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Part I: Introduction

E0 370: Statistical Learning Theory 3



What is a loss function?

•We observe empirical losses on data 𝑆 = 𝑥1, … 𝑥𝑛
ℓ𝑥𝑖 ⋅ = ℓ ℎ, 𝑥𝑖

•… and try to minimize them (e.g. classfn, regression)

 ℎ = inf
ℎ∈ℋ

 ℒ𝑆 ℎ ,  ℒ𝑆 ℎ =
1

𝑛
∑ℓ𝑥𝑖 ℎ

•… in the hope that
 1 𝑛∑ℓ𝑥𝑖 ⋅ − 𝔼ℓ𝑥 ⋅

∞
≤ 𝜖

• ... so that
ℒ  ℎ ≤ ℒ ℎ∗ + 𝜖, ℒ ℎ = 𝔼ℓ𝑥 ℎ
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ℓ:ℋ → ℝ+



Metric Learning

•Penalize metric for bringing blue and red points close

• Loss function needs to consider two points at a time!
• … in other words a pairwise loss function

•E.g. ℓ 𝑥1,𝑥2 𝑀 =  
1, 𝑦1 ≠ 𝑦2 and 𝑀 𝑥1, 𝑥2 < 𝛾1
1, 𝑦1 = 𝑦2 and 𝑀 𝑥1, 𝑥2 > 𝛾2
0, otherwise
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Pairwise Loss Functions

•Typically, loss functions are based on ground truth
ℓ𝑥 ℎ = ℓ ℎ 𝑥 , 𝑦 𝑥

•Thus, for metric learning, loss functions look like
ℓ 𝑥1,𝑥2 ℎ = ℓ ℎ 𝑥1, 𝑥2 , 𝑦 𝑥1, 𝑥2

• In previous example, we had

ℎ 𝑥1, 𝑥2 = 𝑀 𝑥1, 𝑥2 and 𝑦 𝑥1, 𝑥2 = 𝑦1𝑦2

•Useful to learn patterns that capture data interactions
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Pairwise Loss Functions

Examples: (𝜙 is any margin loss function e.g. hinge loss)

•Metric learning [Jin et al NIPS ‘09]

ℓ 𝑥1,𝑥2 𝑀 = 𝜙 𝑦1𝑦2 1 −𝑀 𝑥1, 𝑥2

•Preference learning [Xing et al NIPS ‘02]

•S-goodness [Balcan-Blum ICML ‘06]
ℓ 𝑥1,𝑥2 𝐾 = 𝜙 𝑦1𝑦2𝐾 𝑥1, 𝑥2

•Kernel-target alignment [Cortes et al ICML ‘10]

•Bipartite ranking, (p)AUC [Narasimhan-Agarwal ICML ‘13]

ℓ 𝑥1,𝑥2 𝑓 = 𝜙 𝑓 𝑥1 − 𝑓 𝑥2 𝑦1 − 𝑦2
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Learning Objectives in Pairwise Learning

•Given training data 𝑥1, 𝑥2, … 𝑥𝑛

• Learn  ℎ:𝒳 ×𝒳 → 𝒴 such that

ℒ  ℎ ≤ ℒ ℎ∗ + 𝜖

(will define ℒ ⋅ and  ℒ ⋅ shortly)

Challenges:

•Training data given as singletons, not pairs

•Algorithmic efficiency

•Generalization error bounds
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Part II: Batch Learning
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Part II: Batch Learning
Batch Learning for Unary Losses
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Training with Unary Loss Functions

•Notion of empirical loss
 ℒ:ℋ → ℝ+

•Given training data 𝑆 = 𝑥1, … , 𝑥𝑛 , natural notion

 ℒ𝑆 ⋅ =
1

𝑛
∑ℓ ⋅, 𝑥𝑖

•Empirical risk minimization dictates us to find  ℎ, s.t.
 ℒ𝑆  ℎ ≤ inf

ℎ∈ℋ
 ℒ𝑆 ℎ

•Note that  ℒ ⋅ is a U-statistic

•U-statistic: a notion of “training loss”  ℒ𝑆:ℋ → ℝ+ s.t.

