Random Feature Maps for Dot Product Kernels

Purushottam Kar and Harish Karnick {purushot, hk}@cse.iitk.ac.in

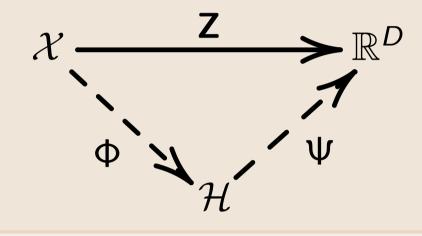
Indian Institute of Technology, Kanpur, UP, INDIA

Introduction

- Proliferation of kernel learning techniques in diverse domains
- \blacktriangleright Kernel trick : working in high dimensional spaces via feature maps $\Phi : \mathcal{X} \to \mathcal{H}$
- High dimensionality necessitates working with implicit representations
- SVM Classification : $h(\mathbf{x}) = \operatorname{sgn}(\langle \mathbf{W}, \Phi(\mathbf{x}) \rangle) = \operatorname{sgn}\left(\sum_{\mathbf{x}' \in S} \alpha_{\mathbf{x}'} K(\mathbf{x}, \mathbf{x}')\right)$
- $\triangleright \text{ Kernel PCA} : P_k(\mathbf{x}) = \langle \mathbf{V}_k, \Phi(\mathbf{x}) \rangle = \sum \alpha_{\mathbf{x}'} K(\mathbf{x}, \mathbf{x}')$
- Support vector effect : slow test routines if support sets are large
- **Goal** : Circumvent the support vector effect
- Our Contributions :
 - develop random feature maps for the class of dot product kernels provide theoretical guarantees of performance

Random Feature Maps

Algorithm 3. (Feature map construction algorithm)


- ▶ Given : Kernel K(x, y) = f(⟨x, y⟩) over X ⊆ ℝ^d, target dimensionality D
 ▶ Obtain Maclaurin expansion of f(x) = ∑_{n=0}[∞] a_nxⁿ by setting a_n = f⁽ⁿ⁾(0)/n!
- \blacktriangleright Choose a small constant p > 1
- \blacktriangleright Create a unidimensional feature map $Z : \mathcal{X} \rightarrow \mathbb{R}$
- . Sample $N \in \mathbb{N} \cup \{0\}$ with probability $\mathbb{P}[N = n] = \frac{1}{p^{n+1}}$
- 2. Sample *N* independent Rademacher vectors $\omega_1, \ldots, \omega_N \in \{-1, +1\}^d$

empirically demonstrate speedups for kernel SVMs

Plan of attack

- Since high dimensionality of RKHS is the problem reduce it !
- \triangleright Inner product preserving map from RKHS to small dimensions $\Psi : \mathcal{H} \to \mathbb{R}^{D}$
- Reduces kernel problems to linear ones eg. linear SVM, linear PCA
- Test times become independent of support set sizes
- Motivation : existence of such maps predicted by Johnson-Lindenstrauss lemma

Definition 1. (Approximate feature maps for kernels)

 $\begin{array}{c} \mathcal{X} \\ \widehat{\boldsymbol{A}} \\ \psi \end{array} \models \mathbf{A} \text{ map } \mathbf{Z} : \mathcal{X} \to \mathbb{R}^{D} \text{ is an } \epsilon \text{-approximate feature map} \\ \text{for } K \text{ if for all } \mathbf{x}, \mathbf{y} \in \mathcal{X}, |K(\mathbf{x}, \mathbf{y}) - \langle \mathbf{Z}(\mathbf{x}), \mathbf{Z}(\mathbf{y}) \rangle| < \epsilon \end{array}$

- Existing Work (among others)
- ▷ [1] : maps for translation invariant kernels $K(\mathbf{x}, \mathbf{y}) = f(\mathbf{x} \mathbf{y})$
- ▷ [2] : maps for homogeneous kernels $K(\mathbf{x}, \mathbf{y}) = \sum (\mathbf{x}_i \mathbf{y}_i)^{\alpha} f(\log \mathbf{x}_i \log \mathbf{y}_i)$
- **This paper** : maps for dot product kernels $K(\mathbf{x}, \mathbf{y}) = f(\langle \mathbf{x}, \mathbf{y} \rangle)$

Dot product kernels

3. Create a feature map $Z : \mathbf{x} \mapsto \sqrt{a_N p^{N+1}} \prod \omega_j^T \mathbf{x}$

 \blacktriangleright Create *D* independent unidimensional feature maps Z_1, \ldots, Z_D ► Output : $\mathbf{Z} : \mathbf{x} \mapsto \frac{1}{\sqrt{D}} (Z_1(\mathbf{x}), \dots, Z_D(\mathbf{x})) \in \mathbb{R}^D$

Theoretical analysis

Theorem 4. (Approximation guarantee)

Suppose $\mathcal{X} \subseteq \mathcal{B}_1(\mathbf{0}, \mathbf{R})$ is a compact subset of \mathbb{R}^d , and $K(\mathbf{x}, \mathbf{y}) = f(\langle \mathbf{x}, \mathbf{y} \rangle)$. Let $C = f(pR^2)$ and $L = f'(pR^2) \cdot d$. Then if $D = \Omega\left(\frac{dC^2}{\epsilon^2}\log\left(\frac{RL}{\epsilon\delta}\right)\right)$, then the feature map $\mathbf{Z}: \mathcal{X} \to \mathbb{R}^D$ constructed above is an ϵ -approximate feature map for K with probability $1 - \delta$.

