
Globally-convergent Iteratively Reweighted Least Squares
for Robust Regression Problems

Bhaskar Mukhoty* Govind Gopakumar*‡ Prateek Jain† Purushottam Kar*
{bhaskarm,govindg,purushot}@cse.iitk.ac.in

*IIT Kanpur
prajain@microsoft.com
†Microsoft Research India

Abstract

We provide the first global model recovery
results for the IRLS (iteratively reweighted
least squares) heuristic for robust regression
problems. IRLS is known to offer excellent
performance, despite bad initializations and
data corruption, for several parameter esti-
mation problems. Existing analyses of IRLS
frequently require careful initialization, thus
offering only local convergence guarantees.
We remedy this by proposing augmentations
to the basic IRLS routine that not only offer
guaranteed global recovery, but in practice
also outperform state-of-the-art algorithms
for robust regression. Our routines are more
immune to hyperparameter misspecification
in basic regression tasks, as well as applied
tasks such as linear-armed bandit problems.
Our theoretical analyses rely on a novel ex-
tension of the notions of strong convexity
and smoothness to weighted strong convexity
and smoothness, and establishing that sub-
Gaussian designs offer bounded weighted con-
dition numbers. These notions may be useful
in analyzing other algorithms as well.

1 Introduction

Suppose there exists an unknown gold model w∗

and we are given n data points (xi, yi)
n
i=1 with d-

dimensional covariates xi ∈ Rd and the real-valued
responses yi generated as yi = x>i w∗. However,
for an unknown set of k < n data points i1, . . . ik,
the responses get corrupted i.e. we instead receive
yij = x>ijw

∗ + bij where bij ∈ R is the corruption.
‡Work done as a master’s student at IIT Kanpur.
Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Given the complete set of clean and corrupted data
points (xi, yi)

n
i=1, can we recover the gold model w∗?

This is the classical robust regression problem that
has become increasingly relevant to machine learning
and statistical estimation techniques which frequently
encounter situations where data is not trustworthy.
Works exist in settings where test data is corrupted
in order to fool a model that was learnt on clean data
[17], as well as the more challenging setting, on which
we focus, where the training data presented to the al-
gorithm is itself corrupted [9, 11, 16].

We will seek to offer reliable model recovery despite
the presence of (possibly maliciously) corrupted data
in the training set. Settings which present corrupted
data to learning algorithms include relatively innocu-
ous instances of erasures and missing data, improperly
or mistakenly attributed data, transient or temporary
changes in user-behavior patterns, as well as deliber-
ate and malicious attempts to derail recommendation
systems and other decision-making systems using mal-
ware, click-bots and other fraudulent techniques.

Despite being a well established field, given the early
seminal contributions of Huber [18] and Tukey [27],
robust statistics and algorithms have received renewed
interest given the threat to modern machine learning
techniques. Of the several techniques that have been
proposed for robust learning problems, one heuristic,
namely the iteratively reweighted least squares (IRLS),
remains a practitioner’s favorite owing to its ease of use
and excellent performance. The IRLS technique has
been effectively adapted to several problems, including
sparse recovery, and robust regression. The work of
[26] shows that certain biological dynamical systems
can be modeled upon the IRLS principle as well.

Our Contributions We offer several advances in the
understanding and application of the IRLS method. In
particular, we provide the first global model recovery
guarantee for IRLS for robust regression - our contribu-
tions are distinguished in the context of existing anal-
yses for IRLS in §2. We also propose algorithmic aug-

Globally-convergent Iteratively Reweighted Least Squares

mentations, in particular a fast gradient-based variant,
to the basic IRLS heuristic which offer superior per-
formance compared to existing state-of-the-art robust
algorithms in terms of speed, as well as resilience to
misspecified hyperparameters. We demonstrate this
in the standard linear regression setting, as well as an
applied setting, namely linear-armed bandits.

2 Related Work

Two lines of work directly relate to our contributions:
1) robust algorithms for regression and other learning
problems, and 2) works that analyze (variants of) the
IRLS heuristic in various settings. We review both, as
well as distinguish our contributions, below.

Robust Learning Algorithms: Work on robust
statistics dates back several decades [18, 27] and is
too vast to be reviewed in detail. Recent years have
seen interest in scalable algorithms for classification
[16], principal component analysis [9], and moment es-
timation [14]. Within the specific problem of robust
regression, two broad lines of work exist:

Covariate (feature) corruption: Results in this set-
ting usually either give only weak guarantees, or else
severely constrain data. e.g., [11, 24] allow only a

O
(

1/
√
d
)

fraction of data to be corrupted, d being

the ambient dimensionality, whereas [15, 21] only ad-
mit covariates drawn from a Gaussian distribution.

Response (label) corruption: Variants within this set-
ting arise based on the power of the adversary intro-
ducing the corruptions, the fraction of data points that
can be corrupted, restrictions on the choice of covari-
ates, and scalability of the algorithms. Table 1 sum-
marizes these traits for a selection of algorithms. We
refer the reader to [6, 15] for other references.

IRLS Variants and Analyses: The IRLS heuristic
has been successfully applied to several problems in-
cluding sparse recovery [4, 13], facility location prob-
lems [8] (via the Weiszfeld procedure), and optimizing
various robust cost functions, such as the Lq and Hu-
ber loss functions [2, 7, 12, 25].

Some of these works are not directly relevant to robust
regression as they either operate with uncorrupted
data [8], or else assume that the noise is Gaussian
[4, 13]. Convergence guarantees for IRLS are com-
mon in these benign settings. To handle adversar-
ial corruptions, it is common to use IRLS to optimize
a robust cost function F such as Lq or Huber loss,
in the anticipation that the model so obtained, say
ŵ = arg minF (w; {(xi, yi)}), will ensure ŵ ≈ w∗.

However, none of these works actually ensure such a re-
sult i.e. ŵ ≈ w∗. Some works [7, 12, 25] operate with

cost functions that are convex (e.g. Lq for q ∈ [1, 2])
and simply show that IRLS approaches small cost func-
tion values. Other approaches [2] do work with non-
convex cost functions, but then offer only monotonicity
guarantees and no global convergence guarantees.

We bridge this gap by presenting a much stronger anal-
ysis of IRLS that guarantees global recovery of the gold
model w∗ under mild conditions. Key to our proof
technique is a novel concept that extends the basic
notions of strong convexity and strong smoothness to
weighted versions of the same, as well as a guarantee
that Gaussian and sub-Gaussian designs have bounded
weighted condition numbers. These results may be of
independent interest in analyzing other algorithms.

3 Notation

Bold lower-case Latin letters x,y denote vectors. xi
denotes the ith coordinate of the vector x. Upper case
Latin letters A,X denote matrices. For a vector v ∈
Rn and set S ⊂ [n], vS denotes the vector with (vS)i =
vi for i ∈ S and (vS)j = 0 for j /∈ S. Similarly, for
any matrix A ∈ Rd×n and any set S ⊂ [n], AS denotes
the matrix in which columns i ∈ S in AS are identical
to those in A and columns j /∈ S are filled with zeros.

λmin(X) and λmax(X) denote, respectively, the small-
est and largest eigenvalues of a square symmetric ma-
trix X. B2(v, r) :=

{
x ∈ Rd : ‖x− v‖2 ≤ r

}
denotes

the ball of radius r centered at v. Sd−1 denotes the
surface of the unit sphere in d dimensions. We use the
shorthand B2(r) := B2(0, r).

4 Problem Formulation

Given n data points (xi, yi) ∈ Rd × R, let RX :=
maxi∈[n] ‖xi‖2 be the maximum Euclidean length of

any covariate, X = [x1, . . . ,xn] ∈ Rd×n be the covari-
ate matrix, and y = [y1, . . . , yn]> ∈ Rn the response
vector. Assume that the covariates are generated as
x1, . . . ,xn ∼ D from an unknown distribution D with
mean µ ∈ Rd and sub-Gaussian norm [28] ‖D‖Ψ2

≤ R.

w∗ ∈ Rd will be the gold model with RW := ‖w∗‖2.

Noise Model: Given the data covariates and the gold
model, the responses are generated as y = X>w∗ + b
where b = [b1, . . . , bn] is the vector of corruptions. We
make the standard assumption that ‖b‖0 ≤ α · n. Let
B := supp(b) denote the “bad” points which suffer
corruption i.e. bj 6= 0 for j ∈ B (note that |B| ≤ α ·n)
and G = [n]\B denote the “good” points where bi = 0
and thus yi = x>i w∗ for i ∈ G. To avoid clutter,
we abuse notation to denote G := |G| and B := |B|.
The largest value of the corruption fraction α that an
algorithm can tolerate is known as its breakdown point.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

Table 1: Algorithms for the Robust Regression problem (corrupted responses). †Please see §4 for details. Algorithms
able to tolerate adaptive (as opposed to oblivious) adversaries are more resilient. A more robust algorithm can handle
larger α. Sub-Gaussian covariates offer a much more flexible model than (isotropic) Gaussian covariates.

Paper Adversary Model† Breakdown point† Covariate Model Technique
Bhatia et. al. 2015 [6] Adaptive α ≥ Ω (1) sub-Gaussian Hard Thresholding (fast)

Chen & Dalalyan 2010 [10] Adaptive α ≥ Ω (1) sub-Gaussian SOCP (slow)
Wright & Ma 2010 [29] Oblivious α→ 1 Isotropic Gaussian L1 regularization (slow)

This Paper Adaptive α ≥ Ω (1) sub-Gaussian Reweighting (fast)

Adversary Model: We will work with a partially
adaptive adversary which is compelled to choose lo-
cations of the corruptions supp(b) = B before any
data covariates have been generated or w∗ is revealed.
However, the adversary may fill in the corruption val-
ues at those locations with knowledge of w∗ and X.
Our results can be extended to a fully adaptive adver-
sary that choose supp(b) after looking at w∗ and X
as well, but at a cost of a smaller breakdown point α.

Key to our analyses are the notions of weighted
strong convexity and smoothness which we define be-
low. These definitions reflect the fact that IRLS solves
weighted regression problems iteratively.

Definition 1 (WSC/WSS). We say that a covariate
matrix X ∈ Rd×n offers weighted strong convexity
(WSC) at level λS (resp. weighted strong smoothness
(WSS) at level ΛS), with respect to a diagonal weight
matrix S = diag(s) ∈ Rn×n where si ≥ 0, i ∈ [n], if

λS ≤ λmin(XSX>) ≤ λmax(XSX>) ≤ ΛS

5 Proposed Methods

IRLS solves the robust regression problem by repeat-
edly alternating between the following two steps

1. Reweighing: Given a model ŵ, assign every
data point a weight si inversely proportional to
its residual w.r.t. ŵ i.e. set si = 1

|x>i ŵ−yi| .

2. Weighted Least Squares: Solve a weighted
least squares problem minw

∑n
i=1 si(yi − x>i w)2

with above weights to obtain a new model w+ =
(XSX>)−1XSy where S = diag(s).

The intuition behind this procedure is that corrupted
points are likely to suffer large residuals and hence
get downweighted. Given that this procedure runs the
risk of divide-by-zero errors and numerical precision
issues, it is common to truncate weights by employing
a truncation parameter M while assigning weights1 to

the points i.e. si = min

{
1

|x>i ŵ−yi| ,M
}

. However,

1Literature often cites a regularization procedure that
sets si = 1

max{|x>i ŵ−yi|,δ} given a parameter δ. Setting

δ = 1
M

shows truncation to be equivalent to regularization.

it is suboptimal to rely on any single truncation value
M . To see why, take a hypothetical example where the
adversary introduces corruptions using a fake model w̃
as bi = x>i (w̃ −w∗) (i.e. yi = x>i w̃) for all i ∈ B.

Situation 1 : If we set M to a small value (aggressive
truncation), then no data point can ever hope to get a
large weight. However, convergence to w∗ is assured
only when points in G receive really large weights in
comparison to points in B. Setting a small value of M
thus prevents IRLS from recovering w∗ accurately.

Situation 2 : If we always use a large value of M (lax
truncation) and are unlucky enough to initialize IRLS
close to w̃, then points in the set B will initially have
very small residuals, hence receive large weights (which
the large value of M will allow) whereas points in the
set G will receive comparatively smaller weights. This
will cause IRLS to gravitate towards w̃. This example
precludes any hope of a global convergence guarantee
and forces us to do careful initialization.

The above limitations of IRLS are well corroborated by
experiments (see §8). To remedy this, we propose the
STIR algorithm in Algorithm 1. STIR executes IRLS,
but in stages, with initial stages employing aggressive
truncation with a small value of M and later stages
successively relaxing the truncation.

