

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes Harikrishna Narasimhan^{*}, Purushottam Kar[#], and Prateek Jain[#]

*Indian Institute of Science, INDIA **#Microsoft Research, INDIA**

Microsoft[®] Research

STAMP: STochastic Alternating Maximization Procedure (for *pseudo-linear* measures based on *level set structure*)

Example: F-measure \mathcal{P} sets (linear in P and N) $\left(\frac{v}{2}\right)P(\mathbf{w}) + \frac{v}{2}N(\mathbf{w}) = v$ (also exploited in the method of Parambath et al., '14) $\frac{v_j}{2}P(\mathbf{w}) + \frac{v_j}{2}N(\mathbf{w})$ $P(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1}$
F-measure (Manning et al., '08) $\frac{2P}{1+\theta+P-\theta N}$ Jaccard Coefficient (Koyejo et al., '14) $\frac{P}{1+\theta-\theta N}$ Gower-Legendre measure (Sokolova & Lapalme, '09) (where θ is the ratio of proportions of positives to negativescear Level SetsExample: F-measure \mathcal{P} sets (hear in P and N) $-\frac{v}{2}$) $P(\mathbf{w}) + \frac{v}{2}N(\mathbf{w}) = v$ (also exploited in the method of Parambath et al., '14) $\frac{v_j}{2}$ $P(\mathbf{w}) + \frac{v_j}{2}N(\mathbf{w})$ $P(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j-1})$ <
Gower-Legendre measure (Sokolova & Lapalme, '09) (where Θ is the ratio of proportions of positives to negatives cear Level Sets ear Level Sets ear Level Sets ear Level Sets (hear in P and N) $-\frac{v}{2} P(\mathbf{w}) + \frac{v}{2} N(\mathbf{w}) = v$ (also exploited in the method of Parambath et al., '14) $\frac{v_j}{2} P(\mathbf{w}) + \frac{v_j}{2} N(\mathbf{w})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1}) = \mathcal{P}(\mathbf{w}_{j})$ $p(\mathbf{w}_{j+1}) = \mathcal{P}(\mathbf{w}_{j})$ $p(\mathbf{w}_{j}) = \mathcal{P}(\mathbf{w}_{j}) = \mathcal{P}(\mathbf{w}_{j})$
sets (hear in P and N) $ \frac{v_j}{2}P(\mathbf{w}) + \frac{v}{2}N(\mathbf{w}) = v $ (also exploited in the method of Parambath et al., '14) $ \frac{v_j}{2}P(\mathbf{w}) + \frac{v_j}{2}N(\mathbf{w}) \qquad \qquad$
Example: F-measure \mathcal{P} sets (linear in P and N) $-\frac{v}{2}P(\mathbf{w}) + \frac{v}{2}N(\mathbf{w}) = v$ (also exploited in the method of Parambath et al., '14) $\frac{v_j}{2}P(\mathbf{w}) + \frac{v_j}{2}N(\mathbf{w})$ $P(\mathbf{w}_{j+1})$ $p(\mathbf{w}_{j+1})$
sets (hear in P and N) $\frac{v_j}{2}P(\mathbf{w}) + \frac{v}{2}N(\mathbf{w}) = v$ (also exploited in the method of Parambath et al., '14) $\frac{v_j}{2}P(\mathbf{w}) + \frac{v_j}{2}N(\mathbf{w}) \qquad \qquad$
$\frac{v_{j}}{2}P(\mathbf{w}) + \frac{v_{j}}{2}N(\mathbf{w})$ $P(\mathbf{w}_{j+1})$ $P($
$P(\mathbf{w}_{j+1})$ e of Dinkelbach ('67) & Jagannathan ('66) over parameterized spaces epoch size after each iteration $A \qquad B \qquad \cdots \cdots$ $P(\mathbf{w}_{j+1}) \qquad P(\mathbf{w}_{j}) = \mathcal{P}(\mathbf{w}_{j}) \leq \mathcal{O}(2^{-j})$
$P(\mathbf{w}_{j+1})$ e of Dinkelbach ('67) & Jagannathan ('66) over parameterized spaces epoch size after each iteration $A \qquad B \qquad \cdots \cdots$ $P(\mathbf{w}_{j+1}) \qquad P(\mathbf{w}_{j}) = \mathcal{P}(\mathbf{w}_{j}) \leq \mathcal{O}(2^{-j})$
e of Dinkelbach ('67) & Jagannathan ('66) over parameterized spaces epoch size after each iteration A B ······ Gence Guarantees rations, $\sup \mathcal{P}(\mathbf{w}) - \mathcal{P}(\mathbf{w}_j) \leq \mathcal{O}(2^{-j})$
epoch size after each iteration A B ······ rgence Guarantees cations, sup $\mathcal{P}(\mathbf{w}) - \mathcal{P}(\mathbf{w}_j) \leq \mathcal{O}(2^{-j})$
A B Sumple Series B and a series
A B Sumple Series B and a series
stations, sup $\mathcal{P}(\mathbf{w}) - \mathcal{P}(\mathbf{w}_j) \leq \mathcal{O}(2^{-j})$
rations, sup $\mathcal{P}(\mathbf{w}) - \mathcal{P}(\mathbf{w}_j) \leq \mathcal{O}(2^{-j})$
rations, sup $\mathcal{P}(\mathbf{w}) - \mathcal{P}(\mathbf{w}_j) \leq \mathcal{O}(2^{-j})$
is, w.h.p. $\sup_{\mathbf{w}\in\mathcal{W}} \mathcal{P}(\mathbf{w}) - \mathcal{P}(\overline{\mathbf{w}}) \leq \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ olds for other performance measures for appropriate epoch scaling)
ng maximization procedure with noisy updates
Experiments
F-measure Jaccard Coefficient Bug-in (F1): 7.2s bug-in (br): 9.2s Training time (secs) Bug-in (br): 9.2s training time (secs)