Random Projection Trees Revisited

Aman Dhesi¹ and Purushottam Kar² ¹Princeton University, NJ, USA

Introduction

- ► Goal : Exploit geometric structure in data
- Manifold structure seen in several applications

(a) Digit Recognition^a

(c) Motion Capture^c

^a Hadsell *et al*, Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006.

^b Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290(5500) : 2319-2323, 2000. ^c Urtasun *et al*, 3D People Tracking with Gaussian Process Dynamical Models, CVPR 2006.

Random Projection Tree^d

- A space partitioning data structure that adapts to manifolds
- Simple partitioning plan uses random hyperplanes
- Assumes no information about the manifold fully adaptive
- Guaranteed reduction in cell size after a certain number of levels

Theorem 1.

Given a cell C of RPTREE-MAX of radius Δ containing data of doubling dimension d, with probability at least $\frac{1}{2}$, every cell $\mathcal{O}(d \log d)$ levels below has radius $\frac{\Delta}{2}$ or less.

A d-dimensional Riemannian manifold has $\mathcal{O}(d)$ doubling dimension - hence RPTREE-MAX adapts to manifolds Applications to regression, spectral clustering, face recognition

^d Dasgupta and Freund, Random Projection Trees and Low dimensional Manifolds, STOC 2008