The advantage of the above augmentation is that even
if we have an unfortunate initialization, e.g. we start
at w̃ itself, the (initially) aggressive truncation will
prevent bad points from getting large weights whereas
good points, being in majority, even though receiv-
ing relatively smaller weights, will still prevent STIR
from latching onto w̃ and hopefully attract the proce-
dure towards the gold model w∗. Subsequent stages,
where truncation is relaxed, will allow good points to
be given large weights, thus differentiating them from
bad points. This would force STIR towards w∗.

Algorithm 2 presents STIR-GD, a gradient version of
STIR, that replaces weighted least squares by a much
cheaper gradient step. This benefits large datasets,
where solving weighted least squares repeatedly may
be prohibitive. We note that although stagewise IRLS
procedures have been proposed in literature [7], previ-
ous works neither give model recovery guarantees, nor
offer scalable gradient versions of IRLS.

Globally-convergent Iteratively Reweighted Least Squares

Algorithm 1 STIR- Stagewise-Truncated IRLS

Input: Data X,y, initial truncation M1, increment η > 1
Output: A model w
1: w1 ← 0
2: for T = 1, 2, . . . ,K − 1 do
3: wT,1 ← wT

4: t← 1
5: while

∥∥wT,t+1 −wT,t
∥∥
2
> 2

ηMT
do

6: rt ← X>wt,1 − y

7: St ← diag(st), sti ← min

{
1

|rti|
,MT

}
8: wT,t+1 ← (XStX>)−1XSty
9: t← t+ 1

10: end while
11: wT+1 ← wT,t+1

12: MT+1 ← η ·MT

13: end for

14: return wK

Algorithm 2 STIR-GD: STIR-Gradient Descent

Input: Data X,y, initial truncation M1, increment η > 1,
step length C

Output: A model w
8: wT,t+1 ← wT,t − 2C

MTn
·XStrt

//Rest of steps 1-14 remain same as in STIR

6 IRLS is Majorization-minimization
on a Scaled Huber Loss

Before presenting a convergence analysis for STIR, we
point out a curious link between IRLS, STIR and the
Huber loss function. We note that our observation
may be folklore. The Huber loss is widely used in ro-
bust regression applications [2, 7, 12, 25], particularly
those used in situations with heavy tailed noise.

hε(x) =

{
1
2x

2 |x| ≤ ε
ε |x| − 1

2ε
2 |x| > ε

The function smoothly transitions from quadratic be-
havior close to the origin, to linear far from the origin.
Now consider the following loss function

fε(x) =

{
1
2

(
x2

ε + ε
)
|x| ≤ ε

|x| |x| > ε

It is easily seen that fε(x) = hε(x)
ε + ε

2 and thus, fε() is
simply a scaled (and translated) version of the Huber
loss function, as well as that |x| ≤ fε(x) ≤ |x| + ε

2 .
Now, for any a ∈ R, ε > 0, consider the function

gε(x; a) :=
1

2

(
x2

max {|a| , ε}
+ max {|a| , ε}

)
Given a model w0 and data (xi, yi)

n
i=1, denote

−2 0 2-ε ε a
0

1

2

3

4 ε= 1.0, a= 1.5
|x|
hε(x)
fε(x)
gε(x, a)

−2 0 2-ε ε a
0

1

2

3

4 ε= 0.5, a= 1
|x|
hε(x)
fε(x)
gε(x, a)

Figure 1: A depiction of Huber hε(), scaled Huber fε()
loss functions, and its majorizer gε() for various ε.

`ε(w) :=
1

n

n∑
i=1

fε (〈w,xi〉 − yi)

℘ε(w; w0) :=

n∑
i=1

gε
(
〈w,xi〉 − yi;

〈
w0,xi

〉
− yi

)
The following observations are key (see Appendix A).

1. ℘ε(·; w0) is a majorizer for `ε(·) at w0,∀ε > 0 i.e.
℘ε(w; w0) ≥ `ε(w),∀w but ℘ε(w

0; w0) = `ε(w
0)

2. If the current model is w0 then M -truncated IRLS
minimizes ℘ 1

M
(w; w0) to obtain the next model.

3. ∇℘ε(w0; w0) = ∇`ε(w0).

Thus, IRLS can be seen as performing majorization-
minimization [23] on the scaled Huber loss `ε(·). The
reweighing step effectively constructs the majorizer
function ℘ε(·,w0) over which the least squares step
then performs minimization. Point 3 above shows that
STIR-GD can be effectively seen as performing gradient
descent with respect to `ε(w

0).

This also allows us to interpret the stages of STIR as
using scaled Huber losses with successively smaller val-
ues of ε (point 2 above shows that STIR sets ε = 1

M).
Note that in the limit ε→ 0, `ε(·) approaches the ab-
solute error function, and thus, in the limit M → ∞,
STIR ends up optimizing the absolute error function.
STIR-GD can be seen as simply replacing the mini-
mization steps with a gradient descent step.

7 Convergence Analysis

In this section, we establish that both STIR and STIR-
GD enjoy a linear rate of convergence, as well as a
breakdown point α ≥ Ω (1). Theorem 1 summarizes
the results. It is notable that STIR and STIR-GD offer
a breakdown point of greater than 1

5.25 (for Gaussian
covariates – see below for details), which is far superior
to those offered by recent works such as [6, 5] which
offer breakdown points of ≈ 1

60 and 1
10000 respectively

(again for Gaussian covariates).

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

Theorem 1. Suppose we have n data points with the
covariates xi sampled from a sub-Gaussian distribu-
tion D and an α fraction of the data points are cor-
rupted. If STIR (or STIR-GD) is initialized at an (ar-
bitrary) point w0, with an initial truncation that satis-
fies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment

η > 1 such that we have α ≤ c
2.88η+c , where c > 0 is a

constant that depends only on D, then for any ε > 0,
with probability at least 1 − exp(−Ω̃ (n)), after K =

O
(

log 1
M1ε

)
stages, we must have

∥∥wK −w∗
∥∥

2
≤ ε.

Moreover, each stage consists of only O (1) iterations.

Global Convergence Note that the above result al-
lows initialization at any location w0, so long as the
accompanying value M1 is small enough i.e. M1 ≤

1
‖w0−w∗‖2

which can be ensured using a simple binary

search (see §8 for details on parameter setting). In
particular, if an estimated upper-bound ‖w∗‖2 ≤ W
is available, then we can set w0 = 0 and set M1 = 1

W .

Given this parameter convergence result, we can also
establish that STIR and STIR-GD offer linear conver-
gence guarantees with respect to the Huber and ab-
solute loss functions as well. We refer the reader to
Appendix C.2 for details.

Breakdown Point Both STIR and STIR-GD enjoy a
breakdown point of α ≤ c

2.88η+c where η is chosen by
us and c is a distribution dependent constant. Bounds
on this constant are established for several interest-
ing distributions in Appendix D.1. In particular, for
the Gaussian distribution N (0, Id), we have c ≥ 0.68
which, for values of η → 1, endow STIR and STIR-GD
with a breakdown point of greater than 1

5.25 .

7.1 Proof Outline - the Peeling Strategy

Given the stage-wise nature of our algorithms STIR
and STIR-GD, we employ a peeling-based proof strat-
egy that is a departure from the techniques used by
previous results such as [6, 10, 29].

Our proof partitions the model space into annular peels
centered at the gold model w∗ (see Figure 2). The
outermost peel has a radius of 1

M1
, and successive inner

peels have radii that are an η factor smaller i.e. the
subsequent peels have radii 1

ηM1
, 1
η2M1

, 1
η3M1

, Note

that by setting M1 ≤ 1
‖w0−w∗‖2

, STIR is guaranteed

to reside inside the outermost peel in the beginning.

We then inductively show (see Lemmata 8 and 9) that
once we are inside a certain peel, say ‖w −w∗‖2 ≤

1
ηKM

, and if the WSC/WSS properties hold with ap-

propriate constants (see Appendix D), then if we exe-
cute (ηKM)-truncated IRLS for a constant number of
iterations, we are guaranteed to obtain a model, say
w+, that ensures ‖w+ −w∗‖2 ≤

1
ηK+1M

.

w*

w0

wT

M values
10−2

10−1

100

101

102

103

Figure 2: A depiction of the peeling process. The STIR
procedure starts off far away from w∗ and using a small
value of M . In successive stages, it enters closer peels
around w∗ and also begins using larger values of M .

This implies that we have entered the next inner peel.
We can now set the truncation level to ηK+1M and
continue the process. Note that this is exactly the al-
gorithmic step performed by STIR/STIR-GD (see Al-
gorithm 1, line 12) to start a new stage. Due to lack of
space, all complete proofs are given in the appendices.

7.2 Establishing WSC/WSS

A central result required for the peeling strategy
to work, is ensuring that our covariates satisfy the
WSC/WSS properties (that we introduced in §4) with
respect to the weights assigned to data points by the
STIR and STIR-GD algorithms. We show that for co-
variates drawn from sub-Gaussian distributions, this
is indeed true (see Appendix D).

The use of such design properties is quite common in
literature e.g., restricted strong convexity/smoothness
(RSC/RSS) [13] in sparse recovery, and subset strong
convexity/smoothness (SSC/SSS) [6] in robust regres-
sion. It is also common to use results on extremal sin-
gular values of random matrices [28], to show that sub-
Gaussian covariates satisfy RSC/RSS [3] and SSC/SSS
[6], with high probability.

However, doing so in our case is not as straightforward.
The reason for this is that whereas the RSC/RSS and
SSC/SSS properties are defined purely in terms of the
data covariates, the WSC/WSS properties also incor-
porate data weights. Moreover, these weights are nei-
ther constant, nor independent of the data, but rather
are assigned and repeatedly updated in a stage-wise
manner by an algorithm such as IRLS or STIR.

Since our proofs will require the WSC/WSS properties
to hold with respect to all weight assignments made

Globally-convergent Iteratively Reweighted Least Squares

during the entire execution of the algorithms, a direct
application of classical techniques [28] fails. Such tech-
niques could have succeeded only if the data weights
were to be constant or else independent of the data.

To overcome this challenge, we establish WSC/WSS
properties for sub-Gaussian covariates in a peel-wise
manner using a careful uniform convergence bound.
The number of peels is no more than O

(
log 1

ε

)
since

each peel corresponds to a stage of the algorithm and
O
(
log 1

ε

)
is the number of stages required to achieve

an ε-accurate solution (see Theorem 1), which then
allows us to take a union bound over all peels.

Within each peel, a careful uniform convergence bound
is employed over all models within that peel in order
to establish WSC/WSS. Note that our results present
a novel extension of the existing notions of SSC/SSS
since we can recover SSC/SSS as a special case of
WSC/WSS where the weights are simply zero or unity.

7.3 Corruptions and Dense Noise

So far we have looked at an idealized setting where the
responses are either completely clean yi = x>i w∗ for
i ∈ G or else corrupted yj = x>j w∗ + bj for j ∈ B.
We now look at a more realistic setting where even
the “good” points experience sub-Gaussian noise. We
will now assume that our data is generated as y =
X>w∗ + b + ε where, as before ‖b‖0 ≤ α · n, but we
additionally have ε ∼ Dε where Dε is a σ-sub-Gaussian
distribution with zero mean and real support 2.

We will denote B := supp(b) and G := [n] \ B, as
before. Our covariates will continue to be sampled
from an R-sub-Gaussian distribution D with support
over Rd. Even in this setting, we can ensure a model
recovery result with a linear rate of convergence.

Theorem 2. Suppose we have n data points with the
covariates xi sampled from a sub-Gaussian distribu-
tion D and an α fraction of the data points are cor-
rupted with the rest subjected to sub-Gaussian noise
sampled from a distribution Dε with sub-Gaussian
norm σ. If STIR (or STIR-GD) is initialized at an (ar-
bitrary) point w0, with an initial truncation that satis-
fies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment

η > 1 such that we have α ≤ cε
5.85η+cε

, where cε > 0
is a constant that depends only on the distributions D
and Dε, then with probability at least 1− exp(−Ω̃ (n)),

after K = O
(

log 1
M1σ

)
stages, each of which has only

O (1) iterations, we must have
∥∥wK −w∗

∥∥
2
≤ O (σ).

We refer the reader to Appendix E for the full proof.

2We can tolerate noise with non-zero mean as well, by
using a simple pairing trick which has a side effect of at
most doubling the corruption rate α

Global Convergence This result also allows arbi-
trary initialization so long as we set M1 ≤ 1

‖w0−w∗‖2
.

However, note that this result only guarantees a con-
vergence to

∥∥wK,1 −w∗
∥∥

2
≤ O (σ) and thus, does not

ensure a consistent solution. We refer the reader to
the proof of Theorem 2 in Appendix E for a discussion
on this result. We also note that our results or our
algorithms, do not require the knowledge of the noise
parameter σ.

