Surrogate Functions for Maximizing Precision at the Top

Purushottam Kar[#], Harikrishna Narasimhan^{*}, and Prateek Jain[#]

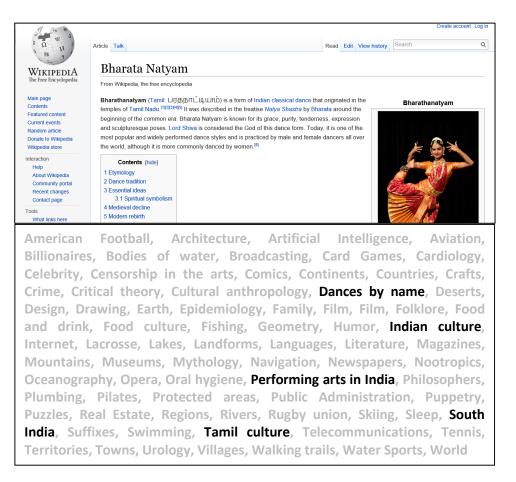
[#]Microsoft Research, Bengaluru, INDIA ^{*}Indian Institute of Science, Bengaluru, INDIA

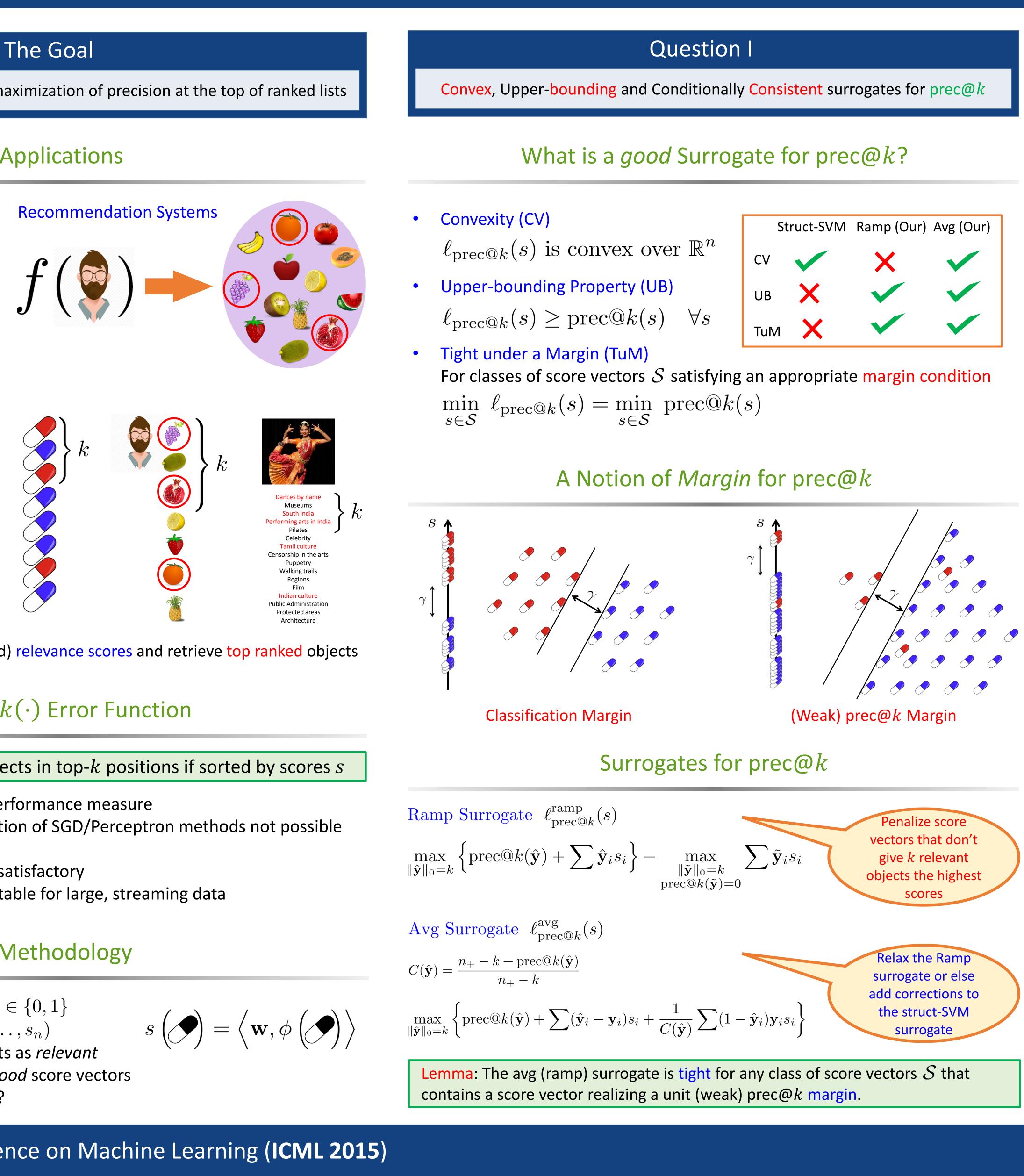
Scalable routines for provable maximization of precision at the top of ranked lists

