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Introduction

I Proliferation of kernel learning techniques in diverse domains
I Kernel trick : working in high dimensional spaces via feature maps Φ : X → H
I High dimensionality necessitates working with implicit representations

. SVM Classification : h(x) = sgn (〈W,Φ(x)〉) = sgn

(∑
x′∈S

αx′K (x,x′)

)
. Kernel PCA : Pk(x) = 〈Vk ,Φ(x)〉 =

∑
x′∈Sk

αx′K (x,x′)

. Support vector effect : slow test routines if support sets are large
I Goal : Circumvent the support vector effect
I Our Contributions :
. develop random feature maps for the class of dot product kernels
. provide theoretical guarantees of performance
. empirically demonstrate speedups for kernel SVMs

Plan of attack

I Since high dimensionality of RKHS is the problem - reduce it !
. Inner product preserving map from RKHS to small dimensions Ψ : H → RD

. Reduces kernel problems to linear ones eg. linear SVM, linear PCA

. Test times become independent of support set sizes
I Motivation : existence of such maps predicted by Johnson-Lindenstrauss lemma

Definition 1. (Approximate feature maps for kernels)

X

Φ

Z RD

Ψ
H

I A map Z : X → RD is an ε-approximate feature map
for K if for all x,y ∈ X , |K (x,y)− 〈Z(x),Z(y)〉| < ε

I Existing Work (among others)
. [1] : maps for translation invariant kernels K (x,y) = f (x− y)

. [2] : maps for homogeneous kernels K (x,y) =
d∑

i=1

(xiyi)
αf (log xi − log yi)

I This paper : maps for dot product kernels K (x,y) = f (〈x,y〉)

Dot product kernels

Theorem 2. (Characterization of dot product kernels)

A function f : R→ R constitutes a positive definite kernel K : Rd × Rd → R,
K : (x,y) 7→ f (〈x,y〉) for all d > 0 iff f is an analytic function having a Maclaurin

expansion with only non-negative coefficients i.e. f (x) =
∞∑

n=0

anxn,an ≥ 0.

I Proof proceeds in two steps
. Show that p.d.-ness over all Rd ,d > 0⇔ p.d.-ness over Hilbert spaces
. Characterize kernels that are p.d. over Hilbert spaces (based on [3])

I Examples
. Polynomial Kernels : homogeneous (〈x,y〉)p, non-homogeneous (1 + λ 〈x,y〉)p

. Exponential Kernels : exp
(〈x,y〉

σ2

)
. Vovk’s Kernels : polynomial

1− 〈x,y〉p
1− 〈x,y〉 , infinite polynomial

1
1− 〈x,y〉

Experimental results : Toy experiments
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I Sample 100 points from Rd and create kernel matrices
I Use random feature maps with/out H0/1 and reconstruct the kernel matrices
I H0/1 offers sharper drop in average reconstruction error

Random Feature Maps

Algorithm 3. (Feature map construction algorithm)

I Given : Kernel K (x,y) = f (〈x,y〉) over X ⊆ Rd , target dimensionality D

I Obtain Maclaurin expansion of f (x) =
∞∑

n=0

anxn by setting an =
f (n)(0)

n!

I Choose a small constant p > 1
I Create a unidimensional feature map Z : X → R

1. Sample N ∈ N ∪ {0} with probability P [N = n] =
1

pn+1

2. Sample N independent Rademacher vectors ω1, . . . ,ωN ∈ {−1,+1}d

3. Create a feature map Z : x 7→
√

aNpN+1
N∏

j=1

ωT
j x

I Create D independent unidimensional feature maps Z1, . . . ,ZD
I Output : Z : x 7→ 1√

D
(Z1(x), . . . ,ZD(x)) ∈ RD

Theoretical analysis

Theorem 4. (Approximation guarantee)

Suppose X ⊆ B1 (0,R) is a compact subset of Rd , and K (x,y) = f (〈x,y〉). Let

C = f (pR2) and L = f ′(pR2) · d . Then if D = Ω

(
dC2

ε2
log
(

RL
εδ

))
, then the feature

map Z : X → RD constructed above is an ε-approximate feature map for K with
probability 1− δ.

