

Introduction

- Goal : Supervised learning with indefinite kernels
- Why use indefinite kernels ?
 - Several domains possess natural notions of similarity
 - Bioinformatics : B.L.A.S.T. scores for protein sequences
 - OCR : tangent distance similarity measures
 - Image retrieval : earth mover's distance
- Satisfiability for Mercer's theorem a hard-to-verify proper
- Not clear why non psd-ness should limit usability of a ker

Existing work

- Most works address only the problem of classification
- Broadly three main approaches
- Use indefinite kernels directly [1] : results in non-convex
- Find a proxy PSD kernel [2] : expensive + loss of domain
- Use kernel-task alignment [3] : efficient + generalization
- Several results for classification using the third approach [

Our contributions

- Propose a notion of kernel "goodness" for general supervis Previous notions obtained as a special case
- Develop landmarking-based algorithms to perform supervi Consider three tasks : real regression, ordinal regression
- Provide generalization bounds
- Apply sparse learning techniques to reduce landmark com Fast testing times + generalization guarantees
- Experimental evaluation of landmarking based techniques

What is a *good* similarity function

- Previously considered for classification by [3]
- "Margin" view : positives closer to positives than negative
- Cannot be extended for other supervised learning problem
- We take a "target value" view
- Target value at a point recoverable from neighbors of the Implicitly enforces a smoothness prior

Definition 1. Good similarity function

A similarity function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is (ϵ_0, B) -good for a lear $y: \mathcal{X} \to \mathcal{Y}$ if for some bounded weighing function $w: \mathcal{X} \to \mathcal{Y}$ a $(1 - \epsilon_0)$ fraction of the domain, we have $y(\mathbf{x}) = \mathbb{E}_{\mathbf{x}' \sim \mathcal{D}} \llbracket w(\mathbf{x}') \rrbracket$

- Need to modify a bit to incorporate surrogate loss functions
- Can be adapted to various learning tasks using appropriate
- Reduces to earlier notion [3] for binary classification

Supervised Learning with Similarity Functions

Purushottam Kar¹ and Prateek Jain²

¹Indian Institute of Technology, Kanpur, UP, INDIA ²Microsoft Research India, Bangalore, KA, INDIA

	Evaluating the model
	 The proposed notion of goodness is evaluated on two grounds Utility : "good" similarity functions should yield effective predictors
es	Definition 2. Utility criterion
erty ernel	A similarity function <i>K</i> is ϵ_0 -useful w.r.t. a loss function $\ell(\cdot, \cdot)$ if for any $\epsilon_1 > 0$, using polynomially many labeled and unlabeled samples, one can w.h.p. generate a hypothesis $\hat{f}(\mathbf{x}; K)$ s.t. $\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\ell\left(\hat{f}(\mathbf{x}), y(\mathbf{x})\right) \right] \leq \epsilon_0 + \epsilon_1$.
	Admissibility : PSD kernels with large margin should remain "good"
	Definition 3. Good PSD Kernel
c formulations in knowledge n guarantees [3, 4, 5]	A kernel <i>K</i> with RKHS \mathcal{H}_{K} and feature map $\Phi_{K} : \mathcal{X} \to \mathcal{H}_{K}$ is (ϵ_{0}, γ) -good w.r.t. loss function ℓ_{K} if for some $\mathbf{W}^{*} \in \mathcal{H}_{K}$, we have $\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\ell_{K} \left(\frac{\langle \mathbf{W}^{*}, \Phi_{K}(\mathbf{x}) \rangle}{\gamma}, \mathbf{y}(\mathbf{x}) \right) \right] < \epsilon_{0}$.
	Learning with similarity functions
vised learning	Algorithm 4. (Landmarking based learning algorithm)
vised learning on, ranking mplexity S	 Given : An (ǫ₀, B)-good kernel K and training points : T = {(x^t_i, y_i)}ⁿ_{i=1} Sample d unlabeled landmarks from domain : L = {x^l₁,, x^l_d} Let Ψ_L : x ↦ 1/√d (K(x, x^l₁),, K(x, x^l_d)) ∈ ℝ^d Obtain ŵ := arg min ∑ⁿ_{i=1} ℓ_S (⟨w, Ψ_L(x^t_i)⟩, y_i) Output : Î : x ↦ ⟨ŵ, Ψ_L(x)⟩
ves by a margin ems e point	 Landmarks can be subsampled from training points themselves Provide generalization guarantees for such "double-dipping" Sparse Regression : often only a small fraction of landmarks are useful Landmark pruning essential for fast predictors Propose modified model that takes into account only "useful" landmarks Use sparse learning techniques [6] to learn a predictor Utility guarantee ensures sparsity as well as generalization error bounds
	References
arning task [$-B, B$], for at least ') $y(\mathbf{x}')K(\mathbf{x}, \mathbf{x}')$].	 [1] Ong et al. Learning with non-positive Kernels. In <i>ICML</i>, 2004. [2] Chen et al. Similarity-based Classification: Concepts and Algorithms. <i>JMLR</i>, 2009. [3] Balcan and Blum. On a Theory of Learning with Similarity Functions. In <i>ICML</i>, 2006. [4] Wang et al. On Learning with Dissimilarity Functions. In <i>ICML</i>, 2007. [5] Kar and Jain. Similarity-based Learning via Data Driven Embeddings. In <i>NIPS</i>, 2011.
ate loss functions	[6] Shalev-Shwartz et al. Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints. <i>SIAM J. on Optimization</i> , 2010.

