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Introduction

» Proliferation of kernel learning techniques in diverse domains

» Kernel trick : working in high dimensional spaces via feature maps ¢ : X — H
» High dimensionality necessitates working with implicit representations

> axK(x, x’))

> SVM Classification : h(x) = sgn ((W, ®(x))) = sgn (

X'eS

- Kernel PCA : P(X) = (Vi, ®(x)) = »  axK(X,X)

X' €Sk

> Support vector effect . slow test routines if support sets are large
» Goal : Circumvent the support vector effect
» Our Contributions :
> develop random feature maps for the class of dot product kernels

> provide theoretical guarantees of performance

> empirically demonstrate speedups for kernel SVMs

» Since high dimensionality of RKHS is the problem - reduce it !

> Inner product preserving map from RKHS to small dimensions ¥ : H — R”
> Reduces kernel problems to linear ones eg. linear SVM, linear PCA

> Test times become independent of support set sizes

» Motivation : existence of such maps predicted by Johnson-Lindenstrauss lemma

Definition 1. (Approximate feature maps for kernels)
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» Existing Work (among others)
> [1] : maps for translation invariant kernels K(x,y) = f(x — y)

d
- [2] : maps for homogeneous kernels K(x.y) = » (x;y;)f (logx; — logy;)

» This paper : maps for dot product kernels K(x,y) = f((X,y))

=1

» Amap Z : X — RP is an e-approximate feature map
for Kifforall x,y € X, |[K(X,y) — (Z(X),Z(y))| < €

Plan of attack

Theorem 2. (Characterization of dot product kernels)

A function f : R — R constitutes a positive definite kernel K : R? x R? — R,
K:(x,y)— f({x,y)) for all d > 0 iff f is an analytic function having a Maclaurin

expansion with only non-negative coefficients i.e. f(x) = » a,x",a, > 0.
n=0

» Proof proceeds in two steps

~ Show that p.d.-ness over all R?, d > 0 < p.d.-ness over Hilbert spaces
> Characterize kernels that are p.d. over Hilbert spaces (based on [3])

» Examples

> Polynomial Kernels : homogeneous ({x,y))P, non-homogeneous (1 + A\ (X,y))P

> Exponential Kernels : exp (

> Vovk’s Kernels : polynomial
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Dot product kernels
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Experimental results : Toy experiments
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» Sample 100 points from R and create kernel matrices

» Use random feature maps with/out HO/1 and reconstruct the kernel matrices

» HO/1 offers sharper drop in average reconstruction error
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Experimental results : UCI datasets

Random Feature Maps

Algorithm 3. (Feature map construction algorithm)

» Given : Kernel K(x,y) = f({x,y)) over X C RY, target dimensionality D

_ _ . > | £(n)
» Obtain Maclaurin expansion of f(x) = Z anx" by setting a, = n(|0)
n=0 '
» Choose a small constant p > 1
» Create a unidimensional feature map £ : X — R
. . 1
1.Sample N € NU {0} with probability P [N = n] = P
2. Sample N independent Rademacher vectors wy, . ..,wy € {—1,+1}°
N
3. Create a feature map Z : x — /anp"N*' | [ w/x
j=1
» Create D independent unidimensional feature maps 4, ...,2Zp

» Output : Z: X = = (Zy(X),...,Zp(X)) € RP

VD

Theoretical analysis

Theorem 4. (Approximation guarantee)

Suppose X C By (0, R) is a compact subset of RY, and K(x,y) = f({x,y)). Let
C = f(pR?) and L = f'(pR?) - d. Thenif D = Q (—2 log

map Z : X — RP constructed above is an e-approximate feature map for K with
probability 1 — 6.

» Proof exploits Lipschitz properties of the kernel and the feature map
» D=0 (d/ez) . near optimal dependence on ¢, quasi-linear dependence on d
» Dot product kernels are unbounded : stronger kernel-specific dependence

> C is the largest value taken by K in the region pX
> L encodes the rate of growth of K in the region pX

2
dc (%)) , then the feature
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Extension to compositional kernels

» Kernels of the form f(Kinner(X,y)) for arbitrary p.d kernel Kinner
> Dot product kernels are a special cases with Kinner(X,Y) = (X, ¥)
» Assume access to a (randomized) feature map W : X — R for Kinner

> W should give an unbiased estimate for Kiner OVer X
> W should be bounded and Lipschitz on expectation

» Feature map construction algorithm : identical to Algorithm 3 except
> In step 2, request N independent copies of W . W, ..., Wy

- In step 3, create a feature map Z : x — v/aypN*1 | [ Wj(x)

» Approximation guarantee : similar to that in Theorem 4

N

J=1

Practical considerations

» Randomness reduction : truncate the Maclaurin expansion
> Truncation error ¢; uniform by properties of Maclaurin series
~ Gives us (e + €1)-approximate feature maps
» HO/1: heuristic for more accurate feature maps
> Maclaurin expansion : first term is constant, second is linear
> No need to estimate these - append the original features to Z
> Advantages : variance reduction, more accuracy
> Disadvantages : feature dimensionality goes up, mapping time goes up
> Offers best results with small to medium values of D
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D =1000 D=100 D =1000 D=100

(a) Polynomial Kernel, K(x,y) = (1 + (x,y))"°

(b) Exponential Kernel, K(x,y) = exp (1)
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» Random Features :

> Useful in speeding up training and test routines for SVM
> Experiments on other kernel learning tasks ?

» Using HO/1 :
> Competitive accuracies even with small values of D
> Increased mapping time with larger values of D
> Eventually, overheads prevent HO/1 from being useful

Full Paper : http://home.iitk.ac.in/~purushot/dpfeat.pdf
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