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Abstract

The Random Projection Tree (RPTREE) structures proposed in [1] are space par-
titioning data structures that automatically adapt to various notions of intrinsic
dimensionality of data. We prove new results for both the RPTREE-MAX and
the RPTREE-MEAN data structures. Our result for RPTREE-MAX gives a near-
optimal bound on the number of levels required by this data structure to reduce
the size of its cells by a factors ≥ 2. We also prove a packing lemma for this data
structure. Our final result shows that low-dimensional manifolds have bounded
Local Covariance Dimension. As a consequence we show that RPTREE-MEAN
adapts to manifold dimension as well.

1 Introduction

The Curse of Dimensionality [2] has inspired research in several directions in Computer Science and
has led to the development of several novel techniques such as dimensionality reduction, sketching
etc. Almost all these techniques try to map data to lower dimensional spaces while approximately
preserving useful information. However, most of these techniques do not assume anything about
the data other than that they are imbedded in some high dimensional Euclidean space endowed with
some distance/similarity function.

As it turns out, in many situations, the data is not simply scattered in the Euclidean space in a random
fashion. Often, generative processes impose (non-linear)dependencies on the data that restrict the
degrees of freedom available and result in the data having low intrinsic dimensionality. There exist
several formalizations of this concept of intrinsic dimensionality. For example, [1] provides an
excellent example of automated motion capture in which a large number of points on the body of
an actor are sampled through markers and their coordinates transferred to an animated avatar. Now,
although a large sample of points is required to ensure a faithful recovery of all the motions of the
body (which causes each captured frame to lie in a very high dimensional space), these points are
nevertheless constrained by the degrees of freedom offeredby the human body which are very few.

Algorithms that try to exploit such non-linear structure indata have been studied extensively re-
sulting in a large number ofManifold Learningalgorithms for example [3, 4, 5]. These techniques
typically assume knowledge about the manifold itself or thedata distribution. For example, [4]
and [5] require knowledge about the intrinsic dimensionality of the manifold whereas [3] requires a
sampling of points that is “sufficiently” dense with respectto some manifold parameters.

Recently in [1], Dasgupta and Freund proposed space partitioning algorithms that adapt to the in-
trinsic dimensionality of data and do not assume explicit knowledge of this parameter. Their data
structures are akin to thek-d tree structure and offer guaranteed reduction in the sizeof the cells
after a bounded number of levels. Such a size reduction is of immense use in vector quantization [6]
and regression [7]. Two such tree structures are presented in [1], each adapting to a different notion
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of intrinsic dimensionality. Both variants have already found numerous applications in regression
[7], spectral clustering [8], face recognition [9] and image super-resolution [10].

1.1 Contributions

The RPTREE structures are new entrants in a large family of space partitioning data structures such
ask-d trees [11], BBD trees [12], BAR trees [13] and several others (see [14] for an overview). The
typical guarantees given by these data structures are of thefollowing types :

1. Space Partitioning Guarantee: There exists a boundL(s), s ≥ 2 on the number of levels
one has to go down before all descendants of a node of size∆ are of size∆/s or less. The
size of a cell is variously defined as the length of the longestside of the cell (for box-shaped
cells), radius of the cell, etc.

2. Bounded Aspect Ratio: There exists a certain “roundedness” to the cells of the tree - this
notion is variously defined as the ratio of the length of the longest to the shortest side of the
cell (for box-shaped cells), the ratio of the radius of the smallest circumscribing ball of the
cell to that of the largest ball that can be inscribed in the cell, etc.

3. Packing Guarantee: Given a fixed ballB of radiusR and a size parameterr, there exists a
bound on the number of disjoint cells of the tree that are of size greater thanr and intersect
B. Such bounds are usually arrived at by first proving a bound onthe aspect ratio for cells
of the tree.

These guarantees play a crucial role in algorithms for fast approximate nearest neighbor searches
[12] and clustering [15]. We present new results for the RPTREE-MAX structure for all these types
of guarantees. We first present a bound on the number of levelsrequired for size reduction by any
given factor in an RPTREE-MAX . Our result improves the bound obtainable from results presented
in [1]. Next, we prove an “effective” aspect ratio bound for RPTREE-MAX . Given the randomized
nature of the data structure it is difficult to directly boundthe aspect ratios of all the cells. Instead
we prove a weaker result that can nevertheless be exploited to give a packing lemma of the kind
mentioned above. More specifically, given a ballB, we prove an aspect ratio bound for the smallest
cell in the RPTREE-MAX that completely containsB.

