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The Goal

Analyze a class of effective and scalable iterative methods for
high-dimensional statistical estimation problems.

High-dimensional M-estimation

Example: Sparse least squares regression
Given: n samples zi = (xi, yi), yi ≈

〈
θ̄,xi

〉
where θ̄ is sparse

Task: Recover a sparse θest ∈ Rp such that θest ≈ θ̄
Points to note:

•Severely under-specified problem n� p

•Model sparsity
∥∥∥θ̄∥∥∥

0
= s∗� p

The good news:

•Consistent estimation possible with structural assumptions
◦Sparsity, low rank

•Poly-time estimation routines assuming RSC/RSS
◦Convex relaxations (LASSO), greedy methods

The not-so-good news:

•The above estimation routines do not scale at all!
◦Convex relaxations: non-smooth ⇒ slow rates
◦Greedy methods: incremental approach ⇒ slow progress

Setting the Stage

Given data samples, sparse estimation can be formulated as

θ∗ = arg min
‖θ‖0≤s∗

f (θ) = L(θ; z1:n) (1)

Examples: (label noise: ξi ∼ N (0, σ2))

1. Sparse LS regression: yi =
〈
θ̄,xi

〉
+ξi, xi ∼ N (x̄,Σ),

∥∥∥θ̄∥∥∥
0
≤ s∗

L(θ; z1:n) = 1
n

∑
(yi − 〈xi,θ〉)2

2. Regression with feature noise: feature noise can be
◦ additive: x̃i = xi + wi with wi ∼ N (0,ΣW )
◦ obliterative: x̃i = xi w.p. 1− ν and ∗ otherwise

Let Γ̂ = X̃>X̃/n− ΣW and γ̂ = X̃>Y/n

L(θ; z1:n) = 1
2θ
>Γ̂θ − γ̂>θ

Note: the above is non-convex for n� p

3. Low-rank matrix regression: yi = tr(WXT
i ) + ξi, rank(W ) = s∗

L(W ;Z1:n) = 1
n

∑
(yi − tr(WXT

i ))2

Iterative Hard Thresholding-style Methods

•Family of projected gradient descent-style methods

•Take gradient step along ∇θf (θ) and project onto feasible set
◦Sparsity: Ps(z): take s-largest elements of z by magnitude
◦Low rank: PMs(W ): take top-s singular components of W

•Very popular, methods of choice for large-scale applications
◦ IHT, GraDeS, HTP, CoSaMP, SP, OMPR(`), . . .

IHT Methods in Practice

•Give comparable recovery quality as L1 or greedy

•Much more scalable than L1, greedy methods
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(a) Recovery quality under noise
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(b) Runtimes with large problem sizes

Challenges ...

•Current analyses deficient in analyzing statistical models

Restricted Strong Convexity/Smoothness

A function f satisfies RSC/RSS with constants α2s and L2s if
for all θ1,θ2 such that

∥∥∥θ1
∥∥∥

0
,
∥∥∥θ2

∥∥∥
0
≤ s, we have

α2s

2

∥∥∥θ1 − θ2
∥∥∥2

2
≤ f (θ1)− f (θ2)−

〈
θ1 − θ2,∇θf (θ2)

〉
≤ L2s

2

∥∥∥θ1 − θ2
∥∥∥2

2

•All known bounds require κ = L2s/α2s < constant
◦For LS objective, this reduces to the RIP condition
◦Best known constant κ < 3 (or δ2s < 0.5) due to OMPR(`)
◦Completely silent otherwise

•Assumption untrue: practical settings exhibit large κ

ΣX =

 1 1− ε
1− ε 1


Note: even with infinite samples, κ = Ω (1/ε)

The Big Question

Can we show provable recovery guarantees for popular IHT-style methods under statistical settings with high condition numbers?

Iterative Hard-thresholding

Includes algorithms such as IHT, GraDeS

Algorithm 1 (IHT)

1. while not converged

2. θt+1← Ps(θ
t − η∇θf (θt))

Theorem: IHT guarantees f (θτ) − f (θ∗) ≤ ε for τ ≥ L2s

α2s
log 1

ε.

Proof Idea: Key idea is to use a relaxed projection s ≥
(
L
α

)2
s∗.
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Note: on large κ = 50 problems, relaxed projection really helps
Crucial: Ps(·) provides strong contraction if s� s∗. If θ = Ps(z),

‖θ − z‖2
2 ≤

p− s
p− s∗

‖θ∗ − z‖2
2

Two-stage Hard-thresholding

Includes algorithms such as CoSaMP, Subspace pursuit

Algorithm 2 (TsHT)

1. while not converged

2. gt← ∇θf (θt), St← supp(θt)

3. βt← FC
(
f ;St ∪

{
largest ` elements of

∣∣∣gt
St

∣∣∣})
4. zt← Ps(β

t)

5. θt+1← FC(f ; supp(zt))

•Utilizes a fully corrective step

FC(f ;S) = arg minsupp(θ)⊆S f (θ)

•Similar convergence bounds as IHT - better constants

•Key idea 1: large distance from optima implies a large gradient

‖gtSt∪S∗‖ ≥ 2α2s(f (θ)− f (θ∗)) + α2
2s‖θtSt\S∗‖

•Key idea 2: projection doesn’t undo progress made by FC(·)

f (zt)− f (βt) ≤ L2s

α2s
· `

s + `− s∗
·
(
f (βt)− f (θ∗)

)
•Analyze Partial Hard-thresholding methods OMPR(`) as well

Guarantees for High Dimensional Statistical Estimation

Theorem: If θest is an εopt-optimal solution to (1), then

∥∥∥θest − θ̄
∥∥∥

2
≤
√
s + s∗

∥∥∥∇θL(θ̄; z1:n)
∥∥∥∞

αs+s∗
+

√√√√ εopt

αs+s∗

Proof Idea: IHT results, RSC/RSS and Hölder’s inequality

•Results hold even for non-convex L(·)
◦Only RSC and RSS need to hold
◦Essential for noisy regression models

Sparse LS regression Regression with feature noise

RSC (αk)
σmin(Σ)

2
− k log p

n

σmin(Σ)

2
− kτ (p)

n

RSS (Lk) 2σmax(Σ) +
k log p

n

3σmax(Σ)

2
+
kτ (p)

n

‖∇L(·)‖∞ σ

√
log p

n
σ̃
∥∥∥θ̄∥∥∥

2

√
log p

n∥∥∥θest − θ̄
∥∥∥

2

κ(Σ)

σmin(Σ)
σ

√
s∗ log p

n
+

√
εopt

σmin(Σ)

κ(Σ)

σmin(Σ)
σ̃
∥∥∥θ̄∥∥∥

2

√
s∗ log p

n
+

√
εopt

σmin(Σ)

∗τ (p) = log p · (‖Σ‖2+‖ΣW‖2)2
σmin(Σ)

∗∗σ̃ = (‖ΣW‖ + σ)
√
‖Σ‖2 + ‖ΣW‖2
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