Breakdown Point For Gaussian covariates i.e. xi ∼
N (0, Id), Gaussian noise i.e. εi ∼ N (0, σ2), we have
c ≥ 0.52 (see Appendix E), and for η → 1 this gives
STIR and STIR-GD with a breakdown point of 1

12.25 .

8 Experiments

In this section, we report results of a variety of ex-
periments comparing STIR and STIR-GD to other ro-
bust learning algorithms. These experiments were per-
formed over two learning settings, namely robust linear
regression and robust linear-armed bandit problems.

Parameter and Adversary Setting Algorithms
considered in this section require only scalar param-
eters to be specified (α for TORRENT, step length for
TORRENT-GD, η and M1 for STIR, and step length
C for STIR-GD), all which were tuned via a fine grid
search using a held-out validation set. In particular, a
binary search was found to suffice for setting M1. For
all experiments, the adversary was made to introduce
corruptions using a fake model as described in §5. All
algorithms were initialized at the fake model itself to
test their behavior under adversarial initialization.

8.1 Robust Regression Experiments

We executed STIR and STIR-GD on linear regression
problems with response corruption as described in §4.

Algorithms: We compared STIR and STIR-GD with
the TORRENT algorithm [6], its faster gradient ver-
sion TORRENT-GD, the classical IRLS algorithm with
various fixed values of the truncation parameter, and
the standard OLS (Ordinary Least Squares) algorithm.
We do not compare to some other state-of-the-art al-
gorithms for robust regression, such as L1 minimiza-
tion techniques and extended Lasso since [6] estab-
lishes that TORRENT outperforms all of them.

Data: The covariate dimensionality and the number
of data points are mentioned with each plot. All co-
variates were generated from a normal distribution.
The gold and fake models were chosen as two inde-
pendently sampled unit vectors. The set of “bad” data
points was chosen randomly and the fake model was
used to introduce corruptions, as in Section 5.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

0 10 20 30 40 50
Number of Iterations

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
||w

−
w

* |
| 2

n=1000 d=10 alpha=0.15
IRLS at M = 100

IRLS at M = 103

IRLS at M = 106

IRLS at M = 109

IRLS at M = 1012

IRLS at M = 1015

STIR

(a) STIR vs IRLS with fixed M

0.0 0.1 0.2 0.3 0.4
Execution time in seconds

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

||w
−
w

* |
| 2

n=1000 d=10 alpha=0.15
STIR
STIR-GD
TORRENT
TORRENT-GD

(b) STIR vs TORRENT

0 10 20 30 40 50
Number of Iterations

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

||w
−
w

* |
| 2

n=10000 d=50 alpha=0.15
IRLS at M = 100

IRLS at M = 103

IRLS at M = 106

IRLS at M = 109

IRLS at M = 1012

IRLS at M = 1015

STIR

(c) STIR vs IRLS with fixed M

0 1 2 3 4 5 6 7
Execution time in seconds

10−15

10−12

10−9

10−6

10−3

100

||w
−
w

* |
| 2

n=10000 d=50 alpha=0.15
STIR
STIR-GD
TORRENT
TORRENT-GD

(d) STIR vs TORRENT

Figure 3: All y-axes are in log-scale. Figs (a) and (c) use different data dimensionalities and number of data
points and compare STIR to when IRLS is executed with various fixed values of the truncation parameter M . It
is clear that no fixed value performs well. For small fixed values M ≈ 100, IRLS converges rapidly but to poor
models. For large fixed values M ≈ 1012, IRLS gets stuck at the fake model and takes long to converge. On the
other hand, although STIR was initialized with M1 = 0 for this experiment, it adaptively increases its truncation
parameter to offer far better convergence than IRLS with any fixed value of M . Figs (b) and (d) compare STIR
and STIR-GD with TORRENT and TORRENT-GD. In all cases, STIR-GD offers the fastest convergence.

102 103 104 105

number of points: n

0.0

0.5

1.0

1.5

||w
−
w

* |
| 2

d=10 alpha=0.15

TORRENT
STIR
IRLS at M=109

(a) Variation with dataset size

10 15 20 25 30 35 40 45 50
dimension

0.000

0.005

0.010

0.015

0.020

0.025

0.030

||w
−
w

* |
| 2

n=1000 alpha=0.15

TORRENT
STIR
IRLS at M=109

(b) Variation with dimension

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Corruption fraction: alpha

0.0

0.5

1.0

1.5

2.0

2.5

||w
−
w

* |
| 2

n=1000 d=10

TORRENT
STIR
IRLS at M=109

OLS

(c) Variation with corruption

0 1 2 3 4 5
noise magnitude: sigma

0.0

0.5

1.0

1.5

2.0

2.5

||w
−
w

* |
| 2

n=1000 d=10 alpha=0.15

TORRENT
STIR
IRLS at M=109

OLS

(d) Variation with white noise

Figure 4: The figures compare STIR, TORRENT, IRLS, and OLS for convergence behavior. OLS exceeds the
figure boundaries and hence not visible in Figs (a) and (b). Fig (a) examines the effect of varying the training
set size. Note that the x-axis is in log-scale. IRLS performs poorly with very few data points but STIR and
TORRENT continue to offer good convergence. Fig (b) shows that IRLS worsens with increasing dimensionality
whereas STIR and TORRENT remain stable. Fig (c) explores the affect of increasing the fraction of corrupted
points. Both OLS and IRLS show considerable worsening with increasing fraction of corruptions. Finally, Fig (d)
explores the hybrid noise model discussed in Section 7.3 (Figs (a)-(c) had no white noise). Here, IRLS performs
the worst of all. However, once the noise variance goes beyond a point, TORRENT and STIR start losing the
distinction between good and bad points and the naive OLS starts outperforming them.

0.1 0.2 0.3 0.4 0.5
Torrent hyper-parameter: alpha

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||w
−
w

* |
| 2

TORRENT

1.5 2.5 3.5 5.0 7.0 9.0 11.0
Step length: eta

STIR

(a) Misspecifying parameters

0 25 50 75 100 125 150 175 200
Number of Iterations

0

200

400

600

800

1000

1200

Re
gr

et

alpha=0.2 n_arms=50 d=10 T=200

LINUCB
RUCB-Lin
WUCB-Lin

(b) Underreporting α as 0.15

0 25 50 75 100 125 150 175 200
Number of Iterations

0

200

400

600

800

1000

Re
gr

et

alpha=0.15 n_arms=50 d=10 T=200

LINUCB
RUCB-Lin
WUCB-Lin

(c) Exact α to TORRENT

0 25 50 75 100 125 150 175 200
Number of Iterations

0

200

400

600

800

Re
gr

et

alpha=0.1 n_arms=50 d=10 T=200

LINUCB
RUCB-Lin
WUCB-Lin

(d) Overreporting α as 0.15

Figure 5: The figures compare STIR and TORRENT with respect to hyperparameter misspecification. STIR was
initialized at w0 = 0 in these experiments. For Fig (a), 25% data was corrupted but TORRENT was given various
values of its hyperparameter α (denoting the fraction of corrupted points) as indicated. STIR was also given
various values of its own hyperparameter η in a wide range. TORRENT is very susceptible to hyperparameter
misspecification and degrades heavily when not given a proper value whereas STIR is much more stable with
respect to its hyperparameter. For Figs (b), (c), (d), respectively 20%, 15% and 10% of the data was corrupted
and linear-armed bandit algorithms that use OLS (LINUCB), TORRENT (RUCB-Lin) and STIR (WUCB-Lin)
were executed. For Figs (b), (c), (d), TORRENT was always given a hyperparameter value α = 0.15. Note that
this is appropriate for Fig (c) where actually 15% data was corrupted but not for Figs (b) and (d). TORRENT
performs comparably to STIR if provided the true value of α, as in Fig (c) but its performance degrades if we
give a value smaller than true value, such as in Fig (b) or a larger value, such as in Fig (d).

Globally-convergent Iteratively Reweighted Least Squares

Algorithm 3 WUCB-Lin: Weighted UCB for Linear
Contextual Bandits

Input: Upper bounds σ0 (on sub-Gaussian norm of noise
distribution), B (on magnitude of corruption), α0 (on
fraction of corrupted points), initial truncation M1,
increment rate η

1: for t = 1, 2, . . . , T do
2: Receive set of arms At
3: Play arm x̂t = arg max

x∈At,w∈Ct−1

〈x,w〉

4: Receive reward rt
5: (ŵt, St)← STIR

(
{x̂τ , rτ}tτ=1 ,M1, η

)
//Denote St = diag(st1, s

t
2, . . . , s

t
t)

6: V t ←
∑
τ≤t s

t
τ x̂

τ (x̂τ)>, Xt ←
[
x̂1, x̂2, . . . , x̂t

]
7: w̄t ← (V t)−1XtSty
8: Ct ← {w :

∥∥w − w̄t
∥∥
V t
≤ σ0

√
d log T + α0BT}

9: end for

8.2 Robust Linear Bandit Experiments

As linear-armed bandit algorithms [1] utilize regres-
sion routines internally, recent works have explored
the possibility of using robust regression algorithms to
target cases when arm-pulls are corrupted, for example
[19] that uses TORRENT itself to develop corruption-
tolerant bandit learning algorithms.

Algorithm 3 presents WUCB-Lin, an adaptation of
STIR to linear bandit settings. We refer the reader
to Appendix F for details of the algorithm. WUCB-Lin
roughly follows the popular Optimism-in-the-face-of-
uncertainty (OFUL) principle while selecting arms to
pull at various time instants.

However, since we know some of the arm pulls gener-
ated corrupted rewards, instead of applying the OFUL
principle blindly, WUCB-Lin invokes STIR and obtains
not only an estimate of the reward generating model,
but also a set of weights on previous arm pulls which
indicate which pulls were corrupted and which pulls
were clean. WUCB-Lin then uses these weights to form
a weighted confidence set (Algorithm 3, line 6) that is
further utilized in applying the OFUL principle to de-
cide future arm pulls (Algorithm 3, line 3).

Algorithms and Data: We compare WUCB-Lin with
LINUCB that uses the simple OLS estimator, as well as
the RUCB-Lin algorithm from [19]. We refer the reader
to Appendix F for details of the problem setting.

8.3 Discussion on Experiments

Figures 3, 4 and 5 present graphs with the outcomes
of the experiments. Although the respective captions
in the figures detail the observed behaviours of various
algorithms considered therein, here we point out some
broad inferences.

1. STIR-GD offers much faster convergence as com-
pared to TORRENT or TORRENT-GD.

2. No single value of the truncation parameter M
ensures a good performance with IRLS. A stage-
wise implementation with continuously updated
truncation parameters, as STIR offers, is necessary
for rapid and assuredly global convergence.

3. TORRENT requires an estimate of the fraction
of corrupted points as a hyperparameter and is
extremely susceptible to misspecification in this
value. STIR and STIR-GD on the other hand are
much more resilient to misspecifications of their
own hyperparameters.

9 Conclusion and Future Work

In this work we presented STIR, a stage-wise algorithm
that makes simple and efficient modifications, includ-
ing a gradient-based implementation STIR-GD, to the
well-known IRLS heuristic to obtain the first global
convergence results for robust regression. These algo-
rithms offer not only theoretically superior results to
state-of-the-art algorithms such as TORRENT but are
empirically faster and more immune to hyperparame-
ter mis-specification.

Our theoretical results are superior to those of previous
works in terms of offering a better breakdown point,
and are based on a novel notion of weighted strong con-
vexity. Working with this new notion of strong convex-
ity required us to develop the peeling proof technique
which is novel in robust regression literature and may
be of independent interest in analyzing other iterative
algorithms.

Several avenues of future work exist. It would be in-
teresting to examine other weighing functions (IRLS
and STIR use the inverse of the residual) for robust
regression. It is likely that any reasonable decreas-
ing function of residuals should suffice. It would also
be interesting to derive formal regret bounds for the
WUCB-Lin algorithm and see how they compare to the
regret bounds of the RUCB-Lin algorithm from [19].

Acknowledgements

The authors thank the anonymous reviewers for sev-
eral helpful comments on a previous version of the
paper. B.M. thanks the Research-I Foundation for a
travel grant. P.K. is supported by the Deep Singh and
Daljeet Kaur Faculty Fellowship and the Research-I
Foundation at IIT Kanpur, and thanks Microsoft Re-
search India and Tower Research for research grants.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

References

[1] Yasin Abbasi-Yadkori, David Pal, and Csaba
Szepesvari. Improved Algorithms for Linear
Stochastic Bandits. In Proceedings of the 25th
Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2011.

[2] Khurrum Aftab and Richard Hartley. Conver-
gence of Iteratively Re-weighted Least Squares
to Robust M-Estimators. In IEEE Winter
Conference on Applications of Computer Vision
(WACV), 2015.