Our final result concerns the RPTREE-MEAN data structure. The authors in [1] prove that this
structure adapts to theLocal Covariance Dimensionof data (see Section 5 for a definition). By
showing that low-dimensional manifolds have bounded localcovariance dimension, we show its
adaptability to the manifold dimension as well. Our result demonstrates the robustness of the notion
of manifold dimension - a notion that is able to connect to a geometric notion of dimensionality such
as the doubling dimension (proved in [1]) as well as a statistical notion such as Local Covariance
Dimension (this paper).

1.2 Organization of the paper

In Section 2 we present a brief introduction to the RPTREE-MAX data structure and discuss its
analysis. In Section 3 we present our generalized size reduction lemma for the RPTREE-MAX . In
Section 4 we give an effective aspect ratio bound for the RPTREE-MAX which we then use to arrive
at our packing lemma. In Section 5 we show that the RPTREE-MEAN adapts to manifold dimension.

All results cited from other papers are presented asFactsin this paper. We will denote byB(x, r),
a closed ball of radiusr centered atx. We will denote byd, the intrinsic dimensionality of data and
by D, the ambient dimensionality (typicallyd ≪ D).

2 The RPTREE-MAX structure

The RPTREE-MAX structure adapts to the doubling dimension of data (see definition below). Since
low-dimensional manifolds have low doubling dimension (see [1] Theorem 22) hence the structure
adapts to manifold dimension as well.

Definition 1 (taken from [16]). The doubling dimension of a setS ⊂ R
D is the smallest integerd

such that for any ballB(x, r) ⊂ R
D, the setB(x, r) ∩ S can be covered by2d balls of radiusr/2.
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The RPTREE-MAX algorithm is presented data imbedded inR
D having doubling dimensiond. The

algorithm splits data lying in a cellC of radius∆ by first choosing a random directionv ∈ R
D,

projecting all the data insideC onto that direction, choosing a random valueδ in the range[−1, 1] ·
6∆/

√
D and then assigning a data pointx to the left child ifx · v < median({z · v : z ∈ C}) + δ

and the right child otherwise. Since it is difficult to get theexact value of the radius of a data set,
the algorithm settles for a constant factor approximation to the value by choosing an arbitrary data
pointx ∈ C and using the estimatẽ∆ = max({‖x − y‖ : y ∈ C}).
The following result is proven in [1] :

Fact 2(Theorem 3 in [1]). There is a constantc1 with the following property. Suppose anRPTREE-
MAX is built using a data setS ⊂ R

D . Pick any cellC in the RPTREE-MAX ; suppose that
S ∩ C has doubling dimension≤ d. Then with probability at least1/2 (over the randomization in
constructing the subtree rooted atC), every descendantC′ more thanc1d log d levels belowC has
radius(C′) ≤ radius(C)/2.

In Sections 2, 3 and 4, we shall always assume that the data hasdoubling dimensiond and shall
not explicitly state this fact again and again. Let us consider extensions of this result to bound the
number of levels it takes for the size of all descendants to godown by a factors > 2. Let us analyze
the case ofs = 4. Starting off in a cellC of radius∆, we are assured of a reduction in size by a
factor of2 afterc1d log d levels. Hence all2c1d log d nodes at this level have radius∆/2 or less. Now
we expect that afterc1d log d more levels, the size should go down further by a factor of2 thereby
giving us our desired result. However, given the large number of nodes at this level and the fact
that the success probability in Fact 2 is just greater than a constant bounded away from1, it is not
possible to argue that afterc1d log d more levels the descendants of all these2c1d log d nodes will be
of radius∆/4 or less. It turns out that this can be remedied by utilizing the following extension of
the basic size reduction result in [1]. We omit the proof of this extension.

Fact 3 (Extension of Theorem 3 in [1]). For anyδ > 0, with probability at least1−δ, every descen-
dantC′ which is more thanc1d log d + log(1/δ) levels belowC has radius(C′) ≤ radius(C)/2.

This gives us a way to boost the confidence and do the following: go downL = c1d log d+2 levels
fromC to get the the radius of all the2c1d log d+2 descendants down to∆/2 with confidence1−1/4.
Afterward, go an additionalL′ = c1d log d + L + 2 levels from each of these descendants so that
for any cell at levelL, the probability of it having a descendant of radius> ∆/4 afterL′ levels is
less than 1

4·2L . Hence conclude with confidence at least1 − 1
4 − 1

4·2L · 2L ≥ 1
2 that all descendants

of C after2L + c1d log d + 2 have radius≤ ∆/4. This gives a way to prove the following result :

Theorem 4. There is a constantc2 with the following property. For anys ≥ 2, with probability at
least1−1/4, every descendantC′ which is more thanc2 ·s ·d log d levels belowC has radius(C′) ≤
radius(C)/s.