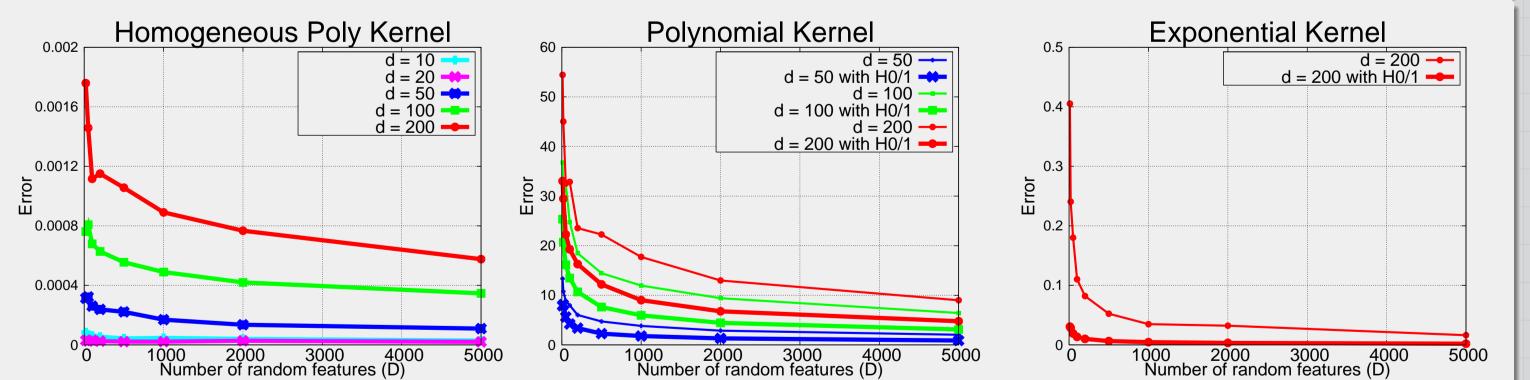
Proof exploits Lipschitz properties of the kernel and the feature map $\blacktriangleright D = \tilde{O}(d/\epsilon^2)$: near optimal dependence on ϵ , quasi-linear dependence on dDot product kernels are unbounded : stronger kernel-specific dependence $\triangleright C$ is the largest value taken by K in the region pX \triangleright L encodes the rate of growth of K in the region pX

Extension to compositional kernels

 \blacktriangleright Kernels of the form $f(K_{inner}(\mathbf{x}, \mathbf{y}))$ for arbitrary p.d kernel K_{inner}

Theorem 2. (Characterization of dot product kernels)

A function $f : \mathbb{R} \to \mathbb{R}$ constitutes a positive definite kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, $K : (\mathbf{x}, \mathbf{y}) \mapsto f(\langle \mathbf{x}, \mathbf{y} \rangle)$ for all d > 0 iff f is an analytic function having a Maclaurin expansion with only non-negative coefficients i.e. $f(x) = \sum a_n x^n$, $a_n \ge 0$.


Proof proceeds in two steps

- Show that p.d.-ness over all \mathbb{R}^d , $d > 0 \Leftrightarrow$ p.d.-ness over Hilbert spaces
- Characterize kernels that are p.d. over Hilbert spaces (based on [3])

Examples

- Polynomial Kernels : homogeneous $(\langle \mathbf{x}, \mathbf{y} \rangle)^{p}$, non-homogeneous $(1 + \lambda \langle \mathbf{x}, \mathbf{y} \rangle)^{p}$
- ► Exponential Kernels : $\exp\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\sigma^2}\right)$ ► Vovk's Kernels : polynomial $\frac{1 \langle \mathbf{x}, \mathbf{y} \rangle^{p}}{1 \langle \mathbf{x}, \mathbf{y} \rangle}$, infinite polynomial $\frac{1}{1 \langle \mathbf{x}, \mathbf{y} \rangle}$

Experimental results : Toy experiments

- Dot product kernels are a special cases with $K_{inner}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$
- ► Assume access to a (randomized) feature map $W : \mathcal{X} \to \mathbb{R}$ for K_{inner}
 - \triangleright W should give an unbiased estimate for K_{inner} over \mathcal{X}
 - ▶ W should be bounded and Lipschitz on expectation
- Feature map construction algorithm : identical to Algorithm 3 except ▷ In step 2, request *N* independent copies of *W* : W_1, \ldots, W_N

▷ In step 3, create a feature map $Z : \mathbf{x} \mapsto \sqrt{a_N p^{N+1}} \prod W_j(\mathbf{x})$

Approximation guarantee : similar to that in Theorem 4

Practical considerations

- Randomness reduction : truncate the Maclaurin expansion
- \triangleright Truncation error ϵ_1 uniform by properties of Maclaurin series
- ▷ Gives us $(\epsilon + \epsilon_1)$ -approximate feature maps
- **H0/1**: heuristic for more accurate feature maps
- Maclaurin expansion : first term is constant, second is linear
- No need to estimate these append the original features to Z
- > Advantages : variance reduction, more accuracy
- *Disadvantages* : feature dimensionality goes up, mapping time goes up
- Offers best results with small to medium values of D

References

[1] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In 21st Annual Conference on Neural Information Processing Systems, 2007.