[3] Alekh Agarwal, Sahand N. Negahban, and Mar-
tin J. Wainwright. Fast global convergence of
gradient methods for high-dimensional statistical
recovery. Annals of Statistics, 40(5):2452–2482,
2012.

[4] Demba Ba, Behtash Babadi, Patrick L. Purdon,
and Emery N. Brown. Convergence and Stabil-
ity of Iteratively Re-weighted Least Squares Algo-
rithms. IEEE Transactions on Signal Processing,
62(1):183–195, 2013.

[5] Kush Bhatia, Prateek Jain, Parameswaran Ka-
malaruban, and Purushottam Kar. Consistent
Robust Regression. In Proceedings of the 31st
Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2017.

[6] Kush Bhatia, Prateek Jain, and Purushottam
Kar. Robust Regression via Hard Thresholding.
In Proceedings of the 29th Annual Conference on
Neural Information Processing Systems (NIPS),
2015.

[7] Nicolai Bissantz, Lutz Dümbgen, Axel Munk,
and Bernd Stratmann. Convergence Analysis of
Generalized Iteratively Reweighted Least Squares
Algorithms on Convex Function Spaces. SIAM
Journal of Optimization, 19(4):1828–1845, 2009.

[8] Jack Brimberg and Robert F. Love. Global Con-
vergence of a Generalized Iterative Procedure for
the Minisum Location Problem with lp Distances.
Operations Research, 41(6):1010–1176, 1993.

[9] Emmanuel J. Candès, Xiaodong Li, and John
Wright. Robust Principal Component Analysis?
Journal of the ACM, 58(1):1–37, 2009.

[10] Yin Chen and Arnak S. Dalalyan. Fused spar-
sity and robust estimation for linear models with
unknown variance. In Proceedings of the 26th An-
nual Conference on Neural Information Process-
ing Systems (NIPS), 2012.

[11] Yudong Chen, Constantine Caramanis, and Shie
Mannor. Robust Sparse Regression under Ad-
versarial Corruption. In Proceedings of the 30th
International Conference on Machine Learning
(ICML), 2013.

[12] A. K. Cline. Rate of Convergence of Law-
son’s Algorithm. Mathematics of Computation,
26(117):167–176, 1972.

[13] Ingrid Daubechies, Ronald DeVore, Massimo
Fornasier, and C. Sinan Güntürk. Itera-
tively Reweighted Least Squares Minimization for
Sparse Recovery. Communications on Pure and
Applied Mathematics, 63(1):1–38, 2010.

[14] Ilias Diakonikolas, Gautam Kamath, Daniel M.
Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robustly Learning a Gaussian: Get-
ting Optimal Error, Efficiently. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages
2683–2702, 2018.

[15] Ilias Diakonikolas, Weihao Kong, and Alistair
Stewart. Efficient Algorithms and Lower Bounds
for Robust Linear Regression. In 30th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2019.

[16] Jiashi Feng, Huan Xu, Shie Mannor, and
Shuicheng Yan. Robust Logistic Regression and
Classification. In Proceedings of the 28th An-
nual Conference on Neural Information Process-
ing Systems (NIPS), 2014.

[17] Ian Goodfellow, Patrick McDaniel, and Nicolas
Papernot. Making Machine Learning Robust
Against Adversarial Inputs. Communications of
the ACM, 61(7):56–66, 2018.

[18] Peter J. Huber. Robust Estimation of a Location
Parameter. The Annals of Mathematical Statis-
tics, 35(1):73–101, 1964.

[19] Sayash Kapoor, Kumar Kshitij Patel, and
Purushottam Kar. Corruption-tolerant ban-
dit learning. Machine Learning (to ap-
pear) https://doi.org/10.1007/s10994-018-5758-
5, 2018.

[20] Lihong Li, Wei Chu, John Langford, and Robert
Schapire. A Contextual-Bandit Approach to Per-
sonalized News Article Recommendation. In Pro-
ceedings of the 19th International World Wide
Web Conference (WWW), 2010.

[21] Liu Liu, Yanyao Shen, Tianyang Li, and Constan-
tine Caramanis. High Dimensional Robust Sparse
Regression. arXiv:1805.11643v1 [cs.LG], 2018.

Globally-convergent Iteratively Reweighted Least Squares

[22] Thodoris Lykouris, Vahab Mirrokni, and Re-
nato Paes Leme. Stochastic bandits robust to ad-
versarial corruptions. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 114–122, 2018.

[23] Julien Mairal. Incremental Majorization-
Minimization Optimization with Application to
Large-Scale Machine Learning. SIAM Journal of
Optimization, 25(2):829–855, 2015.

[24] Brian McWilliams, Gabriel Krummenacher,
Mario Lucic, and Joachim M. Buhmann. Fast and
Robust Least Squares Estimation in Corrupted
Linear Models. In 28th Annual Conference on
Neural Information Processing Systems (NIPS),
2014.

[25] M. R. Osborne. Finite Algorithms in Optimiza-
tion and Data Analysis. Wiley Series in Probabil-
ity and Mathematical Statistics: Applied Proba-
bility and Statistics. John Wiley & Sons, 1985.

[26] Damian Straszak and Nisheeth K. Vishnoi. IRLS
and Slime Mold: Equivalence and Convergence.
arXiv:1601.02712 [cs.DS], 2016.

[27] John W. Tukey. A Survey of Sampling from Con-
taminated Distributions. Contributions to Proba-
bility and Statistics, 2:448–485, 1960.

[28] Roman Vershynin. High-Dimensional Probabil-
ity: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University
Press, 2018.

[29] John Wright and Yi Ma. Dense Error Correction
via `1 Minimization. IEEE Transactions on In-
formation Theory, 56(7):3540–3560, 2010.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

A IRLS and the Scaled Huber Loss - Supplementary Details

We recapitulate below the definitions of the Huber loss, the scaled (and translated) Huber loss and, given a
model w0 and data (xi, yi)

n
i=1, other allied functions.

hε(x) =

{
1
2x

2 |x| ≤ ε
ε |x| − 1

2ε
2 |x| > ε

fε(x) =

{
1
2

(
x2

ε + ε
)
|x| ≤ ε

|x| |x| > ε

gε(x; a) :=
1

2

(
x2

max {|a| , ε}
+ max {|a| , ε}

)
`ε(w) :=

1

n

n∑
i=1

fε (〈w,xi〉 − yi)

℘ε(w; w0) :=
n∑
i=1

gε
(
〈w,xi〉 − yi;

〈
w0,xi

〉
− yi

)
The claim that M -truncated IRLS minimizes ℘ 1

M
(w; w0) to obtain the next model can be easily verified using

the equivalence between the truncation and regularization techniques explained in Footnote 1 (see §5 for the
footnote). In the following, we establish that gε(·; ·) is a valid majorizer for fε for any ε > 0.

Claim 3. For any a, x ∈ R, ε > 0, we have gε(a; a) = fε(a) as well as gε(x; a) ≥ fε(x).

Proof. We have, for the first claim,

gε(a; a) =
1

2

(
a2

max {|a| , ε}
+ max {|a| , ε}

)
=

{
1
2

(
a2

ε + ε
)
|a| ≤ ε

|a| |a| > ε
= fε(a).

For the second claim, we consider two simple cases

Case 1 |x| > ε : In this case we have fε(x) = |x| and we always have 1
2

(
x2

max{|a|,ε} + max {|a| , ε}
)
≥ |x|.

Case 2 |x| ≤ ε : In this case denote b = max {|a| , ε}. Then we have b ≥ ε ≥ |x| which gives us x2 ≤ bε. Thus,

we have gε(x; a)− fε(x) = 1
2

(
x2

b + b
)
− 1

2

(
x2

ε + ε
)

= (b−ε)(bε−x2)
2bε ≥ 0.

The following claim shows that we have f ′ε(x)|x=a = g′ε(x; a)|x=a for any ε, a. This immediately establishes that
∇℘ε(w0; w0) = ∇`ε(w0) for any model w0.

Claim 4. For any a, x ∈ R, ε > 0, we have f ′ε(x)|x=a = g′ε(x; a)|x=a.

Proof. We have g′ε(x; a) = x
max{|a|,ε} which gives us

g′ε(x; a)|x=a =

{
a
ε |a| ≤ ε
sign(a) |a| > ε,

whereas we have

f ′ε(x) =

{
x
ε |x| ≤ ε
sign(x) |x| > ε

,

which establishes the claim.

Globally-convergent Iteratively Reweighted Least Squares

B Supporting Results

In this section we prove a few results used in the convergence analysis of STIR.

Lemma 5. Suppose we have data covariates X = [x1, . . . ,xn] generated from an isotropic but otherwise arbitrary
sub-Gaussian distribution. Then for any fixed set S ⊂ [n] and n = Ω

(
d+ log 1

δ

)
, with probability at least 1− δ,

0.99 |S| ≤ λmin(XSX
>
S) ≤ λmax(XSX

>
S) ≤ 1.01 |S| ,

where the constant inside Ω (·) depends only on the sub-Gaussian distribution and universal constants.

Proof. This is a special case of [6, Lemma 16] for isotropic distributions. Note that since our adversary is partially
adaptive, the sets of good and bad points G,B are fixed and this lemma applies to both G and B.

Lemma 6. Suppose our data covariates x1, . . . ,xn are generated from a sub-Gaussian distribution with sub-
Gaussian norm R. Then with probability at least 1−δ, we have RX := maxi∈[n] ‖xi‖2 ≤ ‖µ‖2+O

(
R
√
d+ log n

δ

)
.

Proof. If x is R-sub-Gaussian with mean µ, then for any unit vector v ∈ Sd−1, 〈v,x− µ〉 is centered as well as
2R-sub-Gaussian which gives us

P [|〈v,x− µ〉| ≥ t] ≤ 2 exp
[
−t2/2R2

]
If v1,v2 ∈ Sd−1, such that

∥∥v1 − v2
∥∥

2
≤ 1

2 , then we have
∣∣〈v1 − v2,x− µ

〉∣∣ ≤ 1
2 · ‖x− µ‖2. Thus, taking a

union bound over a 1/2-net over Sd−1 gives us

P
[

max
v∈Sd−1

|〈v,x− µ〉| ≥ 1

2
· ‖x− µ‖2 + t

]
= P [‖x‖2 ≥ ‖µ‖2 + 2t] ≤ 2 · 5d exp

[
−t2/2R2

]
Taking t2 = 2R2(d log 5 + log n

δ + log 2) proves the result.

P
[
max
i∈[n]

‖xi‖2 > ‖µ‖2 +R

√
2
(
d log 5 + log

n

δ
+ log 2

)]
≤ δ

In the following, we establish that the scaled Huber loss is Lipschitz. This will be helpful in transferring our
convergence guarantees to those with respect to the Huber and absolute loss functions.

Lemma 7. For any ε > 0, we have |`ε(w)− `ε(w′)| ≤ ‖w −w′‖2 ·
√

1.01.

Proof. The function fε(·) is clearly 1-Lipschitz for any ε > 0. This means that we have

|`ε(w)− `ε(w′)| ≤
1

n

n∑
i=1

|〈w,xi〉 − 〈w′,xi〉| =
1

n

∥∥X>(w −w′)
∥∥

1
≤ 1√

n

∥∥X>(w −w′)
∥∥

2

≤ 1√
n
‖X‖2 ‖w −w′‖2 ≤ ‖w −w′‖2 ·

√
1.01,

where the last step follows due to Lemma 5.

C Convergence Analysis - Supplementary Details

We begin by restating Theorem 1, the main result that we will prove in this section.

Theorem 1. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution D
and an α fraction of the data points are corrupted. If STIR (or STIR-GD) is initialized at an (arbitrary) point
w0, with an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1 such that

we have α ≤ c
2.88η+c , where c > 0 is a constant that depends only on D, then for any ε > 0, with probability at

least 1−exp
(
−Ω

(
n− d log(d+ n) + log 1

M1ε

))
, after K = O

(
log 1

M1ε

)
stages, we must have

∥∥wK −w∗
∥∥

2
≤ ε.

Moreover, each stage consists of only O (1) iterations.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

Proof. As mentioned before, notice that this is indeed a global convergence guarantee since it places no restrictions
on the initial model w0. The only requirement is that the accompanying initial truncation parameter M1

complement the model initialization by satisfying M1 ≤ 1
‖w0−w∗‖2

. In particular, if initialized at the origin, as

Algorithms 1 and 2 do, we need only ensure M1 ≤ 1
RW

where RW = ‖w∗‖2. This can be done using a simple
binary search to identify an appropriate value of M1. Recall that both STIR and STIR-GD operate in stages. We
introduce a notion of a well-initialized stage below.