Proof. Without loss of generality assume thats is a power of2. We will prove the result by induc-
tion. Fact 3 proves the base case fors = 2. For the induction step, letL(s) denote the number of
levels it takes to reduce the size by a factor ofs with high confidence. Then we have

L(s) ≤ L(s/2) + c1d log d + L(s/2) + 2 = 2L(s/2) + c1d log d + 2

Solving the recurrence givesL(s) = O (sd log d)

Notice that the dependence on the factors is linear in the above result whereas one expects it to
be logarithmic. Indeed, typical space partitioning algorithms such ask-d trees do give such guar-
antees. The first result we prove in the next section is a boundon the number of levels that is
poly-logarithmic in the size reduction factors.

3 A generalized size reduction lemma forRPTREE-MAX

In this section we prove the following theorem :

Theorem 5(Main ). There is a constantc3 with the following property. Suppose anRPTREE-MAX
is built using data setS ⊂ R

D . Pick any cellC in the RPTREE-MAX ; suppose thatS ∩ C
has doubling dimension≤ d. Then for anys ≥ 2, with probability at least1 − 1/4 (over the
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good split

bad split

neutral split

B2

B1

∆

Figure 1: BallsB1 andB2 are of radius∆/s
√

d and their centers are∆/s − ∆/s
√

d apart.

randomization in constructing the subtree rooted atC), for every descendantC′ which is more than
c3 · log s · d log sd levels belowC, we have radius(C′) ≤ radius(C)/s.

Compared to this, data structures such as [12] give deterministic guarantees for such a reduction in
D log s levels which can be shown to be optimal (see [1] for an example). Thus our result is optimal
but for a logarithmic factor. Moving on with the proof, let usconsider a cellC of radius∆ in the
RPTREE-MAX that contains a datasetS having doubling dimension≤ d. Then for anyǫ > 0, a
repeated application of Definition 1 shows that theS can be covered using at most2d log(1/ǫ) balls
of radiusǫ∆. We will coverS ∩ C using balls of radius ∆

960s
√

d
so thatO

(

(sd)d
)

balls would

suffice. Now consider all pairs of these balls, the distance between whose centers is≥ ∆
s − ∆

960s
√

d
.

If random splits separate data from all such pairs of balls i.e. for no pair does any cell contain data
from both balls of the pair, then each resulting cell would only contain data from pairs whose centers
are closer than∆s − ∆

960s
√

d
. Thus the radius of each such cell would be at most∆/s.

We fix such a pair of balls calling themB1 andB2. A split in the RPTREE-MAX is said to begood
with respect to this pair if it sends points insideB1 to one child of the cell in the RPTREE-MAX
and points insideB2 to the other,bad if it sends points from both balls to both children andneutral
otherwise (See Figure 1). We have the following properties of a random split :

Lemma 6. Let B = B(x, δ) be a ball contained inside anRPTREE-MAX cell of radius∆ that
contains a datasetS of doubling dimensiond. Lets us say that a random split splits this ball if the
split separates the data setS into two parts. Then a random split of the cell splitsB with probability
atmost3δ

√
d

∆ .

Proof. The RPTREE-MAX splits proceed by randomly projecting the data in a cell ontothe real
line and then choosing a split point in an interval of length12∆/

√
D. It is important to note that

the random direction and the split point are chosen independently. Hence, suppose data inside the
ball B gets projected onto an intervalB̃ of radiusr, then the probability of it getting split is atmost
r
√

D/6∆ since the split point is chosen randomly in an interval of length12∆/
√

D independently
of the projection. LetRB be the random variable that gives the radius of the intervalB̃. Hence the
probability ofB getting split is the following

√
D

6∆

∞
∫

0

rP [RB = r] dr =

√
D

6∆

∞
∫

0

r
∫

0

P [RB = r] dtdr =

√
D

6∆

∞
∫

0

∞
∫

t

P [RB = r] drdt

=

√
D

6∆

∞
∫

0

Pr[RB ≥ t]dt

We have the following result from [1]
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Fact 7 (Lemma 6 of [1]). P

[

RB ≥ 4δ√
D

√

2
(

d + ln 2
η

)

]

≤ η

Fix the valuel = 4δ√
D

√

2 (d + ln 2). Using the fact that for anyt, Pr[RB ≥ t] ≤ 1 and making the

change of variablest = 4δ√
D

√

2
(

d + ln 2
η

)

we get

∞
∫

0

Pr[RB ≥ t]dt =

l
∫

0

Pr[RB ≥ t]dt +

∞
∫

l

Pr[RB ≥ t]dt ≤
l
∫

0

1dt +

0
∫

1

ηdt(η)

