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Learning

Spam mail detection

Dear Junta,

The Hall-8 mess will be closed for the
occasion of Diwali at lunch & dinner
time. The breakfast will be served
along with Lunch packets tomorrow (26th
October, 2011).

Please collect your Lunch Packet. The
mess would resume its normal working from
27th October.

A legitimate mail

Hello,
I am resending my previous mail to you,
I hope you do get it this time around
and understand its content fully. I
am contacting you briefly based on the
Investment of Forty Five Million Dollars
(US$ 45,000,000:00) in your country, as I
presently have a client who is interested
in investing in your country.
Sincerely Yours,
J. Costa

Most likely a spam mail

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SEMINAR SERIES
Departmental Colloquium

Title: Similarity-based Learning via Data Driven Embeddings

Speaker: Purushottam Kar

Affiliation: Ph.D. Scholar, CSE Dept., IIT Kanpur

To each his own ...
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Learning

More formally ...

We are working over a domain X and wish to learn a target
classifier over the domain ` : X → {−1,+1}.

We are given training points S = {x1, x2, . . . , xn} sampled from
some distribution D over X and their true labels {`(x1), . . . , `(xn)}.
Our goal is to output a classifier ˆ̀ : X → {−1,+1} such that it
mostly gives out the true labels.

Pr
x∼D

[
ˆ̀(x) 6= `(x)

]
< ε
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Learning

Representing the data

Most learning algorithms (Perceptron, MRF, DBN, SVM, ...) like
working with numeric data i.e. X ⊂ Rd

How to make heterogeneous data (images, sound, web data)
numeric ?
SOLUTION 1 : Force a numeric representation by embedding all
data in some Euclidean space Rd

Φ : X → Rd

I Easy to do for images : (n × n) pixels 7→ R3n2
for RGB images

I Easier said than done for text, emails, web data (eg. BoW for text)

SOLUTION 2 : Work with some distance/similarity function over
the data

X
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Learning with Similarities

Classical algorithms that learn with similarities

Let K be a similarity measure (or w.l.o.g. a distance measure)

Nearest neighbor classification

ˆ̀(x) = `(NN(x))

NN(x) = arg max
x ′∈S

[
K (x , x ′)

]
Perceptron algorithm : X ⊂ Rd

ˆ̀(x) = sgn (〈w , x〉) for some w ∈ Rd

ˆ̀(x) = sgn

(∑
x ′∈S

α(x ′)K (x , x ′)`(x ′)

)
K (x , x ′) =

〈
x , x ′

〉
w =

∑
x ′∈S

α(x ′)`(x ′)

SVM allows use of arbitrary Positive semi-definite kernels

ˆ̀(x) = sgn

(∑
x ′∈S

αSVM(x ′)K (x , x ′)`(x ′)

)
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Learning with Similarities

Learning with Similarities

A lot of work was done in trying to incorporate various similarity
measures, distance measures into such frameworks
[Pȩkalska and Duin, 2001, Weinberger and Saul, 2009]

A fair amount went into algorithms that did not require PSD
kernels as SVMs do [Goldfarb, 1984]
Some very nice work involving isometric embeddings to
(pseudo)Hilbert / Banach spaces [Gottlieb et al., 2010,
von Luxburg and Bousquet, 2004, Haasdonk, 2005]
However, none addressed the issue of suitability of the
similarity/distance measure to the learning task
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Learning with Similarities

Suitable Similarities

A suitable similarity should intuitively give better classifier
performance

It is very well known that the choice of the kernel has a significant
impact on SVM classifier performance
In general, several domains have preferred notions of similarity
(e.g. earth mover’s distance for images)
Can formal notions of suitability lead to guaranteed performance ?

I For SVMs, suitability is formalized in terms of the margin offered by
the PSD kernel in its RKHS

I Having large margin does lead to generalization bounds
[Shawe-Taylor et al., 1998, Balcan et al., 2006]

Can we do the same for non-PSD similarities ?

P. Kar and P. Jain (IITK/MSRI) Similarity-based Learning November 3, 2011 9 / 29
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Learning with Suitable Similarities Learning with a Suitable Similarity Function

What is a good similarity function ?