Applications

Document Tagging

Drug Discovery





Rank objects in order of (perceived) relevance scores and retrieve top ranked objects

prec@ $k(\cdot)$ Error Function

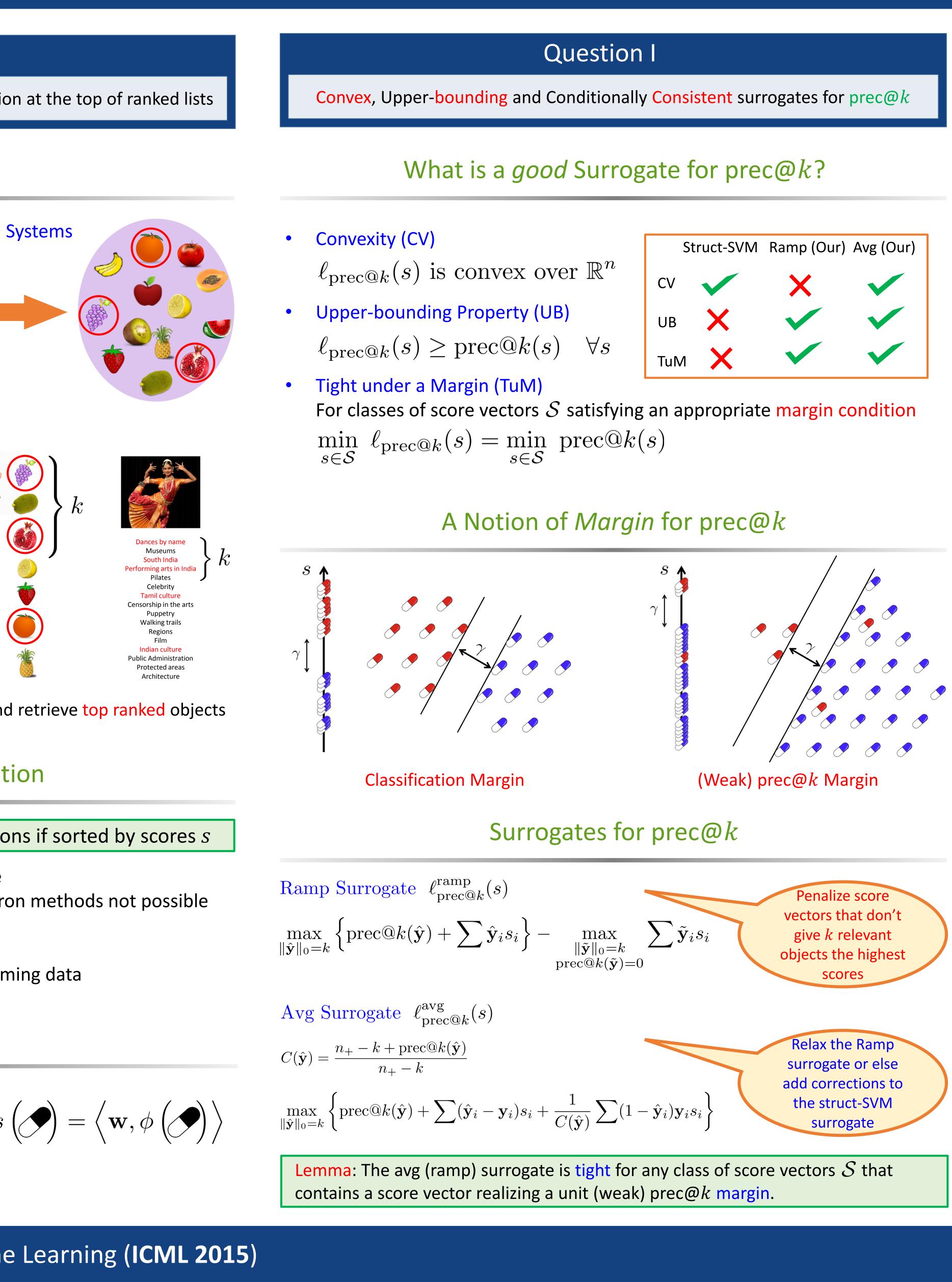
Prec@k(s): # irrelevant objects in top-k positions if sorted by scores s