∀ℎ ∈ ℋ,𝔼  ℒ𝑆 ℎ = ℒ ℎ
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Generalization bounds for Unary Loss Functions

•Step 1: Bound excess risk by suprēmus excess risk

ℒ  ℎ −  ℒ𝑆  ℎ ≤ sup
ℎ∈ℋ

ℒ ℎ −  ℒ𝑆 ℎ

•Step 2: Apply McDiarmid’s inequality
 ℒ𝑆 ℎ is not perturbed by changing any 𝑥𝑖

ℒ  ℎ −  ℒ𝑆  ℎ ≤ 𝔼 sup
ℎ∈ℋ

ℒ ℎ −  ℒ𝑆 ℎ +  𝒪  1 𝑛

•Step 3: Analyze the expected suprēmus excess risk

𝔼 sup
ℎ∈ℋ

ℒ ℎ −  ℒ𝑆 ℎ = 𝔼 sup
ℎ∈ℋ

𝔼  ℒ  𝑆 ℎ −  ℒ𝑆 ℎ

≤ 𝔼 sup
ℎ∈ℋ

 ℒ  𝑆 ℎ −  ℒ𝑆 ℎ (Jensen′s inequality)
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Analyzing the Expected Suprēmus Excess Risk 

•For unary losses  ℒ𝑆 ⋅ = ∑ℓ𝑥𝑖 ⋅

•Analyzing this term through symmetrization easy
1

n
𝔼 sup

ℎ∈ℋ
∑ℓ𝑥𝑖 ℎ − ℓ  𝑥𝑖 ℎ ≤

2

𝑛
𝔼 sup

ℎ∈ℋ
∑𝜖𝑖ℓ𝑥𝑖 ℎ

≤
2𝐿

𝑛
𝔼 sup

ℎ∈ℋ
∑𝜖𝑖ℎ 𝑥𝑖 ≈ 𝒪

1

𝑛
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𝔼 sup
ℎ∈ℋ

 ℒ  𝑆 ℎ −  ℒ𝑆 ℎ



Part II: Batch Learning
Batch Learning for Pairwise Loss Functions
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Training with Pairwise Loss Functions

•Given training data 𝑥1, 𝑥2, … 𝑥𝑛, choose a U-statistic

•U-statistic should use terms like ℓ 𝑥𝑖,𝑥𝑗
ℎ (the kernel)

•Population risk defined as ℒ ⋅ = 𝔼ℓ 𝑥,𝑥′ ⋅

Examples:

•For any index set Ω ⊂ 𝑛 × 𝑛 , define

 ℒS ⋅; Ω =
1

Ω
 

𝑖,𝑗 ∈Ω
ℓ 𝑥𝑖,𝑥𝑗

⋅

•Choice of Ω = 𝑖, 𝑗 : 𝑖 ≠ 𝑗 maximizes data utilization

•Various ways of optimizing inf
ℎ∈ℋ

 ℒ𝑆 ℎ (e.g. SSG)
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Generalization bounds for Pairwise Loss Functions

•Step 1: Bound excess risk by suprēmus excess risk

ℒ  ℎ −  ℒ𝑆  ℎ ≤ sup
ℎ∈ℋ

ℒ ℎ −  ℒ𝑆 ℎ

•Step 2: Apply McDiarmid’s inequality
Check that  ℒ𝑆 ℎ is not perturbed by changing any 𝑥𝑖

ℒ  ℎ −  ℒ𝑆  ℎ ≤ 𝔼 sup
ℎ∈ℋ

ℒ ℎ −  ℒ𝑆 ℎ +  𝒪  1 𝑛

•Step 3: Analyze the expected suprēmus excess risk

𝔼 sup
ℎ∈ℋ

ℒ ℎ −  ℒ𝑆 ℎ = 𝔼 sup
ℎ∈ℋ

𝔼  ℒ  𝑆 ℎ −  ℒ𝑆 ℎ

≤ 𝔼 sup
ℎ∈ℋ

 ℒ  𝑆 ℎ −  ℒ𝑆 ℎ (Jensen′s inequality)
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Analyzing the Expected Suprēmus Excess Risk 

•For pairwise losses  ℒ𝑆 ⋅ = ∑𝑖≠𝑗 ℓ 𝑥𝑖,𝑥𝑗
⋅

•Clean symmetrization not possible due to coupling

2𝔼 sup
ℎ∈ℋ

 

𝑖

 

𝑗

ℓ  𝑥𝑖,  𝑥𝑗
ℎ − ℓ 𝑥𝑖,𝑥𝑗

ℎ

•Solutions [see Clémençon et al Ann. Stat. ‘08]
• Alternate representation of U-statistics

• Hoeffding decomposition
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𝔼 sup
ℎ∈ℋ

 ℒ  𝑆 ℎ −  ℒ𝑆 ℎ



Part III: Online Learning

E0 370: Statistical Learning Theory 18



Part III: Online Learning
A Whirlwind Tour of Online Learning for Unary Losses
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Model for Online Learning with Unary Losses