Simplifying the above expression, we get the split probability to be atmost

2δ

3∆









√

2 (d + ln 2) +

1
∫

0

dη
√

2
(

d + ln 2
η

)









=
2δ

3∆







√

2 (d + ln 2) + 2
√

2ed

∞
∫

√
ln 2+d

e−x2

dx







Now
∞
∫

a

e−x2

dx = 1
2

[

∞
∫

−∞
e−x2

dx −
a
∫

−a

e−x2

dx

]

≤
√

π
2

[

1 −
√

1 − e−a2

]

≤
√

π
2 e−a2

since1 −
√

1 − x < x for 0 < x < 1. Usingd ≥ 1 , we get the probability of the ballB getting split to be

atmost 2δ
3∆

[

√

2 (d + ln 2) +
√

π
2

]

≤ 3δ
√

d
∆ .

Lemma 8. LetB1 andB2 be a pair of balls as described above contained in the cellC that contains
data of doubling dimensiond. Then a random split of the cell is a good split with respect tothis pair
with probability at least 1

56s .

Proof. The techniques used in the proof of this lemma are the same as those used to prove a similar
result in [1]. We are giving a proof sketch here for completeness. We use the following two results
from [1]

Fact 9 (Lemma 5 of [1]). Fix anyx ∈ R
D. Pick a random vectorU ∼ N (0, (1/D)ID). Then for

anyα, β > 0 :

1. P

[

|U · x| ≤ α · ‖x‖√
D

]

≤
√

2
π α,

2. P

[

|U · x| ≥ β · ‖x‖√
D

]

≤ 2
β e−β2/2.

Fact 10 (Corollary 8 of [1]). SupposeS ⊂ R
D lies within ballB(x, ∆). Pick any0 < δ < 2/e2.

Let this set be projected randomly onto the real line. Let us denote bỹx, the projection ofx by S̃,
the projection of the setS. Then with probability atleast1− δ over the choice of random projection

ontoR,
∣

∣

∣
median{S̃} − x̃

∣

∣

∣
≤ ∆√

D
·
√

2 ln 2
δ .

Projections of points, sets etc. are denoted with a tilde (˜) sign. Applying Fact 7 withη = 2
e31 , we

get that with probability> 1− 2
e31 , the ballB1 gets projected to an interval of length atmost∆

30s
√

D

centered at̃x1. The same holds forB2. Applying Fact 91 withα = 384
959 gives us|x̃1 − x̃2| ≥ ∆

2s
√

D

with probability1 − 1536
4795 . Furthermore, an application of Fact 92 withβ =

√
2 ln 40 shows that

with probability atleast1 − 1
54 , |x̃1 − x̃| ≤ 3∆√

D
. The same holds true for̃x2 as well. Finally an

application of Fact 10 withδ = 1
20 shows that the median of the projected setS̃ will lie within a

distance3∆√
D

of x̃ (i.e. the projection of the center of the cell) with probability atleast1 − 1
20 .

Simple calculations show that the preceding guarantees imply that with probability atleast12 over the
choice of random projections, the projections of both the balls will lie within the interval from which
a split point would be chosen. Further more there would be a gap of atleast ∆

2s
√

D
−2 ∆

30s
√

D
between
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the projections of the two balls. Hence, given that these good events take place, with probability

atleast
√

D
12∆

(

∆
2s

√
D

− 2 ∆
30s

√
D

)

over the choice of the split point, the balls will get cleanlyseparated.

Note that this uses independence of the choice of projectionand the choice of the split point. Thus
the probability of a good split is atleast156s .

Lemma 11. Let B1 and B2 be a pair of balls as described above contained in the cellC that
contains data of doubling dimensiond. Then a random split of the cell is a bad split with respect to
this pair with probability at most 1

320s .

Proof. The proof of a similar result in [1] uses a conditional probability argument. However the
technique does not work here since we require a bound that is inversely proportional tos. We instead
make a simple observation that the probability of a bad splitis upper bounded by the probability that
one of the balls is split since for any two eventsA andB, P [A ∩ B] ≤ min{P [A] , P [B]}. The
result then follows from an application of Lemma 6.

We are now in a position to prove Theorem 5. What we will prove is that starting with a pair of balls
in a cellC, the probability that some cellk levels below has data from both the balls is exponentially
small ink. Thus, after going enough number of levels we can take a unionbound over all pairs of
balls whose centers are well separated (which areO

(

(sd)2d
)

in number) and conclude the proof.