Intuitively, a good similarity function should at least respect the
labeling of the domain

It should not assign small similarity to points with same label and
large similarity to distinctly labeled points

Definition ([Balcan and Blum, 2006])
A similarity K : X × X → R is said to be (ε, γ)-good for a classification
problem if for some weighing function w : X → [−1,1], at least a
(1− ε) probability mass of examples x ∼ D satisfies

E
x ′∼D,`(x ′)=`(x)
x ′′∼D,`(x ′′)6=`(x)

[
w
(
x ′
)

K (x , x ′)− w
(
x ′′
)

K (x , x ′′)
]
≥ γ

In other words, according to the similarity function, most points, on
an average, are more similar to points of the same label
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Learning with Suitable Similarities Learning with a Suitable Similarity Function

Learning with a good similarity function

Theorem ([Balcan and Blum, 2006])

Given an (ε, γ)-good similarity function, for any δ > 0, given n = 16
γ2 lg 2

δ

labeled points (xi)
n
i=1, the classifier ˆ̀defined below has error at margin

γ
2 no more than ε+ δ with probability greater than 1− δ,

ˆ̀(x) = sgn
(

n∑
i=1

w(xi)`(xi)K (x , xi)

)

Notice that the classifier is very similar in form to the SVM and
Perceptron classifiers
Consequently one can use these algorithms to learn this classifier
as well
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Learning with Suitable Similarities Learning with a Suitable Distance Function

What is a good distance function

Definition ([Wang et al., 2007])
A distance function d : X × X → R is said to be (ε, γ,B)-good for a
classification problem if there exist two class conditional probability
distributions D̃+ and D̃− such that for all x ∈ X , D̃+(x)

D(x) <
√

B and
D̃−(x)
D(x) <

√
B, such that at least a (1− ε) probability mass of examples

x ∼ D satisfies

Pr
x ′∼D̃+

x ′′∼D̃−

[
`(x)

(
`(x ′)d(x , x ′)− `(x ′′)d(x , x ′′)

)
< 0

]
≥ 1

2
+ γ

The definition expects the distance function to set dissimilarly
labeled points farther off than similarly labeled points
Yet again this yields a classifier with guaranteed generalization
properties
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Learning with Suitable Similarities Learning with a Suitable Distance Function

Learning with a good distance function

Theorem ([Wang et al., 2007])
Given an (ε, γ,B)-good distance function, for any δ > 0, given
n = 4B2

γ2 lg 1
δ pairs of positive and negatively labeled points

(
x+

i , x
−
i

)n
i=1,

the classifier ˆ̀defined below has error at margin γ
B no more than ε+ δ

with probability greater than 1− δ,

ˆ̀(x) = sgn
(

n∑
i=1

βi sgn
(
d(x , x+

i )− d(x , x−1 )
))

,
n∑

i=1
βi = 1, βi ≥ 0

This naturally lends itself to a boosting-like implementation
Each of the pairs yields a stump sgn

(
d(x , x+

i )− d(x , x−1 )
)
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Data-sensitive Notions of Suitability

A unified notion of what is a good similarity/distance

Disparate as the last two models may seem, they are, in fact, quite
related to each other

Motivated by this observation we propose a notion of goodness
that is data-sensitive
This notion allows us to tune the goodness notion itself, allowing
for better classifiers
The resulting model subsumes the previous two models
Consequently, the model does not require separate treatment for
similarity and distance functions either
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Data-sensitive Notions of Suitability

What is a good similarity/distance function

Definition (K. and Jain, 2011)
A similarity function K : X × X → R is said to be (ε, γ,B)-good for a
classification problem if for some antisymmetric transfer function
f : R→ [−Cf ,Cf ] and some weighing function w : X × X → [−B,B], at
least a (1− ε) probability mass of examples x ∼ D satisfies

E
x ′∼D,`(x ′)=`(x)
x ′′∼D,`(x ′′)6=`(x)

[w (x ′, x ′′) f (K (x , x ′)− K (x , x ′′))] ≥ 2Cfγ

With appropriate setting of the weighing function and the transfer
function, the previous two models can be recovered.
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Data-sensitive Notions of Suitability Learning with Data-sensitive Notions of Suitability

Learning with data-sensitive notions of suitability

The learning algorithm is not as simple as before since the
guarantees we give hold only if the a good transfer function is
chosen.

Let us first see how, given a (good) transfer function, can we learn
a (good) classifier.
We will later on plug in the routines to learn the transfer function
as well.
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Data-sensitive Notions of Suitability Learning with Data-sensitive Notions of Suitability

Learning with data-sensitive notions of suitability

Algorithm 1 LEARN-DISSIM

Require: A similarity function K , landmark pairs L =
(

x+
i , x

−
i

)n

i=1
, a good

transfer function f .
Ensure: A classifier ˆ̀ : X → {−1,+1}

1: Define ΦL : X → Rn as ΦL : x 7→
(

f (K (x , x+
i )− K (x , x−i ))

)n

i=1

2: Get a labeled training set T =
{

tj
}n′

j=1 ⊂ X sampled from D.