Propose 
hypothesis 
ℎ𝑡−1 ∈ ℋ

Receive loss 
ℓ𝑡 ⋅ = ℓ 𝑥𝑡 ,⋅

Update
ℎ𝑡−1 → ℎ𝑡
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•Regret
ℜ𝑇 = ∑ℓ𝑡 ℎ𝑡−1 − inf

ℎ∈ℋ
∑ℓ𝑡 ℎ



Online Learning Algorithms

•Generalized Infinitesimal Gradient Ascent (GIGA)
[Zinkevich ’03]

ℎ𝑡 = ℎ𝑡−1 − 𝜂𝑡𝛻ℎℓ𝑡 ℎ𝑡−1
•Follow the Regularized Leader (FTRL)

[Hazan et al ‘06]

ℎ𝑡 = argmin
ℎ∈ℋ

 

𝜏=1

𝑡−1

ℓ𝜏 ℎ + 𝜎𝑡 ℎ 2

•Under some conditions
ℜ𝑇 ≤ 𝒪 𝑇

•Under stronger conditions
ℜ𝑇 ≤ 𝒪 log 𝑇
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Online to Batch Conversion for Unary Losses

•Key insight: ℎ𝑡−1 is evaluated on an unseen point
[Cesa-Bianchi et al ‘01]
𝔼 ℓ𝑡 ℎ𝑡−1 |𝜎(𝑥1, … , 𝑥𝑡−1) = 𝔼ℓ ℎ𝑡−1, 𝑥𝑡 = ℒ ℎ𝑡−1
•Set up a martingale difference sequence

𝑉𝑡 = ℒ ℎ𝑡−1 − ℓ𝑡 ℎ𝑡−1
𝔼 𝑉𝑡|𝜎 𝑥1, … , 𝑥𝑡−1 = 0

•Azuma-Hoeffding gives us
∑ℒ ℎ𝑡−1 ≤ ∑ℓ𝑡 ℎ𝑡−1 +  𝒪 𝑇

∑ℓ𝑡 ℎ
∗ ≥ 𝑇ℒ ℎ∗ −  𝒪 𝑇

•Together we get
∑ℒ ℎ𝑡−1 − 𝑇ℒ ℎ∗ ≤ ℜ𝑇 +  𝒪 𝑇
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Online to Batch Conversion for Unary Losses

•Hypothesis selection

• Convex loss function  ℎ =
1

𝑇
∑ℎ𝑡

ℒ  ℎ ≤
1

𝑇
∑ℒ ℎ𝑡 ≤ ℒ ℎ∗ +

ℜ𝑇

𝑇
+  𝒪

1

𝑇
• More involved for non convex losses

•Better results possible [Tewari-Kakade ‘08]
• Assume strongly convex loss functions

∑ℒ ℎ𝑡−1 ≤ 𝑇ℒ ℎ∗ +ℜ𝑇 +  𝒪 ℜ𝑇

• For ℜ𝑇 = 𝒪 log 𝑇 , this reduces to

ℒ  ℎ ≤
1

𝑇
∑ℒ ℎ𝑡 ≤ ℒ ℎ∗ +  𝒪

log 𝑇

𝑇
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Part III: Online Learning
Online Learning for Pairwise Loss Functions
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Model for Online Learning with Pairwise Losses

Propose 
hypothesis 
ℎ𝑡−1 ∈ ℋ

Receive loss 
ℓ𝑡 ⋅ = ?

Update
ℎ𝑡−1 → ℎ𝑡
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•Regret
ℜ𝑇 = ?



Defining Instantaneous Loss and Regret

•At time 𝑡, we receive point 𝑥𝑡

•Natural definition of instantaneous loss:
All the pairwise interactions 𝑥𝑡 has with previous points

ℓ𝑡 ⋅ =  

𝜏=1

𝑡−1

ℓ 𝑥𝑡,𝑥𝜏 ⋅

•Corresponding notion of regret
ℜ𝑇 = ∑ℓ𝑡 ℎ𝑡−1 − inf

ℎ∈ℋ
∑ℓ𝑡 ℎ

•Note that this notion of instantaneous loss satisfies

∀ℎ ∈ ℋ,∑ℓ𝑡 ℎ = 
𝑖<𝑗

ℓ 𝑥𝑖,𝑥𝑗
ℎ =

1

2
 ℒ𝑆 ℎ
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Online Learning Algorithm with Pairwise Losses

•For regularity, we use a normalized loss

ℓ𝑡 ⋅ =
1

𝑡 − 1
 

𝜏=1

𝑡−1

ℓ 𝑥𝑡,𝑥_𝜏 ⋅

•Note that ℓ𝑡 ⋅ is convex, bounded and Lipchitz if ℓ is so

•Turns out GIGA works just fine
ℎ𝑡 = ℎ𝑡−1 − 𝜂𝑡𝛻ℎℓ𝑡 ℎ𝑡−1

•Guarantees similar regret bounds
ℜ𝑇 ≤ 𝒪 𝑇
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Online Learning Algorithm with Pairwise Losses