Proof. (of Theorem 5) Consider a cellC of radius∆ in the RPTREE-MAX and fix a pair of balls
contained insideC with radii ∆/960s

√
d and centers separated by at least∆/s − ∆/960s

√
d. Let

pi
j denote the probability that a celli levels belowC has a descendantj levels below itself that

contains data points from both the balls. Then the followingholds :

Lemma 12. p0
k ≤

(

1 − 1
68s

)l
pl

k−l.

Proof. We have the following expression forp0
k :

p0
k ≤ P [split at level0 is a good split] · 0 +

P [split at level0 is a bad split] · 2p1
k−1 +

P [split at level0 is a neutral split] · p1
k−1

≤ 1

320s
· 2p1

k−1 +

(

1 − 1

320s
− 1

56s

)

· p1
k−1

=

(

1 +
1

320s
− 1

56s

)

· p1
k−1

=

(

1 − 1

68s

)

p1
k−1

≤
(

1 − 1

68s

)2

p2
k−2

(

Similarly p1
k−1 ≤

(

1 − 1

68s

)

p2
k−2

)

...

≤
(

1 − 1

68s

)l

pl
k−l

Note that this gives usp0
k ≤

(

1 − 1
68s

)k
as a corollary. However using this result would require us

to go downk = Ω(sd log(sd)) levels beforep0
k = 1

Ω((sd)2d)
which results in a bound that is worse

(by a factor logarithmic ins) than the one given by Theorem 4. This can be attributed to thesmall
probability of a good split for a tiny pair of balls in large cells. However, here we are completely
neglecting the fact that as we go down the levels, the radii ofcells go down as well and good splits
become more frequent.

Indeed settings = 2 in Theorems 8 and 11 tells us that if the pair of balls were to becontained in a
cell of radius ∆

s/2 then the good and bad split probabilities are1112 and 1
640 respectively. This paves
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way for an inductive argument : assume that with probability> 1 − 1/4, in L(s) levels, the size of
all descendants go down by a factors. Denote bypl

g the probability of a good split in a cell at depth
l and bypl

b the corresponding probability of a bad split. Setl∗ = L(s/2) and letE be the event that
the radius of every cell at levell∗ is less than∆

s/2 . Let C′ represent a cell at depthl∗. Then,

pl∗

g ≥ P [good split inC′|E] · P [E] ≥ 1

112
·
(

1 − 1

4

)

≥ 1

150

pl∗

b = P [bad split inC′|E] · P [E] + P [bad split inC′|¬E] · P [¬E]

≤ 1

640
· 1 +

1

640
· 1

4
≤ 1

512

Notice that now, for anym > 0, we havepl∗

m ≤
(

1 − 1
213

)m
. Thus, for some constantc4, setting

k = l∗ + c4d log(sd) and applying Lemma 12 gives usp0
k ≤

(

1 − 1
68s

)l∗ (
1 − 1

213

)c4d log(sd) ≤
1

4(sd)2d . Thus we have
L(s) ≤ L(s/2) + c4d log(sd)

which gives us the desired result on solving the recurrence i.e.L(s) = O (d log s log sd).

4 A packing lemma for RPTREE-MAX

In this section we prove a probabilistic packing lemma for RPTREE-MAX . A formal statement of
the result follows :
Theorem 13(Main ). Given any fixed ballB(x, R) ⊂ R

D, with probability greater than1/2 (where
the randomization is over the construction of theRPTREE-MAX ), the number of disjointRPTREE-

MAX cells of radius greater thanr that intersectB is at most
(

R
r

)O(d log d log(dR/r))
.

Data structures such as BBD-trees give a bound of the formO
(

R
r

)D
which behaves like

(

R
r

)O(1)

for fixed D. In comparison, our result behaves like
(

R
r

)O(log R

r ) for fixed d. We will prove the
result in two steps : first of all we will show that with high probability, the ballB will be completely

inscribed in an RPTREE-MAX cell C of radius no more thanO
(

Rd
√

d log d
)

. Thus the number of

disjoint cells of radius at leastr that intersect this ball is bounded by the number of descendants of
C with this radius. To bound this number we then invoke Theorem5 and conclude the proof.

4.1 An effective aspect ratio bound forRPTREE-MAX cells

In this section we prove an upper bound on the radius of the smallest RPTREE-MAX cell that
completely contains a given ballB of radiusR. Note that this effectively bounds the aspect ratio
of this cell. Consider any cellC of radius∆ that containsB. We proceed with the proof by first
showing that the probability thatB will be split before it lands up in a cell of radius∆/2 is at most
a quantity inversely proportional to∆. Note that we are not interested in all descendants ofC - only
the ones ones that containB. That is why we argue differently here. We consider balls of radius
∆/512

√
d surroundingB at a distance of∆/2 (see Figure 2). These balls are made to cover the

annulus centered atB of mean radius∆/2 and thickness∆/512
√

d – clearlydO(d) balls suffice.
Without loss of generality assume that the centers of all these balls lie inC.

