On Iterative Hard Thresholding Methods for High-dimensional M-Estimation

Prateek Jain*, Ambuj Tewari[†], and Purushottam Kar*

*Microsoft Research, INDIA [†]University of Michigan, Ann Arbor, USA

The Goal

Analyze a class of effective and scalable iterative methods for high-dimensional statistical estimation problems.

High-dimensional M-estimation

Example: Sparse least squares regression

Given: *n* samples $\mathbf{z}_i = (\mathbf{x}_i, y_i)$, $y_i \approx \langle \bar{\theta}, \mathbf{x}_i \rangle$ where $\bar{\theta}$ is sparse Task: Recover a sparse $\theta^{\mathsf{est}} \in \mathbb{R}^p$ such that $\theta^{\mathsf{est}} \approx \overline{\theta}$ Points to note:

• Severely under-specified problem $n \ll p$

• Model sparsity $\|ar{m{ heta}}\|_0 = s^* \ll p$

The good news:

- Consistent estimation possible with structural assumptions • Sparsity, low rank
- Poly-time estimation routines assuming RSC/RSS Convex relaxations (LASSO), greedy methods

The not-so-good news:

- The above estimation routines do not scale at all!
- Convex relaxations: non-smooth \Rightarrow slow rates
- \circ Greedy methods: incremental approach \Rightarrow slow progress

Setting the Stage

Given data samples, sparse estimation can be formulated as

$$\boldsymbol{\theta}^* = \underset{\|\boldsymbol{\theta}\|_0 \leq s^*}{\arg\min} f(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}; \mathbf{z}_{1:n})$$
(1)

Examples: (label noise: $\xi_i \sim \mathcal{N}(0, \sigma^2)$) 1. Sparse LS regression: $y_i = \langle \bar{\theta}, \mathbf{x}_i \rangle + \xi_i$, $\mathbf{x}_i \sim \mathcal{N}(\bar{\mathbf{x}}, \Sigma)$, $\|\bar{\theta}\|_0 \leq s^*$ $\mathcal{L}(\boldsymbol{\theta}; \mathbf{z}_{1:n}) = \frac{1}{n} \sum (y_i - \langle \mathbf{x}_i, \boldsymbol{\theta} \rangle)^2$

2. Regression with feature noise: feature noise can be • additive: $\tilde{\mathbf{x}}_i = \mathbf{x}_i + \mathbf{w}_i$ with $\mathbf{w}_i \sim \mathcal{N}(\mathbf{0}, \Sigma_W)$ obliterative: $\tilde{\mathbf{x}}_i = \mathbf{x}_i$ w.p. $1 - \nu$ and * otherwise Let $\hat{\Gamma} = \hat{X}^{\top}\hat{X}/n - \Sigma_W$ and $\hat{\gamma} = \hat{X}^{\top}Y/n$ $\mathcal{L}(\boldsymbol{\theta}; \mathbf{z}_{1:n}) = \frac{1}{2} \boldsymbol{\theta}^{\top} \hat{\Gamma} \boldsymbol{\theta} - \hat{\gamma}^{\top} \boldsymbol{\theta}$

Note: the above is non-convex for $n \ll p$

3. Low-rank matrix regression: $y_i = tr(\overline{W}X_i^T) + \xi_i$, $rank(\overline{W}) = s^*$ $\mathcal{L}(W; Z_{1:n}) = \frac{1}{n} \sum (y_i - \operatorname{tr}(WX_i^T))^2$

Iterative Hard Thresholding-style Methods

- Family of projected gradient descent-style methods
- Take gradient step along $\nabla_{\theta} f(\theta)$ and project onto feasible set • Sparsity: $P_s(z)$: take s-largest elements of z by magnitude • Low rank: $PM_s(W)$: take top-s singular components of W
- Very popular, methods of choice for large-scale applications
- \circ IHT, GraDeS, HTP, CoSaMP, SP, OMPR(ℓ), ...

IHT Methods in Practice

- Give comparable recovery quality as L_1 or greedy
- Much more scalable than L_1 , greedy methods

Challenges ...

• Current analyses deficient in analyzing statistical models

Restricted Strong Convexity/Smoothness

A function f satisfies RSC/RSS with constants $lpha_{2s}$ and L_{2s} if for all $oldsymbol{ heta}^1, oldsymbol{ heta}^2$ such that $\|oldsymbol{ heta}^1\|_0, \|oldsymbol{ heta}^2\|_0 \leq s$, we have $\frac{\alpha_{2s}}{2} \left\| \boldsymbol{\theta}^1 - \boldsymbol{\theta}^2 \right\|_2^2 \leq f(\boldsymbol{\theta}^1) - f(\boldsymbol{\theta}^2) - \left\langle \boldsymbol{\theta}^1 - \boldsymbol{\theta}^2, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^2) \right\rangle \leq \frac{L_{2s}}{2} \left\| \boldsymbol{\theta}^1 - \boldsymbol{\theta}^2 \right\|_2^2$