• Implementing GIGA requires storing previous history

𝛻ℎℓ𝑡 ⋅ =
1

𝑡 − 1
 

𝜏=1

𝑡−1

𝛻ℎℓ 𝑥𝑡,𝑥𝜏 ⋅

•To reduce memory usage, keep a snapshot of history

• Limited memory buffer 𝐵 = □1, □2, … , □𝑠
•Modified instantaneous loss

ℓ𝑡
buf ⋅ =

1

𝑠
 

𝑥∈𝐵𝑡−1

ℓ 𝑥𝑡,𝑥 ⋅

•Responsibilities: at each time step 𝑡
• Update hypothesis ℎ𝑡−1 → ℎ𝑡 (same as GIGA but with ℓ𝑡

buf ⋅ )
• Update buffer UPDATE 𝐵𝑡−1, 𝑥𝑡 → 𝐵𝑡
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Buffer Update Algorithm

•Online sampling algorithm for i.i.d. samples
[K. et al ‘13]
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RS-x: Reservoir sampling with replacement

𝑧1𝑧𝑡

𝑧7𝑧1

𝑧2

𝑧2

𝑧3

𝑧3 𝑧6𝑧4 𝑧5𝑧𝑡

∼ 𝑩  𝟏 𝒕

𝑧𝑡 𝑧𝑡



Regret Analysis for GIGA with RS-x

•RS-x gives the following guarantee
At any fixed time 𝑡, the buffer 𝐵 contains 𝑠 i.i.d. samples 
from the previous history 𝐻𝑡 = 𝑥1, … , 𝑥𝑡−1
•Use this to prove a Regret Conversion Bound

•Basic idea
• Prove a finite buffer regret bound

1

T
∑ℓ𝑡

buf ℎ𝑡−1 ≤ inf
ℎ∈ℋ

1

𝑇
∑ℓ𝑡

buf ℎ + 𝒪
1

𝑇
• Use uniform convergence style bounds to show

ℓ𝑡 ℎ𝑡−1 ≈ ℓ𝑡
buf ℎ𝑡−1 ±  𝒪

1

𝑠
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Regret Analysis for GIGA with RS-x: Step 1

Finite Buffer Regret

•The modified algo. uses ℓ𝑡
buf ⋅ to update hypothesis

•ℓ𝑡
buf ⋅ is also convex, bounded and Lipchitz given 𝐵

•Standard GIGA analysis gives us

1

T
∑ℓ𝑡

buf ℎ𝑡−1 ≤ inf
ℎ∈ℋ

1

𝑇
∑ℓ𝑡

buf ℎ + 𝒪
ℜ𝑇
buf

𝑇
,

where ℜ𝑇
buf = 𝒪 𝑇
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Regret Analysis for GIGA with RS-x: Step 2

Uniform convergence

•Think of 𝐻𝑡 as population and 𝐵 as i.i.d. sample of size 𝑠

•Define 𝑔𝑥 ⋅ = ℓ 𝑥𝑡,𝑥 ⋅ and set unif. dist. over 𝐻𝑡
• Population risk analysis

𝒢 ⋅ = 𝔼𝑔𝑥 ⋅ =
1

𝑡 − 1
 

𝜏=1

𝑡−1

ℓ 𝑥𝑡,𝑥𝜏 ⋅ = ℓ𝑡 ⋅

• Empirical risk analysis

 𝒢 ⋅ =
1

𝑠
 

𝑥∈𝐵𝑡−1

𝑔 𝑥 ⋅ =
1

𝑠
 

𝑥∈𝐵𝑡−1

ℓ 𝑥𝑡,𝑥 ⋅ = ℓ𝑡
buf ⋅

•Finish off using 𝒢 ⋅ −  𝒢 ⋅
∞
≤  𝒪

1

𝑠
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Regret Analysis for GIGA with RS-x: Wrapping up

•Convert finite buffer regret to true regret

•Three results:

∀𝑡, ℓ𝑡 ℎ𝑡−1 ≤ ℓ𝑡
buf ℎ𝑡−1 +  𝒪  1 𝑠

∀ℎ, ∀𝑡, ℓ𝑡
buf ℎ ≤ ℓ𝑡 ℎ +  𝒪  1 𝑠

∀ℎ,
1

𝑇
∑ℓ𝑡

buf ℎ𝑡−1 ≤
1

𝑇
∑ℓ𝑡

buf ℎ +
ℜ𝑇
buf

𝑇
•Combine to get

1

T
∑ℓ𝑡 ℎ𝑡−1 ≤ inf

ℎ∈ℋ

1

𝑇
∑ℓ𝑡 ℎ +  𝒪

1

𝑠
+
ℜ𝑇
buf

𝑇

i.e. ℜ𝑇 ≤ ℜ𝑇
buf +  𝒪

𝑇

𝑠
=  𝒪

𝑇

𝑠
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Regret Analysis for GIGA with RS-x

•Better results possible for strongly convex losses

•For any 𝜖 > 0, we can show
1

T
∑ℓ𝑡 ℎ𝑡−1 ≤ 1 + 𝜖 inf

ℎ∈ℋ

∑ℓ𝑡 ℎ

𝑇
+
ℜ𝑇

𝑇
+  𝒪

1

𝜖𝑠

•For realizable cases (i.e. ℒ ℎ∗ = 0), we can also show

1

T
∑ℓ𝑡 ℎ𝑡−1 ≤ inf

ℎ∈ℋ

1

𝑇
∑ℓ𝑡 ℎ +

ℜ𝑇

𝑇
+  𝒪

ℜ𝑇

𝑠
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Online to Batch Conversion for Pairwise Losses

•Recall that in unary case, we had an MDS
𝑉𝑡 = ℒ ℎ𝑡−1 − ℓ𝑡 ℎ𝑡−1

•Recall, in pairwise case, we have
ℒ ⋅ = 𝔼ℓ 𝑥,𝑥′ ⋅

ℓ𝑡 ⋅ =
1

𝑡 − 1
 

𝜏=1

𝑡−1

ℓ 𝑥𝑡,𝑥𝜏 ⋅

•No longer an MDS since 𝑉𝑡 and 𝑉𝜏, 𝜏 < 𝑡 are coupled
𝔼 𝑉𝑡|𝜎 𝐻𝑡 = ℒ ℎ𝑡−1 − 𝔼 ℓ𝑡 ℎ𝑡−1 |𝜎 𝐻𝑡 ≠ 0
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Online to Batch Conversion for Pairwise Losses

Solution:

•Martingale creation: let  ℓ𝑡 ⋅ = 𝔼 ℓ𝑡 ⋅ |𝜎 𝐻𝑡
𝑉𝑡 = ℒ ℎ𝑡−1 −  ℓ𝑡 ℎ𝑡−1 +  ℓ𝑡 ℎ𝑡−1 − ℓ𝑡 ℎ𝑡−1
𝑉𝑡 = 𝑃𝑡 + 𝑄𝑡

•Sequence 𝑄𝑡 is an MDS by construction: A.H. bounds

•Bounding 𝑃𝑡 using uniform convergence
• Be careful during symmetrization step

•End Result
1

𝑇
∑ℒ ℎ𝑡−1 ≤ ℒ ℎ∗ +

ℜ𝑇

𝑇
+  𝒪

1

𝑇
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Faster Rates for Strongly Convex Losses

•Have to use fast rate results to bound both 𝑃𝑡 and 𝑄𝑡
•Fast rates for 𝑃𝑡

For strongly unary convex loss functions ℓ𝑥 ⋅ , we have

ℒ ℎ − ℒ ℎ∗ ≤ 1 + 𝜖  ℒ𝑆 ℎ −  ℒ𝑆 ℎ∗ +  𝒪
1

𝜖𝑛

•Fast rates for 𝑄𝑡
Use Bernstein inequality for martingales

•End result

1

𝑇
∑ℒ ℎ𝑡−1 ≤ ℒ ℎ∗ +

ℜ𝑇

𝑇
+  𝒪

ℜ𝑇

𝑇
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Hidden Constants

•All our analyses involved Rademacher averages
• Even for regret analysis and bounding 𝑃𝑡 for slow/fast rates
• Get dimension independent bounds for regularized classes
• Weak dependence on dimensionality for sparse formulations
• Earlier work [Wang et al ‘12] used covering number methods

• If constants not imp. then can try analyzing 𝑉𝑡 directly
• Use covering number arguments to get linear dep. on 𝑑
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Some Interesting Projects

•Regret bounds require 𝑠 = 𝜔 log 𝑇
• Is this necessary: regret lower bound

• Learning higher order tensors
• Scalability issues

•RS-x is a data oblivious sampling algorithm
• Can throw away useful points by chance
• Data aware sampling methods + corresponding regret bounds
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That’s all!
Get slides from the following URL

http://research.microsoft.com/en-us/people/t-purkar/
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