- Non-convex, non-smooth performance measure
- Non-additive: direct application of SGD/Perceptron methods not possible
- Existing Work [Joachims 05] Struct-SVM surrogates: not satisfactory Cutting-plane solvers: unsuitable for large, streaming data

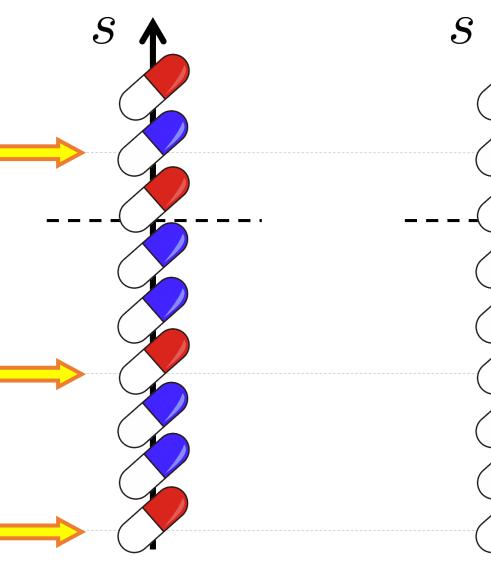
Methodology

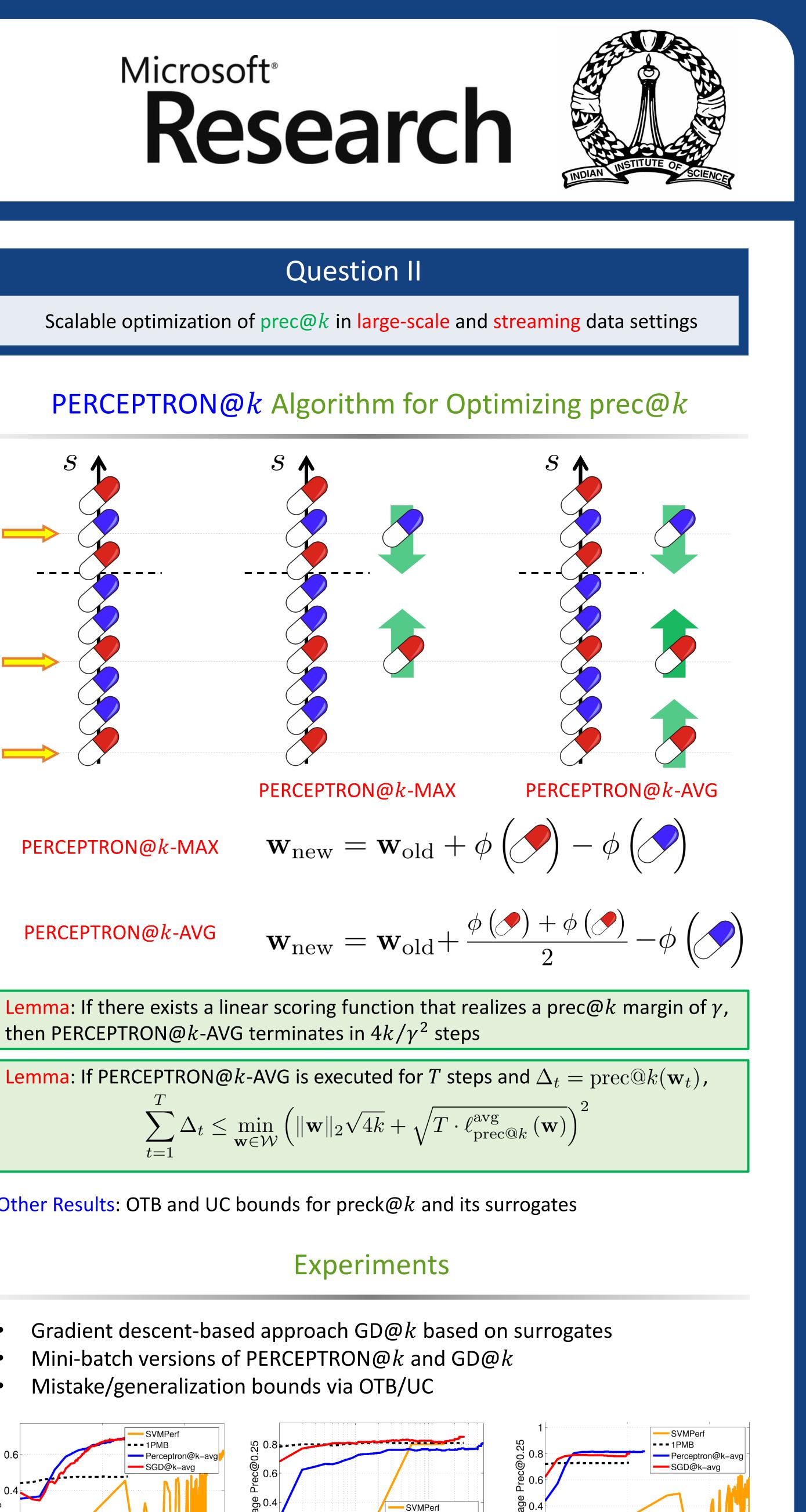
- Given *n* objects $(\mathbf{x}_i, y_i), y_i \in \{0, 1\}$
- Assign scores $s = (s_1, s_2, \ldots, s_n)$
- Predict top-k scoring objects as relevant
- Learn models that predict good score vectors