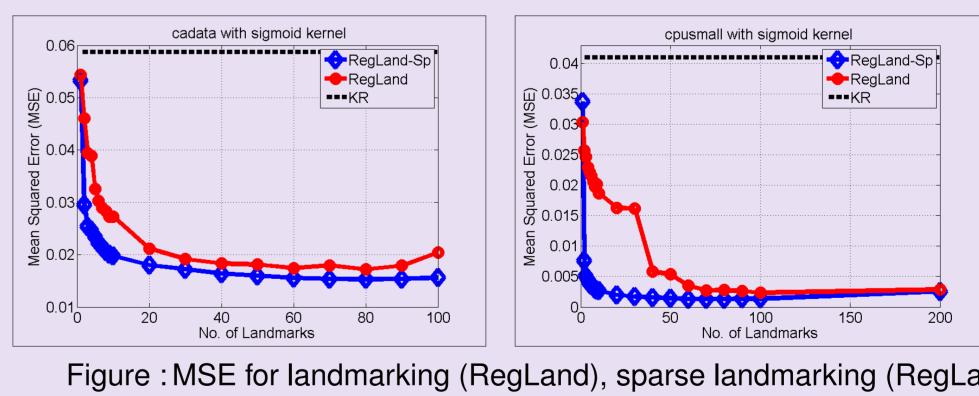
Overview of theoretical guarantees

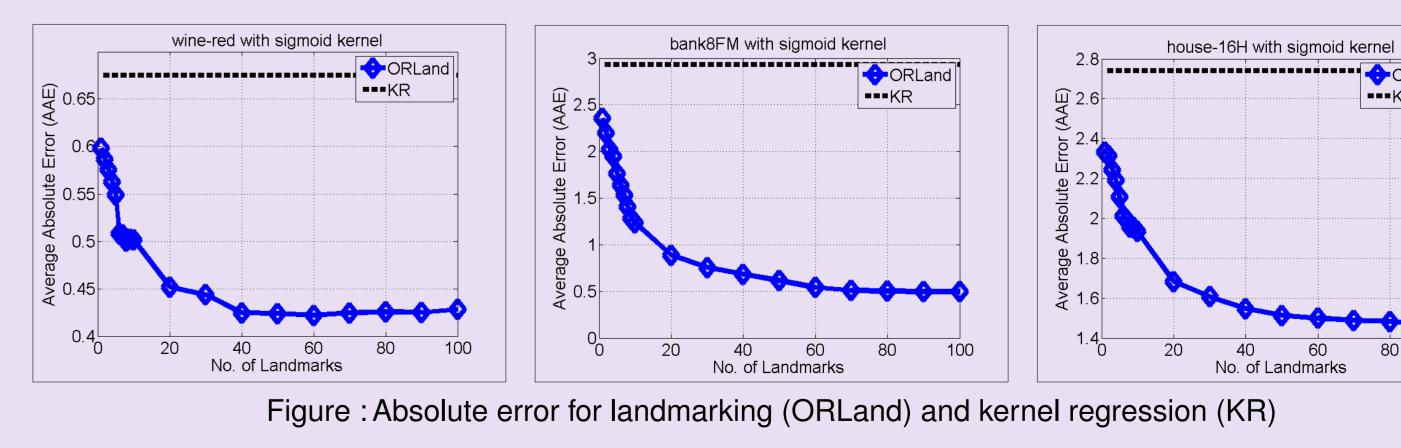
Task	
Classification [3]) Mis
Regression	e) Me
Ordinal Regression	(ε, Β
Ranking	(ϵ, B)