- Sample 100 points from \mathbb{R}^d and create kernel matrices
- Use random feature maps with/out H0/1 and reconstruct the kernel matrices
- H0/1 offers sharper drop in average reconstruction error

- [2] Andrea Vedaldi and Andrew Zisserman. Efficient Additive Kernels via Explicit Feature Maps. In 23rd IEEE Conference on Computer Vision and Pattern Recognition, pages 3539–3546, 2010.
- [3] Isaac Jacob Schoenberg. Positive Definite Functions on Spheres. Duke Mathematical Journal, 9(1):96–108, 1942.

Experimental results : UCI datasets

Dataset	K + LIBSVM	RF + LIBLINEAR	H0/1 + LIBLINEAR	Dataset	K + LIBSVM	RF + LIBLINEAR	H0/1 + LIBLINEAR	
Nursery N = 13000 d = 8	acc = 99.9% trn = 18.6s tst = 3.37s	acc = 99.7% $trn = 3.96s (4.7 \times)$ $tst = 0.63s (5.3 \times)$ D = 500	acc = 98.2% trn = $0.49s (38 \times)$ tst = $0.1s (33 \times)$ D = 100	Nursery N = 13000 d = 8	acc = 99.8% trn = 10.8s tst = 1.7s	acc = 99.6% $trn = 2.52s (4.3 \times)$ $tst = 0.6s (2.8 \times)$ D = 500	acc = 97.96% trn = $0.4s (27 \times)$ tst = $0.18s (9.4 \times)$ D = 100	Accuracy Been de la contraction de la contraction Been de la contraction de la con
Cod-RNA N = 60000 <i>d</i> = 8	acc = 95.2% trn = 144.1s tst = 28.6s	acc = 94.9% trn = 12.1s (12×) tst = 2.8s (10×) D = 500	acc = 93.77% trn= 0.63s (229×) tst = 0.51s (56×) D = 50	Cod-RNA N = 60000 d = 8	acc = 95.2% trn = 91.5s tst = 17.1s	acc = 94.9% trn = 11.5s (8×) tst = 2.8s (6.1×) D = 500	acc = 93.8% trn= 0.67s (136×) tst = 1.4s (12×) D = 50	
Adult N = 49000 d = 123	acc = 84.2% trn = 179.6s tst = 60.6s	acc = 84.7% trn = 21.2s (8.5×) tst = 15.6s (3.9×) D = 500	acc = 84.7% trn = 6.9s (26×) tst = 7.26s (8.4×) D = 100	Adult N = 49000 d = 123	acc = 83.7% trn = 263.3s tst = 33.4s	acc = 82.9% trn = 39.8s (6.6×) tst = 14.3s (2.3×) D = 500	acc = 84.8% trn = 7.18s (37×) tst = 9.4s (3.6×) D = 100	
IJCNN N=141000 d = 22	acc = 98.4% trn = 164.1s tst = 33.4s	acc = 97.3% trn = $36.5s (4.5\times)$ tst = $23.3s (1.4\times)$ D = 1000	acc = 92.3% trn= 4.98s (33×) tst = 7.5s (4.5×) D = 200	IJCNN N=141000 d = 22	acc = 98.4% trn = 135.8s tst = 29.98s	acc = 97.2% trn = 24.9s (5.5×) tst = 23.4s (1.3×) D = 1000	acc = 92.2% trn = 5.2s (26×) tst = 9.1s (3.3×) D = 200	
Covertype $N=581000$ d=54	acc = 77.4% trn = 160.95s tst = 1653.9s	acc = 77.04% trn = 186.1s () tst = 236.8s (7×) D = 1000	acc = 75.5% trn = 3.9s (41×) tst = 70.3s (23×) D = 100	Covertype $N=581000$ d=54	acc = 80.6% trn = 194.1s tst = 695.8s	acc = 76.2% trn = 21.4s (9×) tst = 207s (3.6×) D = 1000	acc = 75.5% trn = 3.7s (52×) tst = 80.4s (8.7×) D = 100	
(a)	Polynomial Ke	ernel, $K(\mathbf{x}, \mathbf{y}) = (1$	$+\langle \mathbf{x},\mathbf{y} angle)^{10}$	(b) Exponential	Kernel, $K(\mathbf{x}, \mathbf{y}) = 0$	$\exp\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\sigma^2}\right)$	