- Learning on streaming data?

32nd International Conference on Machine Learning (ICML 2015)



Microsoft[®]





Training time (secs)

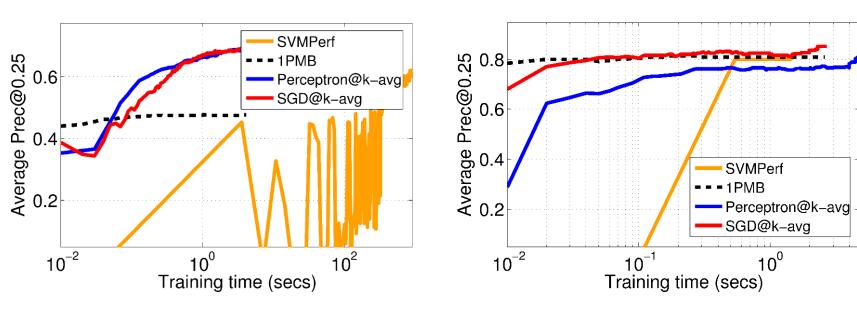
PERCEPTRON@k-MAX

PERCEPTRON@k-AVG

then PERCEPTRON@k-AVG terminates in $4k/\gamma^2$ steps

Other Results: OTB and UC bounds for preck@k and its surrogates

- Gradient descent-based approach GD@k based on surrogates
- Mini-batch versions of PERCEPTRON@k and GD@k
- Mistake/generalization bounds via OTB/UC



Full Paper: http://tinyurl.com/p3vjpg7