3: T ′ ←
{

ΦL(tj )
}n′

j=1 ⊂ Rn be the data set embedded in Rn

4: Learn a linear hyperplane over Rn using T ′, `lin ← LEARN-LINEAR(T ′)
5: Let ˆ̀ : X → {−1,+1} be defined as ˆ̀ : x 7→ `lin (ΦL(x))

6: return ˆ̀

LEARN-LINEAR may be taken to be any linear hyperplane
learning algorithm such as Perceptron, SVM.
The above procedure essentially creates a data-driven, problem
specific embedding of the domain X into a Euclidean space
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Data-sensitive Notions of Suitability Learning with Data-sensitive Notions of Suitability

Learning with data-sensitive notions of suitability

The results given earlier guarantee small classification error at
large margin

Not amenable to efficient algorithms as hyperplane classification
error is NP-hard to minimize
[Garey and Johnson, 1979, Arora et al., 1997]
We provide our guarantees in terms of smooth Lipschitz losses
like hinge-loss, log-loss etc that can be efficiently minimized over
large datasets.
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Data-sensitive Notions of Suitability Learning with Data-sensitive Notions of Suitability

Working with surrogate loss functions

Definition (K. and Jain, 2011)
A similarity function is said to be (ε,B)-good with respect to a loss
function L : R→ R+ if for some transfer function f : R→ R and some
weighing function w : X × X → [−B,B], E

x∼D
[L(G(x))] ≤ ε where

G(x) = E
x ′∼D,`(x ′)=`(x)
x ′′∼D,`(x ′′) 6=`(x)

[w (x ′, x ′′) f (K (x , x ′)− K (x , x ′′))]

Theorem (K. and Jain, 2011)
If K is an (ε,B)-good similarity function with respect to a CL-Lipschitz
loss function L then for any ε1 > 0, with probability at least 1− δ over
the choice of d = (16B2C2

L/ε
2
1) ln(4B/δε1) landmark pairs, the

expected loss of the classifier ˆ̀(x) returned by LEARN-DISSIM with
respect to L satisfies E

x

[
L(ˆ̀(x))

]
≤ ε+ ε1.
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Working with surrogate loss functions

Definition (K. and Jain, 2011)
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x∼D
[L(G(x))] ≤ ε where

G(x) = E
x ′∼D,`(x ′)=`(x)
x ′′∼D,`(x ′′) 6=`(x)
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Learning the transfer function

We give uniform convergence guarantees that enable standard
ERM-based routines to recover the best transfer from any
compact class of antisymmetric functions.

This will yield a nested learning problem with the ERM-based
transfer function learning algorithm calling the classifier learning
algorithm as a subroutine.
For any transfer function f and arbitrary set of landmarks L, let
L(f ) = E

x∼D
[L(G(x))] and let L(f ,L) denote the generalization loss

of the best classifier that uses the embedding ΦL defined by the
landmarks L.
The earlier result shows that for a fixed f , for a large enough
random L, L(f ,L) ≤ L(f ) + ε1.
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Learning the transfer function

Theorem (K. and Jain, 2011)
Let F be a compact class of
transfer functions with respect to
the infinity norm and ε1, δ > 0. Let
N (F , r) be the size of the smallest
ε-net over F with respect to the
infinity norm at scale r = ε1

4CLB .

Taking n =
64B2C2

L
ε21

ln
(

16B·N (F ,r)
δε1

)
random landmark pairs, we have
with probability greater than (1− δ)

sup
f∈F

[|L(f ,L)− L(f )|] ≤ ε1

Algorithm 2 FTUNE
Require: A family of transfer functions F , a

similarity function K , a loss function L.
Ensure: An optimal transfer function f∗ ∈ F .

1: Select d landmark pairs L .
2: for all f ∈ F do
3: wf ← LEARN-DISSIM(K ,L, f ),

Lf ← L (f ,L)
4: end for
5: f∗ ← arg min

f∈F
Lf

6: return f∗.
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Intelligent choice of landmark points

If landmarks are clumped
together, then all points will
get a similar embedding
and linear separation
would be impossible

Thus we promote diversity
among the landmarks as a
heuristic on small datasets
On large datasets FTUNE
itself is able to recover the
best transfer function as it
does not over-fit

Algorithm 3 DSELECT
Require: A training set T .
Ensure: A set of n landmark pairs.

1: S ← RANDOM-ELEMENT(T ),L ← ∅
2: for j = 2 to n do
3: z ← arg min

x∈T

∑
x′∈S

K (x , x ′).

4: S ← S ∪ {z}, T ← T\{z}
5: end for
6: for j = 1 to n do
7: Sample z1, z2 from S with replacement s.t.

`(z1) = 1, `(z2) = −1
8: L ← L ∪ {(z1, z2)}
9: end for

10: return L
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Discussion

BBS performs reasonably well for small landmarking sizes while
DBOOST performs well for large landmarking sizes.

In contrast, our method consistently outperforms the existing
methods in both the scenarios.
Since FTUNE selects its output by way of validation, it is
susceptible to over-fitting on small datasets.
In these cases, DSELECT (intuitively) removes redundancies in
the landmark points thus allowing FTUNE to recover the best
transfer function.
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Thanks

Preprint available at
http://www.cse.iitk.ac.in/users/purushot/
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