Definition 2 (Well-initialized Stage). A stage in the execution of STIR or STIR-GD is said to be well-initialized
if, given the truncation parameter MT which will be used during that stage, at the beginning of that stage T , we
are in possession of a model wT,1 that satisfies

∥∥wT,1 −w∗
∥∥

2
≤ 1

MT
.

Note that the initialization of STIR and STIR-GD with respect to the setting of M1 ensure M1 ≤ 1
‖w0−w∗‖2

which

implies that the very first stage is always well-initialized. Now, Lemmata 8 and 9 show that, if the preconditions
of this theorem are satisfied, then a stage T , started off with a model wT =: wT,1 (see Algorithm 1, line 3) and
a truncation parameter MT that satisfy the well-initialized condition i.e.

∥∥wT,1 −w∗
∥∥

2
≤ 1

MT
, will ensure with

probability at least 1 − exp (−Ω (n− d log(d+ n))), that there exists an upper bound of t0 = O (1) iterations,
such that we are assured that

∥∥wT,τ −w∗
∥∥

2
≤ 1

ηMT
for all τ ≥ t0.

An application of the triangle inequality shows that we will have
∥∥wT,t0 −wT,t0+1

∥∥
2
≤ 2

ηMT
which implies (see

Algorithm 1, line 5) that we will exit this stage at the (t0 + 1)th inner iteration. However, notice that at this
point we are endowed with

∥∥wT+1,1 −w∗
∥∥

2
=
∥∥wT+1 −w∗

∥∥
2

=
∥∥wT,t0+1 −w∗

∥∥
2
≤ 1

ηMT
= 1

MT+1
. Note that

this means that stage (T + 1) is well-initialized too.

Thus, whenever a stage T is well-initialized, with probability at least 1 − exp (−Ω (n− d log(d+ n))), we have∥∥wT+1,1 −w∗
∥∥

2
≤ 1

η

∥∥wT,1 −w∗
∥∥

2
. Since we always set η > 1, there exists an upper bound T0 = O

(
log 1

M1ε

)
on the number of stages. Thus, an application of union bound shows that we must have

∥∥wT0+1,1 −w∗
∥∥

2
≤ ε

with probability at least 1− exp
(
−Ω (n− d log(d+ n)) + log 1

M1ε

)
= 1− exp(−Ω̃ (n)) for all ε = 1

nO(1) .

Lemma 8. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. Suppose we initialize a stage T within an execution of
STIR with truncation level M , increment parameter η, and a model wT =: wT,1 such that α ≤ c

2.88η+c and

‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper bound of

t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0. Here c is the constant

of the WSC property and depends only on the distribution D (see Lemma 12).

Proof. Let wT,τ be a model encountered by STIR within this stage and let r = X>wT,τ −y denote the residuals

due to wT,τ and S = diag(s) denote the diagonal matrix of weights where si = min
{

1
|ri| ,M

}
. Then STIR will

choose as the next model wT,τ+1 = (XSX>)−1XSy = w∗ + (XSX>)−1XSb which gives us

∥∥wT,τ+1 −w∗
∥∥

2
≤

‖XSb‖2
λmin(XSX>)

Now by Lemma 5, with probability at least 1− exp(−Ω (n− d)), we have ‖XB‖2 =
√
λmax(XBX>B) ≤

√
1.01B.

By Lemma 10 we have, again with probability at least 1− exp(−Ω (n− d))

‖Sb‖2 ≤
√

4B(1 + 1.01M2 ‖w −w∗‖22) ≤ 2
√

2.01B

It should be noted that Lemma 10 relies precisely on Lemma 5 to derive its confidence assurance. Since the
nature of Lemma 5 is such that it need be established only once, and not repeatedly for every iteration, we have,
with probability at least 1 − exp(−Ω (n− d)), for all iterations within this stage (actually all iterations across
all stages), both Lemma 10 and Lemma 5 hold simultaneously.

Using Lemma 12, with probability at least 1 − exp (−Ω (n− d log(d+ n))), we have λmin(XSX>) ≥
λmin(XGSGX

>
G) ≥ 0.99c · GM . Note that since all models wT,τ , τ ≥ 1 in this stage will at least satisfy

Globally-convergent Iteratively Reweighted Least Squares

∥∥wT,τ −w∗
∥∥

2
≤ 1

M (since the initial model wT,1 satisfies this by assumption and STIR offers monotonic conver-
gence), the result of Lemma 12 applies uniformly to all these models and need not be applied separately to each
model in this stage. Using these results to upper bound ‖XSb‖2 and lower bound λmin(XSX>) shows that at
either we must have ∥∥wT,τ+1 −w∗

∥∥
2
≤ 2B

√
2.0301

0.99c ·GM
or else if the above is not true, then we must instead have∥∥wT,τ+1 −w∗

∥∥
2
≤ 0.99 · ‖w −w∗‖2

Note that since we have α ≤ c
2.88η+c , we get 2B

√
2.0301

0.99c·GM ≤ 1
ηM . Thus, it is assured that after t0 = O (log η) = O (1)

iterations, iterates wT,τ of STIR will satisfy
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0

Lemma 9. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. Suppose we initialize a stage T within an execution of
STIR-GD with truncation level M , increment parameter η, and a model wT =: wT,1 such that α ≤ c

2.88η+c and

‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper bound of

t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0.

Proof. As observed before, all models wT,τ , τ ≥ 1 in this stage at least satisfy
∥∥wT,τ −w∗

∥∥
2
≤ 1

M since the initial

model wT,1 satisfies this by assumption and we will see below that STIR-GD offers monotonic convergence. Thus,
Lemma 12 applies uniformly to all these models and thus, with probability at least 1−exp (−Ω (n− d log(d+ n))),
for all τ ≥ 1, the function ℘ 1

M
(·,wT,τ) (refer to §6 for notation) is γ-strongly convex for γ ≥ 0.99c ·GM .

Similarly, Lemma 5 tells us that, again with probability at least 1− exp (−Ω (n− d log(d+ n))), for all τ ≥ 1,the
function ℘ 1

M
(·,wT,τ) is δ-strongly smooth for δ ≤ 1.01Mn. From now on, we will be using the shorthand

℘(·) := ℘ 1
M

(·,wT,τ) to avoid notational clutter.

If we denote gt := ∇℘(wT,τ) = ℘ 1
M

(wT,τ ,wT,τ), then it is clear that STIR-GD will choose as the next model as

wT,τ+1 := wT,τ− C
Mn ·g

t. For sake of notational simplicity, we will abbreviate w := wT,τ ,w+ := wT,τ+1,g := gt.
Then, applying strong smoothness tells us that

℘(w+)− ℘(w) ≤
〈
g,w+ −w

〉
+
δ

2

∥∥w+ −w
∥∥2

2

=
〈
g,w+ −w∗

〉
+ 〈g,w∗ −w〉+

δ

2

∥∥w+ −w
∥∥2

2

=
Mn

C
·
〈
w −w+,w+ −w∗

〉
+ 〈g,w∗ −w〉+

δ

2

∥∥w+ −w
∥∥2

2

=
Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
+ 〈g,w∗ −w〉+

(
δ

2
− Mn

2C

)∥∥w+ −w
∥∥2

2

≤ Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
+ 〈g,w∗ −w〉 ,

where the fifth step holds for any C ≤ Mn
δ ≤ 0.99. Strong smoothness on the other hand tells us that

〈g,w∗ −w〉 ≤ ℘(w∗)− ℘(w)− γ

2
‖w −w∗‖22

Combining the above two results gives us

℘(w+)− ℘(w∗) ≤ Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
− γ

2
‖w −w∗‖22

Now, we can either have ℘(w+) − ℘(w∗) ≥ 0 in which case we get ‖w+ −w∗‖2 ≤
√

1− Cγ
Mn ‖w −w∗‖2 ≤√

1− 0.99cCG
n ‖w −w∗‖2 or else ℘(w+)− ℘(w∗) < 0 in which case applying strong convexity once again yields

γ

2

∥∥w+ −w∗
∥∥2

2
≤ ℘(w+)− ℘(w∗) +

〈
∇℘(w∗),w∗ −w+

〉
≤
〈
∇℘(w∗),w∗ −w+

〉

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

Now notice that ∇℘(w∗) = XSb and Lemmata 10 and 5 tell us that ‖XSb‖2 ≤ 2B
√

5.05 which give us

‖w+ −w∗‖2 ≤
2B
√

2.0301
γ ≤ 2B

√
2.0301

0.99cGM < 1
ηM whenever B

G ≤
0.99c

2η
√

2.0301
. This completes the proof of the result

upon making similar arguments as those made in the proof of Lemma 9.

C.1 Bounding the Weights on Bad Points

The following lemma establishes that neither STIR nor STIR-GD put too much weight on bad points.

Lemma 10. Suppose during the execution of STIR or STIR-GD, we encounter a model w while the truncation
parameter is M . Denote ‖w −w∗‖2 = ε and let S = diag(s) be the diagonal matrix of M -truncated weights
assigned due to residuals induced by w. Then, with probability at least 1− exp(−Ω (n− d)), we must have

‖Sb‖22 ≤ 4B(1 + 1.01M2ε2),

where we recall that b denotes the vector of corruptions.

Proof. Let ∆ := w−w∗ and let bi denote the corruption on the data point xi. The proof proceeds via a simple
case analysis

Case 1: |bi| ≤ 2 |∆ · xi| In this case we simply bound (sibi)
2 ≤M2b2i ≤ 4M2(∆ · xi)2.

Case 2: |bi| > 2 |∆ · xi| In this case we have |ri| = |∆ · xi − bi| ≥ |bi| − |∆ · xi| ≥ |bi|2 and thus we must have
si ≤ 2

|bi| (due to possible truncation) and thus (sibi)
2 ≤ 4.

Thus, we get

‖Sb‖22 =
∑
i∈B

(sibi)
2 ≤ 4 ·

∑
i∈B

max
{

1,M2(∆ · xi)2
}
≤ 4(B +M2ε2λmax(XBX

>
B)) ≤ 4(B + 1.01M2ε2B),

where the last step follows due to Lemma 5 which holds with probability at least 1−exp(−Ω (n− d)) and finishes
the proof.

C.2 Convergence with respect to Huber and Absolute Loss

A relatively straightforward application of Theorem 1 alongwith some Lipschitzness properties allows us to show
that STIR and STIR-GD also ensure convergence to the optimal objective value with respect to the Huber and
absolute loss functions. These are widely used in robust regression applications.

Theorem 11. Under the same preconditions as those in Theorem 1, we are assured with probability at least

1− exp(−Ω̃ (n)), that after K = O
(

log 1
M1ε

)
stages, both STIR and STIR-GD must produce a model wK so that

1. `ε(w
K) ≤ `ε(w∗) +

√
1.01ε

2. 1
n

∥∥X>wK − y
∥∥

1
≤ 1

n

∥∥X>w∗ − y
∥∥

1
+ 3
√

1.01
2 ε.

Proof. The first part follows directly from Lemma 7 and Theorem 1. The second part follows due to the fact
that |x| ≤ fε(x) ≤ |x|+ ε

2 for any ε > 0 and thus,

1

n

∥∥X>wK − y
∥∥

1
≤ `ε(wK) ≤ `ε(w∗) +

√
1.01ε ≤ 1

n

∥∥X>w∗ − y
∥∥

1
+

3
√

1.01

2
ε,

where the second inequality in the above chain follows from part 1 of this claim.

Globally-convergent Iteratively Reweighted Least Squares

D Establishing WSC/WSS - Supplementary Details

Recall that for any r > 0 and M > 0, SM (r) denotes the set of all diagonal M -truncated weight matrices STIR
could possibly generate with respect to models residing in the radius R ball centered at w∗ i.e.

SM (r) :=

{
S = diag(s), si = min

{
1

|〈w,xi〉 − yi|
,M

}
,w ∈ B2(w∗, r)

}
,

then we have the following result.

Lemma 12. Suppose the data covariates X = [x1, . . . ,xn] are generated from an isotropic R-sub-Gaussian
distribution D, and G denotes the set of uncorrupted points (as well as the size of that set) then there exists a
constant c that depends only on the distribution D such that for any fixed value of M > 0,

P
[
∃S ∈ SM

(
1
M

)
: λmin(XGSGX

>
G) < 0.99c ·GM

]
P
[
∃S ∈ SM

(
1
M

)
: λmax(XGSGX

>
G) > 1.01 ·GM

] } ≤ exp (−Ω (n− d log(d+ n))) ,

where the constants inside Ω (·) are clarified in the proof. In particular, if D is the standard Gaussian N (0, Id),
then we can take c = 0.96.