Notice that ifB gets separated from all these balls without getting split inthe process then it will
lie in a cell of radius< ∆/2. Fix a Bi and call a random split of the RPTREE-MAX useful if
it separatesB from Bi anduselessif it splits B. Using a proof technique similar to that used in
Lemma 8 we can show that the probability of a useful split is atleast 1

192 whereas Lemma 6 tells us

that the probability of a useless split is at most3R
√

d
∆ .

Lemma 14. There exists a constantc5 such that the probability of a ball of radiusR in a cell of

radius∆ getting split before it lands up in a cell of radius∆/2 is at mostc5Rd
√

d log d
∆ .

Proof. The only bad event for us is the one in whichB gets split before it gets separated from
all the Bj ’s. Call this eventE. Also, denote byE[i] the bad event thatB gets split for the first
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∆
2

useful split

useless split
Bi

B

C

Figure 2: BallsBi are of radius∆/512
√

d and their centers are∆/2 far from the center ofB.

time in theith split and the precedingi − 1 splits are incapable of separatingB from all theBj ’s.
ThusP [E] ≤ ∑

i>0

P [E[i]]. Since any given split is a useful split (i.e. separatesB from a fixedBj)

with probability > 1
192 , the probability thati − 1 splits will fail to separate allBjs from theB

(while not splittingB) is at mostmin
{

1,
(

1 − 1
192

)i−1 · N
}

whereN = dO(d) is the number of

ballsBj . Since all splits in an RPTREE-MAX are independent of each other, we haveP [E[i]] ≤
min

{

1,
(

1 − 1
192

)i−1 · N
}

· 3R
√

d
∆ . Letk be such that

(

1 − 1
192

)k−1 ≤ 1
4N . Clearlyk = O (d log d)

suffices. Thus we have

P [E] ≤ 3R
√

d

∆

∑

i>0

min

{

1,

(

1 − 1

192

)i−1

· N
}

≤ 3R
√

d

∆

(

k
∑

i=1

1 +

∞
∑

i=1

1

4

(

1 − 1

192

)i
)

which gives usP [E] = O
(

Rd
√

d log d
∆

)

since the second summation is just a constant.

We now state our result on the “effective” bound on aspect ratios of RPTREE-MAX cells.

Theorem 15. There exists a constantc6 such that with probability> 1 − 1/4, a given (fixed) ball
B of radiusR will be completely inscribed in anRPTREE-MAX cell C of radius no more than
c6 · Rd

√
d log d.

Proof. Let ∆∗ = 4c5Rd
√

d log d and∆max be the radius of the entire dataset. Denote byF [i] the
event thatB ends up unsplit in a cell of radius∆max

2i . The event we are interested in isF [m] for
m = log ∆max

∆∗ . Note thatP [F [m]|F [m − 1]] is exactlyP [E] whereE is the event described in
Lemma 14 for appropriately set value of radius∆. Also P [F [m]|¬F [m − 1]] = 0. Thus we have

P [F [m]] =

m−1
∏

i=0

P [F [i + 1]|F [i]] =

m−1
∏

i=0

(

1 − c5Rd
√

d log d

∆max/2i

)

≥ 1 −
m−1
∑

i=0

c5Rd
√

d log d

∆max/2i

= 1 −
m−1
∑

i=0

c5Rd
√

d log d

2m−i∆∗ = 1 − 1

4

m−1
∑

i=0

1

2m−i
≥ 1 − 1

4

Settingc6 = 4c5 gives us the desired result.

Proof. (of Theorem 13) Given a ballB of radiusR, Theorem 15 shows that with probability at

least3/4, B will lie in a cell C of radius at mostR′ = O
(

Rd
√

d log d
)

. Hence all cells of

radius atleastr that intersect this ball must be either descendants or ancestors ofC. Since we want

8
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Figure 3: Locally, almost all the energy of the data is concentrated in the tangent plane.

an upper bound on the largest number of such disjoint cells, it suffices to count the number of
descendants ofC of radius no less thanr. We know from Theorem 5 that with probability at least
3/4 in log(R′/r)d log(dR′/r) levels the radius of all cells must go belowr. The result follows by
observing that the RPTREE-MAX is a binary tree and hence the number of children can be at most
2log(R′/r)d log(dR′/r). The success probability is at least(3/4)2 > 1/2.