• All known bounds require $\kappa = L_{2s}/\alpha_{2s} < \text{constant}$

- For LS objective, this reduces to the RIP condition
- Best known constant $\kappa < 3$ (or $\delta_{2s} < 0.5$) due to $\mathsf{OMPR}(\ell)$
- Completely silent otherwise
- Assumption untrue: practical settings exhibit large κ

$$\Sigma_X = \begin{bmatrix} 1 & 1 - \epsilon \\ 1 - \epsilon & 1 \end{bmatrix}$$

Note: even with infinite samples, $\kappa = \Omega (1/\epsilon)$

Guarantees for High Dimensional Statistical Estimation

Theorem: If θ^{est} is an ϵ_{opt} -optimal solution to (1), then $\left\|\boldsymbol{\theta}^{\mathsf{est}} - \bar{\boldsymbol{\theta}}\right\|_{2} \leq \frac{\sqrt{s+s^{*}} \left\|\nabla_{\boldsymbol{\theta}} \mathcal{L}(\bar{\boldsymbol{\theta}}; \mathbf{z}_{1:n})\right\|_{\infty}}{+}$ RSS **Proof Idea**: IHT results, RSC/RSS and Hölder's inequality • Results hold even for non-convex $\mathcal{L}(\cdot)$ • Only RSC and RSS need to hold Essential for noisy regression models $^{*}\tau(p) =$

Microsoft® Research

Two-stage Hard-thresholding

Includes algorithms such as CoSaMP, Subspace pursuit

Algorithm	2	(TsHT)	
		• •	

1. while not converged			
2.	$\mathbf{g}^t \leftarrow \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t), S^t \leftarrow supp(\boldsymbol{\theta}^t)$		
3.	$\boldsymbol{\beta}^t \leftarrow FC\left(f; S^t \cup \left\{ \text{largest } \ell \text{ elements of } \left \mathbf{g}_{\overline{S^t}}^t \right \right\} ight)$		
4.	$\mathbf{z}^t \leftarrow P_s(\boldsymbol{\beta}^t)$		
5.	$\boldsymbol{\theta}^{t+1} \leftarrow FC(f; supp(\mathbf{z}^t))$		

• Utilizes a fully corrective step

$$FC(f;S) = \arg\min_{supp(\boldsymbol{\theta}) \subseteq S} f(\boldsymbol{\theta})$$

- Similar convergence bounds as **IHT** better constants
- Key idea 1: large distance from optima implies a large gradient

$$\mathbf{g}_{S^t \cup \mathcal{S}^*}^t \| \ge 2\alpha_{2s}(f(\boldsymbol{\theta}) - f(\boldsymbol{\theta}^*)) + \alpha_{2s}^2 \|\boldsymbol{\theta}_{S^t \setminus S^*}^t\|$$

• Key idea 2: projection doesn't undo progress made by $FC(\cdot)$

$$f(\mathbf{z}^t) - f(\boldsymbol{\beta}^t) \le \frac{L_{2s}}{\alpha_{2s}} \cdot \frac{\ell}{s + \ell - s^*} \cdot \left(f(\boldsymbol{\beta}^t) - f(\boldsymbol{\theta}^*)\right)$$

• Analyze Partial Hard-thresholding methods $OMPR(\ell)$ as well

	Sparse LS regression	Regression with feature noise
RSC (α_k)	$\frac{\sigma_{\min}(\Sigma)}{2} - \frac{k\log p}{n}$	$\frac{\sigma_{\min}(\Sigma)}{2} - \frac{k\tau(p)}{n}$
RSS (L_k)	$2\sigma_{\max}(\Sigma) + \frac{k\log p}{n}$	$\frac{3\sigma_{\max}(\Sigma)}{2} + \frac{k\tau(p)}{n}$
$\ \nabla \mathcal{L}(\cdot) \ _{\infty}$	$\sigma \sqrt{\frac{\log p}{n}}$	$ ilde{\sigma} \left\ ar{oldsymbol{ heta}} _2 \sqrt{rac{\log p}{n}} ight.$
$\left\ \boldsymbol{\theta}^{est} - \bar{\boldsymbol{\theta}} \right\ _2$	$\frac{\boldsymbol{\kappa}(\Sigma)}{\sigma_{\min}(\Sigma)}\sigma\sqrt{\frac{s^*\log p}{n}} + \sqrt{\frac{\epsilon_{opt}}{\sigma_{\min}(\Sigma)}}$	$\frac{\boldsymbol{\kappa}(\Sigma)}{\sigma_{\min}(\Sigma)} \tilde{\sigma} \left\ \bar{\boldsymbol{\theta}} \right\ _2 \sqrt{\frac{s^* \log p}{n}} + \sqrt{\frac{\epsilon_{opt}}{\sigma_{\min}(\Sigma)}}$
$^*\tau(p) = \log p \cdot \frac{(\ \Sigma\ ^2 + \ \Sigma_W\ ^2)^2}{\sigma_{\min}(\Sigma)}$		
$^{**}\tilde{\sigma} = (\ \Sigma_W\ +$	$(+ \sigma)\sqrt{\ \Sigma\ ^2 + \ \Sigma_W\ ^2}$	