Proof. The bound for the largest eigenvalue follows directly due to the fact that all weights are upper bounded
by M and hence XGSGX

>
G � M · XGX

>
G and applying Lemma 5. For the bound on the smallest eigenvalue,

notice that Lemma 14 shows us that for any fixed S ∈ SM (1
M), i.e. a set of M -truncated weights that correspond

to some fixed model w ∈ B2

(
w∗, 1

M

)
, we have

P
[
λmin(XGSGX

>
G) < 0.995c ·GM

]
≤ 2 · 9d exp

[
−mn(0.005c)2

8R4

]
Recall that we let RX := maxi∈[n] ‖xi‖2 denote the maximum Euclidean length of any covariate. However,

Lemma 15 shows us that if w1,w2 ∈ B2

(
w∗, 1

M

)
are two models such that

∥∥w1 −w2
∥∥

2
≤ τ then, conditioned

on the value of RX , the following holds almost surely.∣∣λmin(XGS
1
GX
>
G)− λmin(XGS

2
GX
>
G)
∣∣ ≤ 2GτM2R3

X

This prompts us to initiate a uniform convergence argument by setting up a τ -net over B2

(
w∗, 1

M

)
for τ =

c
400R3

XM
. Note that such a net has at most

(
800R3

X

c

)d
elements by applying standard covering number bounds

for the Euclidean ball [28, Corollary 4.2.13]. Taking a union bound over this net gives us

P
[
∃S ∈ SM

(
1

M

)
: λmin(XGSGX

>
G) < 0.99c ·GM

]
≤ 2 ·

(
7200R3

X

c

)d
exp

[
−mn(0.005c)2

8R4

]
≤ exp (−Ω (n− d log(d+ n))) ,

where in the last step we used Lemma 6 to bound RX = O
(
R
√
d+ n

)
with probability at least 1− exp(−Ω (n)).

For the specific bound on the constant c for various distributions, including the Gaussian distribution, we refer
the reader to Section D.1.

The proof of the above result relies on several intermediate results which we prove in succession below. In the
first result Lemma 13, we establish expected bounds on the extremal singular values of the matrix XGSGX

>
G

corresponding to a fixed model w ∈ B2

(
w∗, 1

M

)
. In the next result Lemma 14, we establish the same result, but

this time with high probability instead of in expectation. The next result Lemma 15 establishes that extremal
singular values corresponding to two models close to each other must be (deterministically) close.

Lemma 13 (Pointwise Expectation). With the same preconditions as in Lemma 12, there must exist a constant
c > 0 that depends only on D such that for any fixed S ∈ SM (1

M), and fixed vector unit v ∈ Sd−1, we have

c ·GM ≤ E
[
v>XGSGX

>
Gv
]
≤ GM.

In particular, if D is the standard Gaussian N (0, Id), then we can take c = 0.96.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

Proof. Let x ∼ D and let y = 〈w∗,x〉. Then if we let ∆ := w−w∗

‖w−w∗‖2
(note that ‖w −w∗‖ ≤ 1

M), then we have

s = min
{

1
|〈w,x〉−y| ,M

}
≥M ·min

{
1

|〈∆,x〉| , 1
}

as well as s ≤M . Then by linearity of expectation we have

E
[
v>XGSGX

>
Gv
]

= E

[∑
i∈G

si 〈xi,v〉2
]

= G · E
[
s · 〈x,v〉2

]
≤ GM · E

[
〈x,v〉2

]
= GM,

since D is isotropic. We also get

E
[
v>XGSGX

>
Gv
]

= G · E
[
s · 〈x,v〉2

]
≥ GM · E

[
min

{
1

|〈∆,x〉|
, 1

}
· 〈x,v〉2

]
≥ c ·GM,

where, for any distribution D over Rd, we define the constant c as

c := inf
u,v∈Sd−1

{
E

x∼D

[
min

{
1

|〈u,x〉|
, 1

}
· 〈x,v〉2

]}
.

This concludes the proof. For the specific bound on the constant c for various distributions, including the
Gaussian distribution, we refer the reader to Section D.1.

Lemma 14 (Pointwise Convergence). With the same preconditions as in Lemma 12, for any fixed S ∈ SM (1
M),

P
[
λmin(XGSGX

>
G) < 0.995c ·GM

]
P
[
λmax(XGSGX

>
G) > 1.005 ·GM

] } ≤ 2 · 9d exp

[
−mn(0.005c)2

8R4

]

Proof. Note that for any square symmetric matrix A ∈ Rd×d, we have c − δ ≤ λmin(A) ≤ λmax(A) ≤ c + δ for
some δ > 0 iff

∣∣v>Av − c
∣∣ ≤ δ for all v ∈ Sd−1 which itself happens iff ‖A− c · I‖2 ≤ δ. Now, if Nε denotes an

ε-net over Sd−1, then for any square symmetric matrix B ∈ Rd×d, we have ‖B‖2 ≤ (1− 2ε)−1 supv∈Nε
∣∣v>Bv

∣∣.
Thus, setting B = A− c · I and ε = 1/4, we have ‖A− c · I‖2 ≤ 2 supv∈N1/4

∣∣v>Av − c
∣∣.

Let x ∼ D and t =

√
min

{
1

|〈w−w∗,x〉| ,M
}
≤
√
M and for any fixed v ∈ Sd−1, let Z := t · 〈x,v〉. Then we have

‖Z‖ψ2
= sup

p≥1
p−1/2 (E [|Z|p])1/p ≤

√
M · sup

p≥1
p−1/2 (E [| 〈x,v〉 |p])1/p

= R
√
M,

where the last step follows by observing that since D is R-sub-Gaussian, ‖〈x1,v〉‖Ψ2
≤ R. Thus, Z is R

√
M -

sub-Gaussian. This implies Z2 is MR2-subexponential (see [28, Lemma 2.7.6]), as well as Z2 − EZ2 is 2MR2-
subexponential by centering and applying the triangle inequality. Note that Lemma 13 implicitly establishes
that µ := EZ2 ∈ [cM,M]. Let Z1, Z2, . . . , ZG be independent realizations of Z with respect to a fixed vector v.
Then we have

P
[∣∣v>XGSGX

>
Gv −Gµ

∣∣ ≥ ε ·GM] = P

[∣∣∣∣∣∑
i∈G

(Z2
i − µ)

∣∣∣∣∣ ≥ ε ·GM
]

≤ 2 exp

[
−m ·min

{
(ε ·GM)2

4M2R4G
,
ε ·GM
2MR2

}]
≤ 2 exp

[
−mnε

2

8R4

]
where m > 0 is a universal constant and in the last step we used G ≥ n/2 and w.l.o.g. we assumed that ε ≤ 2R2.
Taking a union bound over all 9d elements of N1/4, we get

P
[∥∥XGSGX

>
G −Gµ · I

∥∥
2
≥ ε ·GM

]
≤ P

[
max

v∈N1/4

∣∣v>XGSGX
>
Gv −Gµ

∣∣ ≥ ε

2
·GM

]
≤ 2 · 9d exp

[
−mnε

2

8R4

]
Setting ε = 0.005c and noticing that µ ∈ [cM,M] by Lemma 13 finishes the proof.

Globally-convergent Iteratively Reweighted Least Squares

Lemma 15 (Approximation Bound). Consider two models w1,w2 ∈ Rd such that
∥∥w1 −w2

∥∥
2
≤ τ and let

s1, s2 denote the M -truncated weight vectors they induce i.e. sji = min
{
M, 1
|〈wj ,xi〉−yi|

}
, j = 1, 2. Also let

S1 = diag(s1) and S2 = diag(s2). Then for any X = [x1, . . . ,xn] ∈ Rd×n such that ‖xi‖2 ≤ RX for all i,∣∣λmin(XS1X>)− λmin(XS2X>)
∣∣ ≤ 2nτM2R3

X

Proof. We have the following four cases with respect to the weights sji = min
{
M, 1
|〈wj ,xi〉−yi|

}
, j = 1, 2 these

two models generate on any data point xi ∈ B2(RX). Note that we do not assume that these data points are
generated from D, just that they are bounded inside the ball B2(RX). Also note that although

∣∣s1
i − s2

i

∣∣ ≤ M
trivially holds by virtue of truncation, such a result is not sufficient for us since our later analyses would like to
be able to show

∣∣s1
i − s2

i

∣∣ ≤ M
1000 by setting τ to be really small.

Case 1 :
∣∣〈w1,xi

〉
− yi

∣∣ ≤ 1
M and

∣∣〈w2,xi
〉
− yi

∣∣ ≤ 1
M . Here s1

i = s2
i = M i.e.

∣∣s1
i − s2

i

∣∣ = 0.

Case 2 :
∣∣〈w1,xi

〉
− yi

∣∣ > 1
M but

∣∣〈w2,xi
〉
− yi

∣∣ ≤ 1
M . In this case s2

i = M > s1
i . Thus,

∣∣s1
i − s2

i

∣∣ = M − 1

|〈w1,xi〉 − yi|
≤M − 1

|〈w2,xi〉 − yi|+ τRX
≤M − M

1 + τMRX
< 2τM2RX

Case 3 :
∣∣〈w1,xi

〉
− yi

∣∣ ≤ 1
M but

∣∣〈w2,xi
〉
− yi

∣∣ > 1
M . This is similar to Case 2 above.

Case 4 :
∣∣〈w1,xi

〉
− yi

∣∣ > 1
M and

∣∣〈w2,xi
〉
− yi

∣∣ > 1
M . In this case we have∣∣∣∣ 1

|〈w1,xi〉 − yi|
− 1

|〈w2,xi〉 − yi|

∣∣∣∣ ≤
∣∣〈w1 −w2,xi

〉∣∣
|〈w1,xi〉 − yi| · |〈w2,xi〉 − yi|

≤ 2τM2RX

This tells us that
∥∥s1 − s2

∥∥
1
≤ 2nτM2RX . Now, if we let S1 = diag(s1) and S2 = diag(s2), then for any unit

vector v ∈ Sd−1, denoting RX := maxi∈[n] ‖xi‖2 we have

∣∣v>XS1X>v − v>XS2X>v
∣∣ =

∣∣∣∣∣
n∑
i=1

(
s1
i − s2

i

)
〈xi,v〉2

∣∣∣∣∣ ≤ ∥∥s1 − s2
∥∥

1
·max
i∈[n]

〈xi,v〉2 ≤
∥∥s1 − s2

∥∥
1
·R2
X ≤ 2nτM2R3

X .

This proves that
∥∥XS1X> −XS2X>

∥∥
2
≤ 2nτM2R3

X and concludes the proof.

D.1 Calculation of Distribution-specific Constants

The WSC/WSS bounds from Lemma 12 are parametrized by a constant c that lower bounds on the singular
values of the matrix XGSGX

>
G . Recall that for any covariate distribution D, the constant is defined as

c := inf
u,v∈Sd−1

{
E

x∼D

[
min

{
1

|〈u,x〉|
, 1

}
· 〈x,v〉2

]}
.

Below we present some interesting cases where this constant is lower bounded.

Centered Isotropic Gaussian For the special case of D = N (0, Id), notice that by rotational symmetry, we
can, without loss of generality, take u = (1, 0, 0, . . . , 0) and v = (v1, v2, 0, 0, . . . , 0) where v2

1 + v2
2 = 1. Thus,

if we consider x1, x2 ∼ N (0, 1) i.i.d. then c ≥ inf(v1,v2)∈S1 f(v1, v2) where

f(v1, v2) = E
x1,x2∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2)

]

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

=

√
2

π

(∫ 1

0

(v2
1t

2 + v2
2)e−t

2/2dt+

∫ ∞
1

(
v2

1t+
v2

2

t

)
e−t

2/2dt

)
≥ 0.6827 · v2

1 + 0.9060 · v2
2

where in the second step we used the independence of x1, x2 and E [x2] = 0, in the third step we used
independence once more and E

[
x2

2

]
= 1, and in the last step we used standard bounds on the error function

and the exponential integral. This gives us c ≥ inf(v1,v2)∈S1

{
0.6827 · v2

1 + 0.9060 · v2
2

}
≥ 0.68.

