) + 0( 7 >,
where R2U = O(VT)
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Regret Analysis for GIGA with RS-x: Step 2

Uniform convergence
* Think of H; as population and B as i.i.d. sample of size s

* Define g, (1) = €(x,x) () and set unif. dist. over H,

* Population risk analysis
t—1
1
§() = Ege() = 7= ) Llaan() = £:)
=1

* Empirical risk analysis

A 1 1
GO=3), . IwO=7) L) =8O

* Finish off using Hg() — QA()HOO = 0 (%)
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Regret Analysis for GIGA with RS-x: Wrapping up

* Convert finite buffer regret to true regret

* Three results:
vt, £, (he_qy) < €29 (he_y) + O(1/4/5)
Vh, ‘v’t £buf (h) < £t(h) + 0(1/+/s)

vh, Zfb“f(ht 1) <= Zfb“f(h)+

buf

T

-Combme to get

1) R
_th(ht 1) < inf — th(h)+0(\/§) T

her T

~ (T

e. Ry < REW 4+ (ﬁ) =0 (ﬁ)
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Regret Analysis for GIGA with RS-x

* Better results possible for strongly convex losses
*Forany € > 0, we can show

1 2.2 (h) 5RT 1

R < (40 (a2 ) +0
*For realizable cases (i.e. L(h ) = 0), we can also show
()

S

R
_th(ht 1) < hmjf[Tth(h) +T+ 0
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Online to Batch Conversion for Pairwise Losses

* Recall that in unary case, we had an MDS
Vi = L(he—1) — € (he—q)

* Recall, in pairwise case, we have
L() — Ef(x’x/)()
t—1

1
£:(0) = t—_lz f(xt;xr)(.)
=1

*No longer an MDS since V; and V, T < t are coupled
E[Vi|o(H,)] = L(he—q) — E[€:(he—q)|o(H)] # 0

EO 370: Statistical Learning Theory
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Online to Batch Conversion for Pairwise Losses

Solution:

* Martingale creation: let £,(-) = E[£,(-)|o(H,)]
Ve = L(he—1) — e (hem1) + 2e(heoq) — €1 (he—q)
Vi =P+ Q¢

*Sequence (Q; is an MDS by construction: A.H. bounds

* Bounding P; using uniform convergence
* Be careful during symmetrization step

* End Result

1 R. (1
~2L(he—) < L(A) + TT +0 (\/_T)
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Faster Rates for Strongly Convex Losses

* Have to use fast rate results to bound both P; and Q,

* Fast rates for P,
For strongly unary convex loss functions £,.(:), we have

) ) (1
L(h) = £(h") < (1 + €) (£5(h) — £5(h")) + O (E)

* Fast rates for Q;
Use Bernstein inequality for martingales

* End result

2

%ZL(ht—l) < L(h*) + A +0 ( -

T
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Hidden Constants

* All our analyses involved Rademacher averages
* Even for regret analysis and bounding P; for slow/fast rates
* Get dimension independent bounds for regularized classes
* Weak dependence on dimensionality for sparse formulations
* Earlier work [Wang et al “12] used covering number methods

* If constants not imp. then can try analyzing V; directly
* Use covering number arguments to get linear dep. on d
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Some Interesting Projects

* Regret bounds require s = w(logT)
* Is this necessary: regret lower bound

* Learning higher order tensors
* Scalability issues

* RS-x is a data oblivious sampling algorithm
e Can throw away useful points by chance

e Data aware sampling methods + corresponding regret bounds
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That’s alll

Get slides from the following URL

http://research.microsoft.com/en-us/people/t-purkar/
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