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The Goal lterative Hard Thresholding-style Methods The Big Question

Analyze a class of effective and scalable iterative methods for

| | _ o T Can we show provable recovery guarantees for popular IHT-style methods under statistical settings with high condition numbers?
high-dimensional statistical estimation problems.

e Family of projected gradient descent-style methods
e Take gradient step along Vg f(6) and project onto feasible set

o Sparsity: Ps(z): take s-largest elements of z by magnitude

H|gh-d|menS|ona| M-estimation o Low rank: PM(W): take top-s singular components of W

lterative Hard-thresholding Two-stage Hard-thresholding

| e Very popular, methods of choice for large-scale applications
Example: Sparse least squares regression B oIHT, GraDeS, HTP, CoSaMP, SP, OMPR(Y), . .. Includes algorithms such as IHT, GraDeS Includes algorithms such as CoSaMP, Subspace pursuit
Given: n samples z; = (X;,y;), ¥i = <9,X2~> where 0 is sparse | | | L |

Task: Recover a sparse ' € R” such that 0% ~ | | Algorit 'm 2 (TsHT)
Points to note: IHT Methods in Practice e not converged e not converged
o Severely under-specified problem n < p 0" — PO —nVef(6") . gl Vaf(0"),S" + supp(0)

. B+« FC(f;S"U/{largest ¢ elements of |g;
Theorem: IHT guarantees f(0") — f(0") < ¢ for 7 > g—zlog%_ L Ps(ﬁg) { ‘ S 1)

e Model sparsity HéHo =5 Kp e Give comparable recovery quality as L, or greedy

The good news: e Much more scalable than L, greedy methods
e Consistent estimation possible with structural assumptions

Proof Idea: Key idea is to use a relaxed projection s > (§)2 s™. | 0" «— FC(f; supp(z!))

0
)

= HTP ; @ HTP

|| == @ = GragDeS | , - | == @& = GraDeS

e |_] | | L1
FoBa Z I | - FoBa

o Sparsity, low rank

| e P e Utilizes a fully corrective step

l ' ' FC(f, S) — alg minsupp(@)gS f(H)
e Similar convergence bounds as IHT - better constants

e Poly-time estimation routines assuming RSC/RSS
o Convex relaxations (LASSO), greedy methods
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The not-so-good news:

Support Recovery Error
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Support Recovery Error

e [ he above estimation routines do not scale at alll e Key idea 1: large distance from optima implies a large gradient

o

_ Noise level (sigma) x 10°
o Convex relaxations: non-smooth = slow rates (a) Recovery quality under noise (b) Runtimes with large problem sizes

o Greedy methods: incremental approach = slow progress

8;0 1(I)O 1I20 lZIlO 160
Projected Sparsity (s) HggtuS* > ZQQS(f(H) — f(H*)) + Oz%SHHtSt\S*

Note: on large k = 50 problems, relaxed projection really helps e Key idea 2: projection doesn't undo progress made by F'C|(-)

- Challenges ... Crucial: P(+) provides strong contraction if s > s*. If 0 = P,(z), Lo 4 )
>etting the Stage A flz) — f(B) < = - (£(8) — f(6"))
10 — z|; < o . % 8T
e Current analyses deficient in analyzing statistical models p—=s e Analyze Partial Hard-thresholding methods OMPR(/) as well

Given data samples, sparse estimation can be formulated as

! 0" = argmin f(0) = L(0;z.,) (1)

161]p<s*

Restricted Strong Convexity/Smoothness

3 ) A function f satisfies RSC/RSS with constants aog and Lo, if Guarantees for High Dimensional Statistical Estimation
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Examples: (label noise: & ~ A(0,02)) for all 8", 67 such that HH ‘07 0 Ho < s, we have
1. Sparse LS regression: y; = <9, XZ'>—|—€Z', x; ~ N(x, %), HHO < s* &228 9! — 92H§ < f(0Y) — f(6%) — <01 — HQ,ng(92)> < LZQS - | |
£(0;21,) = LY (y; — (x:,0)) | Theorem: If 8% is an €,-optimal iolutlon to (1), then Ay o5 klogp o 5 kT ()
2. Regression with feature noise: feature noise can be o All known bounds require k = Las/ans < constant V5 + s* |V9£(9; Zli”)Hoo | Eopt () p n 2 n

: : : .. est
o additive: X; = x; + w; with w; ~ A(0, Syp) o For LS objective, this reduces to the RIP condition HH 9H2 < o \ ors RSS (L) 20, (5) 4 klog p 30max(2)
let = X X /n— Sy and 4 = X Y/n o Completely silent otherwise VLG LY 4

kT(p)
e B - Best k tant , < 0.5) due to OMPR . N 2
oobliterative: X; = x; w.p. 1 — 1 and * otherwise ° Best known constant « < 3 (or 05 < 0.5) due to O () Proof Idea: IHT results, RSC/RSS and Holder's inequality Nlog p
N . . . oy T 1
L(0:2,,) = %HTFH _ 479 e Assumption untrue: practical settings exh_lblt large K e Results hold even for non-convex L(-) HHESt ) éH k(D) \/S* logp o | K(Y) 9H \/S* logp ot
Note: the above is non-convex for n < p Yy = I 1—e ©Only R_SC and RSS need ’Fo hold 2 am-n(Z)U n o \/O-min(2> amin(Z)U 2 n o \/amin(Z
3. Low-rank matrix regression: y; = tr(WX!) + &, rank(W) = s* L—e 1 > Essential for noisy regression models (SIS )2

. _ 1 o T\\2 Note: even with infinite samples, & = ) (1/e) 'T(p) =logp- =L L
L(Wa Zl:n) T n (yZ tr(WX@ )) P (HZWH —|—(7)\/HZ||2—|— HZWHQ E I_E
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Sparse LS regression Regression with feature noise
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