Centered Non-isotropic Gaussian For the case of D = N (0,Σ), we have x ∼ D ≡ Σ1/2 · N (0, Id). Thus,
for any fixed unit vector v, we have 〈v,x〉 ∼ 〈ṽ, z〉 where ṽ = Σ−1/2v and z ∼ N (0, I). We also have

‖ṽ‖2 ∈
[

1√
Λ
, 1√

λ

]
where λ = λmin(Σ) and Λ = λmax(Σ). Note that we must insist on having λ = λmin(Σ) > 0

failing which, as the calculations show below, there is no hope of expecting c to be bounded away from
0. Now for any fixed vectors u,v we first perform rotations so that we have ũ = (u, 0, 0, . . . , 0) and

ṽ = (v1, v2, 0, 0, . . . , 0) where we can assume w.l.o.g. that u ≥ 0. Note that since {‖ũ‖2 , ‖ṽ‖2} ∈
[

1√
Λ
, 1√

λ

]
,

we have (v1, v2) ∈ Sr and r, u ∈
[

1√
Λ
, 1√

λ

]
. This gives us c ≥ inf(v1,v2)∈Sr f(v1, v2) where

f(v1, v2) = E
x1,x2∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2)

]
=

1

u

√
2

π

(∫ 1
u

0

u(v2
1t

2 + v2
2)e−t

2/2dt+

∫ ∞
1
u

(
v2

1t+
v2

2

t

)
e−t

2/2dt

)

≥ 1

u

√
2

π

(∫ 1
u

0

u(v2
1t

2 + v2
2)e−

1
2 (1

u)
2

dt+ v2
1e
− 1

2 (1
u)

2

+
v2

2

2

∫ ∞
1
2 (1

u)
2

1

z
e−zdz

)

≥ 1

u

√
2

π

(
e−

1
2 (1

u)
2
(
v2

1

3u2
+ v2

2

)
+ v2

1e
− 1

2 (1
u)

2

+
v2

2

4
e−

1
2 (1

u)
2

log
(
1 + 4u2

))
≥
√

2λ

π
e−

Λ
2

(
v2

1

(
1 +

λ

3

)
+ v2

2

(
1 +

1

4
log

(
1 +

4

Λ

)))
≥
√

2λ

π
e−

Λ
2 (v2

1 + v2
2)

= r2

√
2λ

π
e−

Λ
2

≥ 1

Λ

√
2λ

π
e−

Λ
2

where in the second and third steps we used independence of x1, x2, E [x2] = 0 and E
[
x2

2

]
= 1 as before,

and in the sixth step we used lower bounds on the exponential integral.

Non-centered Isotropic Gaussian We discuss two techniques to handle the case of non-centered covariates.

• Pairing Trick This technique requires changes to the data points and relies on the fact that the
difference of two i.i.d. non-centered Gaussian random variables is a centered Gaussian random variable
with double the variance. Thus, given n covariates x1, . . . ,xn ∼ N (µ, Id) and corresponding responses

y1, . . . , yn, create n/2 data points (assume without loss of generality that n is even) x̃i =
xi−xi+n/2√

2

and ỹi =
yi−yi+n/2√

2
. Clearly x̃i ∼ N (0, 2 · Id). However, this method has drawbacks since it is likely to

increase the proportion of corrupted data points. If α fraction of the original points were corrupted, at
most 2α fraction of the new points would be corrupted.

Globally-convergent Iteratively Reweighted Least Squares

• Direct Centering Suppose we have data from a distribution D = N (µ, Id). As earlier, by rotational
symmetry, we can take u = (1, 0, 0, . . . , 0),v = (v1, v2, 0, 0, . . . , 0) and µ = (µ1, µ2, µ3, 0, 0, . . . , 0).
Assume ‖µ‖2 = ρ and, without loss of generality, ρ ≥ 2. Letting 〈µ,v〉 =: p ≤ ρ and x1, x2, x3 ∼ N (0, 1)
i.i.d. gives c ≥ inf(v1,v2)∈S1 f(v1, v2) where, as before, independence of x1, x2, x3 and the fact that

E [x2] = 0 and E
[
x2

2

]
= 1, gives us

f(v1, v2) = E
x1∼N (0,1)

[
min

{
1

|x1 + µ1|
, 1

}
· ((p+ v1x1)2 + v2

2)

]
Now, since (v1, v2) ∈ S1 we get two cases (recall that we have assumed w.l.o.g. ρ ≥ 2)

Case 1: v2
2 ≥ 1

2 In this case f(v1, v2) ≥ 1
2 E
x1∼N (0,1)

[
min

{
1

|x1+µ1| , 1
}]
≥ Ω

(
exp−ρ

2/2 log
(

1 + 1
ρ2

))
.

Case 2: v2
1 ≥ 1

2 In this case, if x1 ≥ 2
√

2ρ, then |v1x1 + p| ≥ v1x1

2 , as well as |x1 + µ1| ≤ 2x1.

f(v1, v2) ≥ E
x1∼N (0,1)

[
min

{
1

|x1 + µ1|
, 1

}
(p+ v1x1)2 · I

{
x1 ≥ 2

√
2ρ
}]

≥ E
x1∼N (0,1)

[
min

{
1

2x1
, 1

}
x2

1

8
· I
{
x1 ≥ max 2

√
2ρ
}]
≥ 1

16
e−4ρ2

Since the value ρ influences the final bound on c very heavily, it is advisable to avoid a large ρ value. One
way to ensure this is to algorithmically center the covariates i.e. use x̃i := xi−µ̂ where µ̂ := 1

n

∑n
i=1 xi.

This would (approximately) center the covariates and ensure an effective value of ρ ≈ O
(√

d
n

)
Bounded Sub-Gaussian Suppose our covariate distribution has bounded support i.e. supp(D) ⊂ B2(ρ) for

some ρ > 0. Assume ρ ≥ 1 w.l.o.g. Also, using the centering trick above, assume that E
x∼D

[x] = 0. Then

we have |〈u,x〉| ≤ ρ which implies min
{

1
|〈u,x〉| , 1

}
≥ 1

ρ . Let Σ denote the covariance of the distribution D

and let λ := λmin(Σ) denote its smallest eigenvalue. This gives us c ≥ 1
ρ E

x∼D

[
〈x,v〉2

]
≥ λ

ρ .

E Corruptions and Dense Noise - Supplementary Details

In this section, we will provide details of the convergence analysis of STIR and STIR-GD in the setting where
even the “good” points experience sub-Gaussian noise. Thus, we will assume that our data is generated as
y = X>w∗ + b + ε where, as before ‖b‖0 ≤ α · n and ε ∼ Dε where Dε is a σ-sub-Gaussian distribution with
zero mean and real support. As mentioned before, we can tolerate noise with non-zero mean as well, by using
the same pairing trick we used to center the covariates in Appendix D.1. This would have a side effect of at most
doubling the corruption rate α. We will denote, as before B := supp(b) and G := [n] \ B. Our covariates will
continue to be sampled from an R sub-Gaussian distribution D with support over Rd. We (re)state the main
result of this section below.

Theorem 2. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution D
and an α fraction of the data points are corrupted with the rest subjected to sub-Gaussian noise sampled from a
distribution Dε with sub-Gaussian norm σ. If STIR (or STIR-GD) is initialized at an (arbitrary) point w0, with
an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1 such that we have

α ≤ cε
5.85η+cε

, where cε > 0 is a constant that depends only on the distributions D and Dε, then with probability

at least 1− exp
(
−Ω

(
n− d log(d+ n) + log 1

M1σ

))
, after K = O

(
log 1

M1σ

)
stages, each of which has only O (1)

iterations, we must have
∥∥wK −w∗

∥∥
2
≤ O (σ).

Proof. The overall proof of this result follows exactly the same way as the result in Theorem 1. We will still
utilize the notion of a well-initialized stage and establish (see Lemma 16 below) a convergence guarantee for each
well-initialized stage. However, Lemma 16 will itself require a few new results to be proved.

However, note that Lemma 8, a similar result for well-initialized stages in the setting without dense noise, required
two results, namely Lemmata 12 and 10 that established the WSC/WSS properties and bounded the weight put

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

on bad points. Those results implicitly assumed that good points incur absolutely no modification to their
response value which is no longer true here since in the setting being considered here, even good points do incur
sub-Gaussian noise in their responses. Thus, we will establish below Lemmata 17 and 18 which will establish
those results in the dense noise setting. We note that a similar convergence guarantee may be established for
STIR-GD in the dense noise setting as well.

However, note that this result only guarantees a convergence to
∥∥wK,1 −w∗

∥∥
2
≤ O (σ) and thus, does not ensure

a consistent solution. A technical reason for this is because Lemma 17 holds true only for values of M ≤ O
(

1
σ

)
which restricts the application of this result to offer errors much smaller than σ. It would be interesting to show,
as [5] do, that STIR, or a variant, does offer consistent estimates.

For sake of notational simplicity, we will assume that εB = 0 by shifting any sub-Gaussian noise a bad point, say
j ∈ B does incur, into the corruption value corresponding to that point i.e. bj . This is without loss of generality
since we impose no constraints on the corruptions other than that they be sparse, in particular the corruptions
need not be bounded and can thus, absorb sub-Gaussian noise values into them.

Lemma 16. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted with the rest experiencing noise generated i.i.d. from a
distribution Dε with sub-Gaussian norm σ. Suppose we initialize a stage T within an execution of STIR with
truncation level M ≤ cε

8ησ , increment parameter η, and a model wT =: wTT, 1 such that α ≤ cε
5.85η+cε

and

‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper bound of

t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0. Here cε is the constant

of the WSC property and depends only on the distributions D and Dε (see Lemma 17).

Proof. Let wT,τ be a model encountered by STIR within this stage and let r = X>wT,τ −y denote the residuals

due to wT,τ and S = diag(s) denote the diagonal matrix of weights where si = min
{

1
|ri| ,M

}
. Then STIR will

choose as the next model wT,τ+1 = (XSX>)−1XSy = w∗ + (XSX>)−1XS(b + ε) which gives us

∥∥wT,τ+1 −w∗
∥∥

2
≤
‖XS(b + ε)‖2
λmin(XSX>)

Now by Lemma 5, with probability at least 1− exp(−Ω (n− d)), we have ‖XB‖2 =
√
λmax(XBX>B) ≤

√
1.01B.

By Lemma 10, with the same probability, we have

‖Sb‖2 ≤
√

4B(1 + 1.01M2 ‖w −w∗‖22) ≤ 2
√

2.01B,

whereas by Lemma 18, as we have restricted M ≤ 1
8σ , we have, yet again with the same probability,

‖XSε‖2 = ‖XGSGεG‖ ≤ 4MGσ
√

1.01 ≤ cε
√

1.01

2η
G,

where the first equality follows due to our convention that supp(ε) = G since for bad points in the set B,
we clubbed any sub-Gaussian noise into the corruption itself, thus leaving εB = 0. Now, by Lemma 17, with
probability at least 1 − exp (−Ω (n− d log(d+ n))), we have λmin(XSX>) ≥ λmin(XGSGX

>
G) ≥ 0.99cε · GM .

This give us ∥∥wT,τ+1 −w∗
∥∥

2
≤

2B
√

2.0301 + cε
√

1.01
2η G

0.99cε ·GM
≤ 2B

√
2.0301

0.99cε ·GM
+

√
1.01

1.98η ·M

Now, since we have α ≤ cε
5.85η+cε

, we also have 2B
√

2.0301
0.99cε·GM ≤

(
1−

√
1.01

1.98

)
1
ηM and thus,

2B
√

2.0301+ cε
√

1.01
2η G

0.99cε·GM ≤ 1
ηM .

Arguing as we did in the proof of Lemma 8, we must either have ‖w+ −w∗‖2 ≤
2B
√

2.0301
0.9801cε·GM +

√
1.01

1.9602η·M and if
that does not happen, we must instead have∥∥wT,τ+1 −w∗

∥∥
2
≤ 0.99 ·

∥∥wT,τ −w∗
∥∥

2

This proves the claimed result.

Globally-convergent Iteratively Reweighted Least Squares

E.1 Establishing WSC/WSS in Presence of Dense Noise

We will rework a counterpart to Lemma 12 in this section.

Lemma 17. Given the problem setting above, then there exists a constant cε > 0 that depends only on the
distributions D,Dε such that for any M ∈

[
0, 1

σ

]
, we have

P
[
∃S ∈ SM

(
1

M

)
: λmin(XGSGX

>
G) < 0.99cε ·GM

]
≤ exp (−Ω (n− d log(d+ n)))

In particular, for standard Gaussian covariates and Gaussian noise with variance σ2, we can take cε ≥ 0.52.

Proof. Let x ∼ D, ε ∼ Dε and let y = 〈w∗,x〉 + ε be the response of an uncorrupted data point and w ∈
B2

(
w∗, 1

M

)
be any fixed model. Then if we let ∆ := w−w∗, the weight s that the model w would cause STIR

to put on this (clean) data point must satisfy s ≥ min
{

1
|〈∆,x〉−ε| ,M

}
. This gives us, for any fixed v ∈ Sd−1,

E
[
v>XGSGX

>
Gv
]
≥ cε ·GM,

where we define,

cε := inf
0≤r≤ 1

M

u,v∈Sd−1

{
E

x∼D,ε∼Dε

[
min

{
1

|Mr 〈u,x〉 −Mε|
, 1

}
· 〈x,v〉2

]}

We analyze the constant c for the Gaussian case at the end of the proof. For now, we proceed as in Lemma 14
and realize that the sub-Gaussian norm calculations continue to hold in this case since they simply upper bound
the weights by M , and get

P
[
λmin(XGSGX

>
G) < 0.995cε ·GM

]
≤ 2 · 9d exp

[
−mn(0.005cε)

2

8R4

]
After this we notice that the proof of Lemma 15 pays no heed to corruptions or additional noise and hence,
continues to hold in this setting too. Proceeding as in the proof of Lemma 12 to set up a τ -net over B2

(
w∗, 1

M

)
and taking a union bound over this net finishes the proof.