I Proof exploits Lipschitz properties of the kernel and the feature map
I D = Õ

(
d/ε2

)
: near optimal dependence on ε, quasi-linear dependence on d

I Dot product kernels are unbounded : stronger kernel-specific dependence
. C is the largest value taken by K in the region pX
. L encodes the rate of growth of K in the region pX

Extension to compositional kernels

I Kernels of the form f (Kinner(x,y)) for arbitrary p.d kernel Kinner
. Dot product kernels are a special cases with Kinner(x,y) = 〈x,y〉

I Assume access to a (randomized) feature map W : X → R for Kinner
. W should give an unbiased estimate for Kinner over X
. W should be bounded and Lipschitz on expectation

I Feature map construction algorithm : identical to Algorithm 3 except
. In step 2, request N independent copies of W : W1, . . . ,WN

. In step 3, create a feature map Z : x 7→
√

aNpN+1
N∏

j=1

Wj(x)

I Approximation guarantee : similar to that in Theorem 4

Practical considerations

I Randomness reduction : truncate the Maclaurin expansion
. Truncation error ε1 uniform by properties of Maclaurin series
. Gives us (ε + ε1)-approximate feature maps

I H0/1: heuristic for more accurate feature maps
. Maclaurin expansion : first term is constant, second is linear
. No need to estimate these - append the original features to Z
. Advantages : variance reduction, more accuracy
. Disadvantages : feature dimensionality goes up, mapping time goes up
. Offers best results with small to medium values of D
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Experimental results : UCI datasets

Dataset K + LIBSVM RF + LIBLINEAR H0/1 + LIBLINEAR

Nursery
N = 13000
d = 8

acc = 99.9%
trn = 18.6s
tst = 3.37s

acc = 99.7%
trn = 3.96s (4.7×)
tst = 0.63s (5.3×)
D = 500

acc = 98.2%
trn = 0.49s (38×)
tst = 0.1s (33×)
D = 100

Cod-RNA
N = 60000
d = 8

acc = 95.2%
trn = 144.1s
tst = 28.6s

acc = 94.9%
trn = 12.1s (12×)
tst = 2.8s (10×)
D = 500

acc = 93.77%
trn= 0.63s (229×)
tst = 0.51s (56×)
D = 50

Adult
N = 49000
d = 123

acc = 84.2%
trn = 179.6s
tst = 60.6s

acc = 84.7%
trn = 21.2s (8.5×)
tst = 15.6s (3.9×)
D = 500

acc = 84.7%
trn = 6.9s (26×)
tst = 7.26s (8.4×)
D = 100

IJCNN
N=141000
d = 22

acc = 98.4%
trn = 164.1s
tst = 33.4s

acc = 97.3%
trn = 36.5s (4.5×)
tst = 23.3s (1.4×)
D = 1000

acc = 92.3%
trn= 4.98s (33×)
tst = 7.5s (4.5×)
D = 200

Covertype
N=581000
d = 54

acc = 77.4%
trn = 160.95s
tst = 1653.9s

acc = 77.04%
trn = 186.1s (—)
tst = 236.8s (7×)
D = 1000

acc = 75.5%
trn = 3.9s (41×)
tst = 70.3s (23×)
D = 100

(a) Polynomial Kernel, K (x,y) = (1 + 〈x,y〉)10

Dataset K + LIBSVM RF + LIBLINEAR H0/1 + LIBLINEAR

Nursery
N = 13000
d = 8

acc = 99.8%
trn = 10.8s
tst = 1.7s

acc = 99.6%
trn = 2.52s (4.3×)
tst = 0.6s (2.8×)
D = 500

acc = 97.96%
trn = 0.4s (27×)
tst = 0.18s (9.4×)
D = 100

Cod-RNA
N = 60000
d = 8

acc = 95.2%
trn = 91.5s
tst = 17.1s

acc = 94.9%
trn = 11.5s (8×)
tst = 2.8s (6.1×)
D = 500

acc = 93.8%
trn= 0.67s (136×)
tst = 1.4s (12×)
D = 50

Adult
N = 49000
d = 123

acc = 83.7%
trn = 263.3s
tst = 33.4s

acc = 82.9%
trn = 39.8s (6.6×)
tst = 14.3s (2.3×)
D = 500

acc = 84.8%
trn = 7.18s (37×)
tst = 9.4s (3.6×)
D = 100

IJCNN
N=141000
d = 22

acc = 98.4%
trn = 135.8s
tst = 29.98s

acc = 97.2%
trn = 24.9s (5.5×)
tst = 23.4s (1.3×)
D = 1000

acc = 92.2%
trn = 5.2s (26×)
tst = 9.1s (3.3×)
D = 200

Covertype
N=581000
d = 54

acc = 80.6%
trn = 194.1s
tst = 695.8s

acc = 76.2%
trn = 21.4s (9×)
tst = 207s (3.6×)
D = 1000

acc = 75.5%
trn = 3.7s (52×)
tst = 80.4s (8.7×)
D = 100

(b) Exponential Kernel, K (x,y) = exp
(
〈x,y〉
σ2

)
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(c)Nursery with Kpoly
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(d)IJCNN with Kexp

I Random Features :
. Useful in speeding up training and test routines for SVM
. Experiments on other kernel learning tasks ?

I Using H0/1 :
. Competitive accuracies even with small values of D
. Increased mapping time with larger values of D
. Eventually, overheads prevent H0/1 from being useful
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