5 Local covariance dimension of a smooth manifold

The second variant of RPTREE, namely RPTREE-MEAN, adapts to the local covariance dimension
(see definition below) of data. We do not go into the details ofthe guarantees presented in [1] due
to lack of space. Informally, the guarantee is of the following kind : given data that has small local
covariance dimension, on expectation, a data point in a cellof radiusr in the RPTREE-MEAN will
be contained in a cell of radiusc7 · r in the next level for some constantc7 < 1. The randomization
is over the construction of RPTREE-MEAN as well as choice of the data point. This gives per-level
improvement albeit in expectation whereas RPTREE-MAX gives improvement in the worst case but
after a certain number of levels.

We will prove that ad-dimensional Riemannian submanifoldM of R
D has bounded local covari-

ance dimension thus proving that RPTREE-MEAN adapts to manifold dimension as well.

Definition 16. A setS ⊂ R
D has local covariance dimension(d, ǫ, r) if there exists an isometry

M of R
D under which the setS when restricted to any ball of radiusr has a covariance matrix for

which somed diagonal elements contribute a(1 − ǫ) fraction of its trace.

This is a more general definition than the one presented in [1]which expects the topd eigenvalues
of the covariance matrix to account for a(1 − ǫ) fraction of its trace. However, all that [1] requires
for the guarantees of RPTREE-MEAN to hold is that there existd orthonormal directions such that
a (1 − ǫ) fraction of the energy of the dataset i.e.

∑

x∈S ‖x − mean(S)‖2 is contained in thosed
dimensions. This is trivially true whenM is ad-dimensional affine set. However we also expect
that for small neighborhoods on smooth manifolds, most of the energy would be concentrated in the
tangent plane at a point in that neighborhood (see Figure 3).Indeed, we can show the following :

Theorem 17(Main ). Given a data setS ⊂ M whereM is ad-dimensional Riemannian manifold

with condition numberτ , then for anyǫ ≤ 1
4 , S has local covariance dimension

(

d, ǫ,
√

ǫτ
3

)

.

For manifolds, the local curvature decides how small a neighborhood should one take in order to
expect a sense of “flatness” in the non-linear surface. This is quantified using theCondition Number
τ of M (introduced in [17]) which restricts the amount by which themanifold can curve locally.
The condition number is related to more prevalent notions oflocal curvature such as the second
fundamental form [18] in that the inverse of the condition number upper bounds the norm of the
second fundamental form [17]. Informally, if we restrict ourselves to regions of the manifold of
radiusτ or less, then we get the requisite flatness properties. This is formalized in [17] as follows.
For any hyperplaneT ⊂ R

D and a vectorv ∈ R
d, let v‖(T ) denote the projection ofv ontoT .

9



Fact 18 (Implicit in Lemma 5.3 of [17]). SupposeM is a Riemannian manifold with condition
numberτ . For anyp ∈ M andr ≤ √

ǫτ, ǫ ≤ 1
4 , letM′ = B(p, r) ∩M. LetT = Tp(M) be the

tangent space atp. Then for anyx, y ∈ M′, ‖x‖(T ) − y‖(T )‖2 ≥ (1 − ǫ)‖x − y‖2.

This already seems to give us what we want - a large fraction ofthe length between any two points
on the manifold lies in the tangent plane - i.e. ind dimensions. However in our case we have
to show that for somed-dimensional planeP ,

∑

x∈S ‖(x − µ)‖(P )‖2 > (1 − ǫ)
∑

x∈S ‖x − µ‖2

whereµ = mean(S). The problem is that we cannot apply Fact 18 since there is no surety that the
mean will lie on the manifold itself. However it turns out that certain points on the manifold can act
as “proxies” for the mean and provide a workaround to the problem.

Proof. (of Theorem 17) SupposeM′ = B(x0, r) ∩M for r =
√

ǫτ
3 and we are given data points

S = {x1, . . . xn} ⊂ M′. Letq = arg min
x∈M

‖µ − x‖ be the closest point on the manifold to the mean.

The smoothness properties ofM tell us that the vector(µ − q) is perpendicular toTq(M), thed-
dimensional tangent space atq (in fact any pointq at which the functiong : x ∈ M 7−→ ‖x − µ‖
attains a local extrema would also have the same property). This has interesting consequences - let
f be the projection map ontoTq(M) i.e. f(v) = v‖(Tq(M)).

