Random Projection Trees Revisited

Aman Dhesi ${ }^{1}$ and Purushottam Kar²
${ }^{1}$ 'Princeton University, NJ, USA
${ }^{2}$ Indian Institute of Technology Kanpur, UP, INDIA

Introduction

- Goal : Exploit geometric structure in data
- Manifold structure seen in several applications

(a) Digit Recognition ${ }^{\text {a }}$

(b) Gesture Identification

(c) Motion Capture ${ }^{\mathrm{c}}$

Hadsel etal, Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006 .
Tenenboum et al/ A Giobal Geometric Framework tor Nonninear Dimensionality Reducion
Tenenbaum etal, A G Goobal Geomentitic ramework tor Noninearar Dimensionality Reduction, Science 290(5500): :2399-2323, 2000,

Random Projection Tree ${ }^{\text {d }}$

- A space partitioning data structure that adapts to manifolds - Simple partitioning plan - uses random hyperplanes - Assumes no information about the manifold - fully adaptive - Guaranteed reduction in cell size after a certain number of levels

Theorem 1.

Given a cell C of RPTree-MAX of radius Δ containing data of doubling dimension d, with probability at least $\frac{1}{2}$, every cell $\mathcal{O}(d \log d)$ levels below has radius $\frac{\Delta}{2}$ or less.

A d-dimensional Riemannian manifold has $\mathcal{O}(d)$ doubling dimension - hence RPTree-Max adapts to manifolds
Applications to regression, spectral clustering, face recognition

Our Results for the RPTree-MAX

Theorem 2. (Space Partitioning)

For any $s \geq 2$, given a cell C of RPTree-MAX of radius \triangle containing data of doubling dimension d, with probability $\frac{1}{2}$, every cell $\mathcal{O}(d \log s \log s d)$ levels below has radius $\frac{\Delta}{s}$ or less.

- Cover the manifold with small balls of size $\frac{\Delta}{s \sqrt{d}}$
- $\mathcal{O}\left((s d)^{d}\right)$ balls suffice due to bounded doubling dimension - Random hyperplanes split every well-separated pair of balls

(d) B_{1} and B_{2} have radius $\Delta / s \sqrt{d}$ and their centers are > Δ / s apart

Our Results for the RPTree-Mean

- The RPTree-Mean adapts to local covariance dimension (LCD) - A set has $\operatorname{LCD}(d, \epsilon, r)$ if when restricted to any ball of radius r, a ($1-\epsilon$) fraction of its variance energy lies in some d dimensions.

- Most of the energy for manifolds lies in the tangent plane
- Hence RPTree-Mean adapts to manifolds as well

Theorem 4. (Local Covariance Dimension of Manifolds)
For any $\epsilon \leq \frac{1}{4}$, a d-dimensional Riemannian manifold \mathcal{M} with condition number τ has local covariance dimension $\left(d, \epsilon, \frac{\sqrt{\epsilon} \tau}{3}\right)$.

Theorem 3. (Packing Bound)

Given a fixed ball B of radius R, with probability greater than $\frac{1}{2}$, the number of disjoint RPTREE-MAX cells of radius greater than r that intersect B is at most $\left(\frac{R}{r}\right)^{\mathcal{O}(d \log d \log (d R / r))}$.

- w.h.p. B is contained in a cell of size $\mathcal{O}(R d \sqrt{d} \log d)$
- Use Theorem 2 to bound the number of children of this cell of size r - Effectively this is an aspect ratio bound of $\mathcal{O}(d \sqrt{d} \log d)$

Comparing the Guarantees

	$(k-d)$ BBD Tree	RPTREE-MAX
$L(s)$	$D \log s$	$\tilde{\mathcal{O}}\left(d \log ^{2} s\right)$
$P(R, r)$	$\left\lceil 1+\frac{6 R}{r}\right\rceil^{D}$	$\left(\frac{R}{r}\right)^{\tilde{\mathcal{O}}(d)}$

d : manifold dimensionality, $\mathrm{D}:$ ambient dimensionality The $\tilde{\mathcal{O}}()$ notation hides poly-log factors in d and R / r

- RPTree-Max guarantees do not depend on ambient dimensionality - The guarantees hold with constant confidence that can be boosted
- Thus RPTree-Max is space partitioning as well as has packing bounds

Space Partitioning Data Structures

- Lots of them around : k-d tree, BBD tree, BAR tree
- Useful in approximate NN searches and clustering
- Typical guarantees given
- Space Partitioning : After $L(s)$ levels, sizes of cells go down by a factor of s
- Bounded Aspect Ratio : Cells in the tree have bounded aspect ratio
- Bounded Aspect Ratio : Cells in the tree have bounded aspect ratio

Packing Bound : Given a fixed ball B of radius R, there exists a bound $P(R, r)$
Bounded Depth: A tree constructed using n data points has $\mathcal{O}(\log n)$ depth

Future Work

- Applications require space partitioning data structures that have packing bounds as well as bounded depth
RPTree-Max can be coerced into becoming left/right-deep by an adversarial placement of points
- Can one modify RPTree-Max so that it becomes space partitioning, has packing bounds as well as bounded depth