For the special case of D = N (0, Id) and Dε = N (0, σ2), by rotational symmetry, we can, without loss of
generality, take u = (1, 0, 0, . . . , 0) and v = (v1, v2, 0, 0, . . . , 0) where v2

1 + v2
2 = 1. Thus, if x1, x2, ε ∼ N (0, 1)

i.i.d. then c ≥ inf(v1,v2)∈S1,r∈[0, 1
M] f(v1, v2, r) where

f(v1, v2, r) = E
x1,x2,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2)

]
= v2

1 · E
x1,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
x2

1

]
︸ ︷︷ ︸

(A)

+v2
2 · E

z∼N (0,1)

[
min

{
1

M
√
r2 + σ2 |z|

, 1

}]
︸ ︷︷ ︸

(B)

where in the second step we used the independence of x1, x2 and E [x2] = 0, in the third step we used independence
once more and E

[
x2

2

]
= 1. In the fourth step, we substituted

√
r2 + σ2z = rx1−σε and noticed that rx1−σε ∼

N (0, (r2 + σ2)) i.e. z ∼ N (0, 1). To bound (B) we notice r ≤ 1
M and M ≤ 1

σ and use standard bounds on
Gaussian and exponential integrals to get

(B) ≥ E
z∼N (0,1)

[
min

{
1√
2 |z|

, 1

}]
≥ 0.815

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

To bound (A), we use the fact that pairwise orthogonal projections of a standard Gaussian vector yield indepen-
dent variables. Thus, if we denote a = Mr, b = Mσ and z = ax1−bε√

a2+b2
, w = bx1+aε√

a2+b2
, then z, w ∼ N (0, 1) as well as

z ⊥ w. Thus, we have

(A) = E
z,w∼N (0,1)

[
min

{
1

M
√
r2 + σ2 |z|

, 1

}
·
(
r2z2 + σ2w2 + 2rσzw

r2 + σ2

)]
≥ E
z,w∼N (0,1)

[
min

{
1√
2 |z|

, 1

}
·
(
r2z2 + σ2w2

r2 + σ2

)]
≥ 0.52r2

r2 + σ2
+

0.815σ2

r2 + σ2
= 0.52 +

0.295σ2

r2 + σ2

where in the second step we used M ≤ 1
σ and r ≤ 1

M , independence of z and w and the fact that E [w] =
0,E

[
w2
]

= 1 and the last step uses standard bounds on Gaussian and exponential integrals.

E.2 Bounding the Weights on Good Points

Although Lemma 10 continues to hold in this case, since good points also incur modifications to their response
values, albeit modifications that are stochastic and not adversarial, we need an analogous result for the good
points in this case as well.

Lemma 18. Suppose σ is the sub-Gaussian norm of the noise distribution Dε and the identity of the good points
G is chosen independently of the covariates. Then for any M > 0, if S is the diagonal matrix of M -truncated
weights assigned to the data points by a model w, then with probability at least 1− exp(−Ω (n− d)),

‖XGSGεG‖2 ≤ 4MGσ
√

1.01

Proof. We have, by applying Lemma 5, with probability at least 1− exp(−Ω (n− d)),

‖XGSGεG‖2 ≤
√
λmax(XGX>G) · ‖SGεG‖ ≤

√
1.01G · ‖S‖2 ‖εG‖2 ≤

√
1.01GM · ‖εG‖2 ,

where the last inequality follows since S is a diagonal matrix and by M -truncation, the maximum value of any
weight is M . Now, since our noise is σ sub-Gaussian and unbiased, we have, for any fixed u ∈ SG−1, E [〈ε,u〉] = 0,
as well as, by applying the Hoeffding’s inequality,

P [|〈ε,u〉| ≥ t] ≤ 3 exp

(
− t2

2σ2

)
Now, if u1,u2 ∈ SG−1, such that

∥∥u1 − u2
∥∥

2
≤ 1

2 , then we have
∣∣〈u1 − u2, ε

〉∣∣ ≤ 1
2 · ‖ε‖2. Thus, taking a union

bound over a 1/2-net over SG−1 gives us

P
[
‖ε‖2 = max

u∈SG−1
〈u, ε〉 ≥ 1

2
· ‖ε‖2 + t

]
= P [‖ε‖2 ≥ 2t] ≤ 3 · 5G exp

[
−t2/2σ2

]
Setting t = σ

√
4G establishes the result.

F Robust Linear Bandits

In this section, we briefly discuss the linear contextual bandit problem with corrupted arm pulls. We refer the
reader to [19] for a more relaxed introduction to the problem as well as formal regret bounds. Indeed, the
discussion here is adapted from the discussion in [19].

F.1 Problem Setting

The stochastic linear contextual bandit framework [1, 20] considers a (possibly infinite) set of arms. Arms
correspond to various actions that can be performed by the algorithm. For instance, in a recommendation
setting, arms may correspond to various products that are available for sale, for instance, at an e-commerce
website, or in a quantitative trading setting, arms may correspond to stocks that are available for sale/purchase.

Globally-convergent Iteratively Reweighted Least Squares

Problem Setting 1 Adversarial Linear Bandits

for t = 1, 2, 3.. do
Player receives a set of contexts At =

{
xt,1, . . . ,xt,nt

}
⊂ Rd

Player plays an arm, x̂t ∈ At
Clean reward is generated r∗t = 〈w∗, x̂t〉+ εt conditioned on Ht
Adversary inspects x̂t, r∗t ,Ht and chooses bt //while making sure |τ ≤ t : bτ 6= 0| ≤ η · (t+ 1)
Player receives reward, rt = r∗t + bt

end for

Algorithm 4 WUCB-Lin: Weighted UCB for Linear Contextual Bandits

Input: Upper bounds σ0 (on sub-Gaussian norm of noise distribution), B (on magnitude of corruption), α0 (on fraction
of corrupted points), initial truncation M1, increment rate η

1: for t = 1, 2, . . . , T do
2: Receive set of arms At
3: Play arm x̂t = arg max

x∈At,w∈Ct−1

〈x,w〉

4: Receive reward rt
5: (ŵt, St)← STIR

(
{x̂τ , rτ}tτ=1 ,M1, η

)
//Denote St = diag(st1, s

t
2, . . . , s

t
t)

6: V t ←
∑
τ≤t s

t
τ x̂

τ (x̂τ)>, Xt ←
[
x̂1, x̂2, . . . , x̂t

]
7: w̄t ← (V t)−1XtSty
8: Ct ← {w :

∥∥w − w̄t
∥∥
V t
≤ σ0

√
d log T + α0BT}

9: end for

Every arm a is parametrized by a vector a ∈ Rd (we abuse notation to denote the arm and its corresponding
parametrization using the same notation). Recall that the set of all arms is potentially infinite. However, not
all arms may be available at every time step. For instance, an e-commerce website would not like to recommend
products not currently in stock. Similarly, stocks not currently in one’s possession cannot be sold.

At each time step t, the algorithm receives a set of nt arms (also called contexts) At =
{
xt,1, . . . ,xt,nt

}
⊂ Rd

that can be played or pulled in this round. Pulling an arm is akin o performing the action associated with that
arm, for example, recommending an item or selling a stock unit. The context set At, as well as the number
nt of contexts available can vary across time steps. The algorithm selects and pulls an arm x̂t ∈ At as per
its arm selection policy. In response, a reward rt is generated. Let Ht =

{
A1, x̂

1, r1, . . . , At−1, x̂
t−1, rt−1, At, x̂

t
}

.

F.2 Adversary Model

In the stochastic linear bandit setting, as has been studied in prior work [1, 20] , at every time step, the reward
rt is generated using a model vector w∗ ∈ Rd (that is not known to the algorithm) as follows: rt = 〈w∗, x̂t〉+ εt,
where εt is a noise value that is typically assumed to be (conditionally) centered and σ-sub-Gaussian, i.e.,
E [εt |Ht] = 0, as well as for some σ > 0, we have E [exp(λεt) |Ht] ≤ exp(λ2σ2/2) for any λ > 0.

However, recent works [19, 22] have considered settings where the rewards may suffer not only sub-Gaussian
noise, but also adversarial corruptions that are introduced by an adaptive adversary that is able to view the
on-goings of the online process and at any time instant t, after observing the history Ht and the “clean” reward
value, i.e., 〈w∗, x̂t〉 + εt, is able to add a corruption value bt to the reward. For notational uniformity, we will
assume that for time instants where the adversary chooses not to do anything, bt = 0. Thus, the final reward to
the player at every time step is rt = 〈w∗, x̂t〉+ εt + bt. This model is described in Problem Setting 1.

For sake of simplicity we will assume that, for some B > 0, the final (possibly corrupted) reward presented to
the player satisfies rt ∈ [−B,B] almost surely. The only constraint the adversary need observe while introducing
the corruptions is that at no point in the online process, should the adversary have corrupted more than an η
fraction of the observed rewards. Formally, let Gt = {τ < t : bτ = 0} and Bt = {τ < t : bτ 6= 0} denote the set
of “good” and “bad” time instances till time t. We insist that |Bt| ≤ η · t for all t.

Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

F.3 Notion of Regret

The goal of the algorithm is to maximize the cumulative reward it receives over the time steps
∑T
t=1 rt. However,

a more popular technique of casting this objective is in the form of cumulative pseudo regret. At time t, let
xt,∗ = arg maxx∈At 〈w∗,x〉 be the arm among those available that yields the highest expected (uncorrupted)
reward. The cumulative pseudo regret of a policy π is defined as follows

R̄T (π) =

T∑
t=1

〈
w∗,xt,∗

〉
− E [rt] .

Note that the best arm here may change across time-steps.

F.4 WUCB-Lin: An Algorithm for Robust Linear Bandits

We use the notation ‖x‖M =
√

x>Mx for a vector x ∈ Rd and a matrix M ∈ Rd×d. We reproduce, for
convenience, the WUCB-Lin algorithm in Algorithm 4. WUCB-Lin builds upon the OFUL principle [1] for linear
contextual bandits. At every step, WUCB-Lin uses rewards obtained from previous arm pulls to obtain an
estimate ŵt of the true model vector w∗.

Whereas classical algorithms utilize ordinary least squares to solve this problem, WUCB-Lin utilizes STIR (actually
STIR-GD for sake of speed) to obtain this estimate. This lends resilience to the algorithm against the (possibly
several) past arm pulls whose rewards got corrupted by the adversary. The previous work of [19] used the
TORRENT algorithm for the same purpose.

The next step in executing the OFUL principle is the construction of a confidence set. It is common to use
an ellipsoidal confidence set with the ellipsoid induced by the covariance matrix of the arm vectors pulled so
far. The work of [19] modifies this to only consider arms considered as clean by the TORRENT algorithm while
constructing the confidence ellipsoid.

Since STIR, instead of selecting a specific subset of arms like TORRENT, instead would assign weights to all
previously pulled arms, with a small weight indicating a high likelihood of the arm pull being a corrupted one
and a large weight indicating a high likelihood of the arm pull being a clean one. Thus, STIR utilizes these
weights to construct a weighted covariance matrix which is then used to define the confidence ellipsoid and carry
out the arm selection step.

	Introduction
	Related Work
	Notation
	Problem Formulation
	Proposed Methods
	IRLS is Majorization-minimization on a Scaled Huber Loss
	Convergence Analysis
	Proof Outline - the Peeling Strategy
	Establishing WSC/WSS
	Corruptions and Dense Noise

	Experiments
	Robust Regression Experiments
	Robust Linear Bandit Experiments
	Discussion on Experiments

	Conclusion and Future Work
	IRLS and the Scaled Huber Loss - Supplementary Details
	Supporting Results
	Convergence Analysis - Supplementary Details
	Bounding the Weights on Bad Points
	Convergence with respect to Huber and Absolute Loss

	Establishing WSC/WSS - Supplementary Details
	Calculation of Distribution-specific Constants

	Corruptions and Dense Noise - Supplementary Details
	Establishing WSC/WSS in Presence of Dense Noise
	Bounding the Weights on Good Points

	Robust Linear Bandits
	Problem Setting
	Adversary Model
	Notion of Regret
	WUCB-Lin: An Algorithm for Robust Linear Bandits