Experimental results

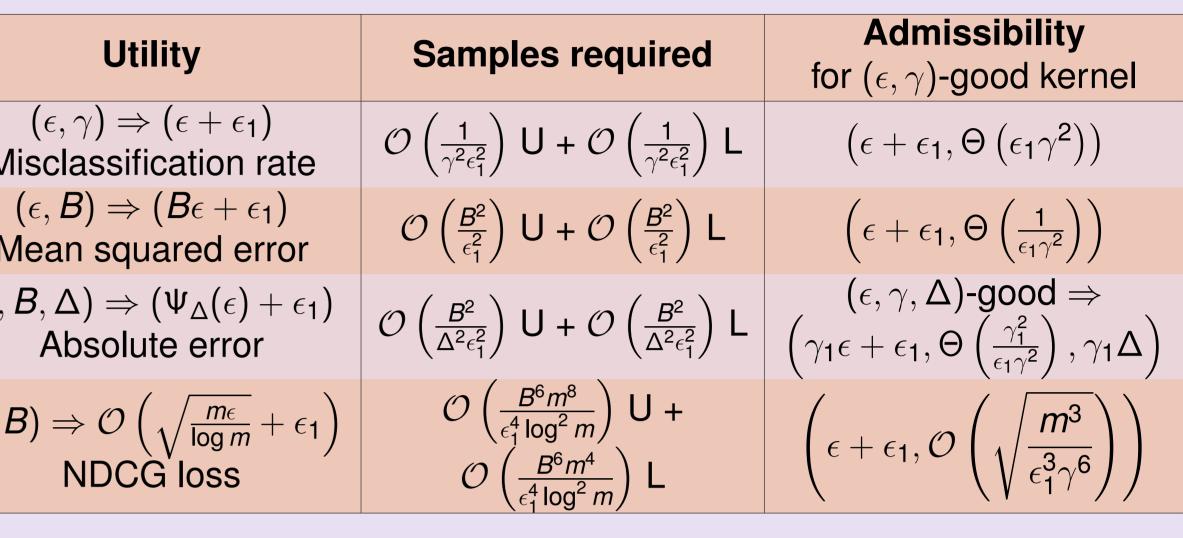
Datasets	Sigmoid kernel		Manhattan kernel				
Dalasels	KR	Land-Sp	KR	Land-Sp			
Abalone N = 4177	2.1e-002	6.2e-003	1.7e-002	6.0e-003			
CAHousing N = 20640	5.9e-002	1.6e-002	5.8e-002	1.5e-002			
CPUData N = 8192	4.1e-002	1.4e-003	4.3e-002	1.2e-003			
PumaDyn-32 N = 8192	1.8e-001	1.4e-002	1.8e-001	1.4e-002			
Table: MSE for real regression : Kernel regression vs. Sparse learning							
	Sigmoid kornol		Manhattan kornol				

Datasets Wine-Red N = 1599 Wine-Whit N = 4898 Bank-32 *N* = 8192 House-16 *N* = 22784





Microsoft[®] Research



	Sigmoi	d kernel	Manhattan kernel		
	KR	ORLand	KR	ORLand	
	6.8e-001	4.2e-001	6.7e-001	4.5e-001	
е	6.2e-001	8.9e-001	6.2e-001	4.9e-001	
	2.7e+000	1.6e+000	2.6e+000	1.6e+000	
	2.7e+000	1.5e+000	2.8e+000	1.4e+000	

: Absolute error for ordinal regression : Kernel regression vs. Landmarking

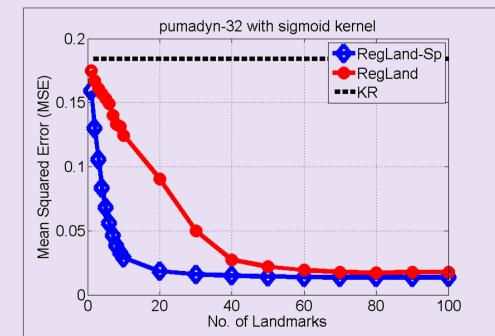


Figure : MSE for landmarking (RegLand), sparse landmarking (RegLand-Sp) and kernel regression (KR)

Full Paper : ArXiV : 1210.5840 [cs.LG], 2012.