Thenf(µ − q) = 0 since(µ − q) ⊥ Tq(M). This implies that for any vectorv ∈ R
D, f(v − µ) =

f(v − q) + f(q − µ) = f(v − q) = f(v) − f(q) sincef is a linear map. We now note that
min

i
‖µ − xi‖ ≤ r. If this were not true then we would have

∑

i

‖µ − xi‖ > nr2 whereas we know

that
∑

i

‖µ− xi‖ ≤∑
i

‖x0 − xi‖ ≤ nr2 since for any random variableX ∈ R
D and fixedv ∈ R

D,

we haveE
[

‖X − v‖2
]

≥ E
[

‖X − E [X ] ‖2
]

. Since‖µ− xi‖ ≤ r for somexi ∈ M, we know, by
definition ofq, that‖µ − q‖ ≤ r as well.

We also have‖µ − x0‖ ≤ r (since the convex hull of the points is contained in the ballB and the
mean, being a convex combination of the points, is containedin the hull) and‖xi − x0‖ ≤ r for all
pointsxi. Hence we have for any pointxi, ‖xi − q‖ ≤ ‖xi − x0‖ + ‖x0 − µ‖ + ‖µ− q‖ ≤ 3r and
conclude thatS ⊂ B(q, 3r) ∩M = B(q,

√
ǫτ) ∩M which means we can apply Fact 18 between

the vectorsxi andq.

Let T = Tq(M) andq as chosen above. We have
∑

x∈S

‖(x − µ)‖(T )‖2 =
∑

x∈S

‖f(x − µ)‖2 =
∑

x∈S

‖f(x − q)‖2 =
∑

x∈S

‖f(x) − f(q)‖2

≥
∑

x∈S

(1 − ǫ)‖x − q‖2 ≥ (1 − ǫ)
∑

x∈S

‖x − µ‖2

where the last inequality again uses the fact that for a random variableX ∈ R
D and fixedv ∈ R

D,
E
[

‖X − v‖2
]

≥ E
[

‖X − E [X ] ‖2
]

.

6 Conclusion

In this paper we considered the two random projection trees proposed in [1]. For the RPTREE-
MAX data structure, we provided an improved bound (Theorem 5) onthe number of levels required
to decrease the size of the tree cells by any factors ≥ 2. However the bound we proved is poly-
logarithmic ins. It would be nice if this can be brought down to logarithmic since it would directly
improve the packing lemma (Theorem 13) as well. More specifically the packing bound would

become
(

R
r

)O(1)
instead of

(

R
r

)O(log R

r ) for fixedd.

As far as dependence ond is concerned, there is room for improvement in the packing lemma. We
have shown that the smallest cell in the RPTREE-MAX that completely contains a fixed ballB of

radiusR has an aspect ratio no more thanO
(

d
√

d log d
)

since it has a ball of radiusR inscribed in

it and can be circumscribed by a ball of radius no more thanO
(

Rd
√

d log d
)

. Any improvement in

the aspect ratio of the smallest cell that contains a given ball will also directly improve the packing
lemma.
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Moving on to our results for the RPTREE-MEAN, we demonstrated that it adapts to manifold di-
mension as well. However the constants involved in our guarantee are pessimistic. For instance,
the radius parameter in the local covariance dimension is given as

√
ǫτ
3 - this can be improved to√

ǫτ
2 if one can show that there will always exists a pointq ∈ B(x0, r) ∩M at which the function

g : x ∈ M 7−→ ‖x − µ‖ attains a local extrema.

We conclude with a word on the applications of our results. Aswe already mentioned, packing
lemmas and size reduction guarantees for arbitrary factorsare typically used in applications for
nearest neighbor searching and clustering. However, theseapplications (viz [12], [15]) also require
that the tree have bounded depth. The RPTREE-MAX is a pure space partitioning data structure that
can be coerced by an adversarial placement of points into being a primarily left-deep or right-deep
tree having depthΩ(n) wheren is the number of data points.

Existing data structures such as BBD Trees remedy this by alternating space partitioning splits with
data partitioning splits. Thus every alternate split is forced to send at most a constant fraction
of the points into any of the children thus ensuring a depth that is logarithmic in the number of
data points. A similar technique is used by [7] to bound the depth of the version of RPTREE-
MAX used in that paper. However it remains to be seen if the same trick can be used to bound the
depth of RPTREE-MAX while maintaining the packing guarantees because althoughsuch “space
partitioning” splits do not seem to hinder Theorem 5, they dohinder Theorem 13 (more specifically
they hinder Theorem 14).

We leave open the question of a possible augmentation of the RPTREE-MAX structure, or a better
analysis, that can simultaneously give the following guarantees :

1. Bounded Depth: depth of the tree should beo(n), preferably(log n)O(1)

2. Packing Guarantee: of the form
(

R
r

)(d log R

r )O(1)

3. Space Partitioning Guarantee: assured size reduction by factors in (d log s)O(1) levels
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