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Abstract

The estimation of class prevalence, i.e., the fraction of a population that belongs to a certain class, is a very useful
tool in data analytics and learning, and finds applications in many domains such as sentiment analysis, epidemiology,
etc. For example, in sentiment analysis, the objective is often not to estimate whether a specific text conveys a positive
or a negative sentiment, but rather estimate the overall distribution of positive and negative sentiments during an event
window. A popular way of performing the above task, often dubbed quantification, is to use supervised learning to
train a prevalence estimator from labeled data.

Contemporary literature cites several performance measures used to measure the success of such prevalence es-
timators. In this paper we propose the first online stochastic algorithms for directly optimizing these quantification-
specific performance measures. We also provide algorithms that optimize hybrid performance measures that seek
to balance quantification and classification performance. Our algorithms present a significant advancement in the
theory of multivariate optimization and we show, by a rigorous theoretical analysis, that they exhibit optimal conver-
gence. We also report extensive experiments on benchmark and real data sets which demonstrate that our methods
significantly outperform existing optimization techniques used for these performance measures.

1 Introduction
Quantification [11] is defined as the task of estimating the prevalence (i.e., relative frequency) of the classes of interest
in an unlabeled set, given a training set of items labeled according to the same classes. Quantification finds its natural
application in contexts characterized by distribution drift, i.e., contexts where the training data may not exhibit the
same class prevalence pattern as the test data. This phenomenon may be due to different reasons, including the
inherent non-stationary character of the context, or class bias that affects the selection of the training data.
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A naı̈ve way to tackle quantification is via the “classify and count” (CC) approach, i.e., to classify each unlabeled
item independently and compute the fraction of the unlabeled items that have been attributed to each class. However,
a good classifier does not necessarily lead to a good quantifier: assuming the binary case, even if the sum (FP + FN)
of the false positives and false negatives is comparatively small, bad quantification accuracy might result if FP and FN
are significantly different (since perfect quantification coincides with the case FP = FN). This has led researchers to
study quantification as a task in its own right, rather than as a byproduct of classification.

The fact that quantification is not just classification in disguise can also be seen by the fact that evaluation mea-
sures different from those for classification (e.g., F1, AUC) need to be employed. Quantification actually amounts to
computing how well an estimated class distribution p̂ fits an actual class distribution p (where for any class c ∈ C, p(c)
and p̂(c) respectively denote its true and estimated prevalence); as such, the natural way to evaluate the quality of this
fit is via a function from the class of f -divergences [7], and a natural choice from this class (if only for the fact that it
is the best known f -divergence) is the Kullback-Leibler Divergence (KLD), defined as

KLD(p, p̂) =
∑
c∈C

p(c) log
p(c)

p̂(c)
(1)

Indeed, KLD is the most frequently used measure for evaluating quantification (see e.g., [3, 10, 11, 12]). Note that
KLD is non-decomposable, i.e., the error we make by estimating p via p̂ cannot be broken down into item-level errors.
This is not just a feature of KLD, but an inherent feature of any measure for evaluating quantification. In fact, how
the error made on a given unlabeled item impacts the overall quantification error depends on how the other items have
been classified1; e.g., if FP > FN for the other unlabeled items, then generating an additional false negative is actually
beneficial to the overall quantification accuracy, be it measured via KLD or via any other function.

The fact that KLD is the measure of choice for quantification and that it is non-decomposable, has lead to the use of
structured output learners, such as SVMperf [17], that allow a direct optimization of non-decomposable functions; the
approach of Esuli and Sebastiani [9, 10] is indeed based on optimizing KLD using SVMperf. However, that minimizing
KLD (or |FP−FN|, or any “pure” quantification measure) should be the only objective for quantification regardless of
the value of FP + FN (or any other classification measure), is fairly paradoxical. Some authors [3, 24] have observed
that this might lead to the generation of unreliable quantifiers (i.e., systems with good quantification accuracy but
bad or very bad classification accuracy), and have, as a result, championed the idea of optimizing “multi-objective”
measures that combine quantification accuracy with classification accuracy. Using a decision-tree-like approach, [24]
minimizes |FP2−FN2|, which is the product of |FN−FP|, a measure of quantification error, and (FN+FP), a measure
of classification error; [3] also optimizes (using SVMperf) a measure that combines quantification and classification
accuracy.

While SVMperf does provide a recipe for optimizing general performance measures, it has serious limitations.
SVMperf is not designed to directly handle applications where large streaming data sets are the norm. SVMperf also
does not scale well to multi-class settings, and the time required by the method is exponential in the number of classes.

In this paper we develop stochastic methods for optimizing a large family of popular quantification performance
measures. Our methods can effortlessly work with streaming data and scale to very large datasets, offering training
times up to an order of magnitude faster than other approaches such as SVMperf.

2 Related Work
Quantification methods. The quantification methods that have been proposed over the years can be broadly classified
into two classes, namely aggregative and non-aggregative methods. While aggregative approaches perform quantifica-
tion by first classifying individual items as an intermediate step, non-aggregative approaches do not require this step,
and estimate class prevalences holistically. Most methods, such as those of [3, 4, 10, 11, 24], fall in the former class,
while the latter class has few representatives [14, 22].

1For the sake of simplicity, we assume here that quantification is to be tackled in an aggregative way, i.e., the classification of individual items
is a necessary intermediate step for the estimation of class prevalences. Note however that this is not necessary; non-aggregative approaches to
quantification may be found in [14, 22].

2



Within the class of aggregative methods, a further distinction can be made between methods, such as those of
[4, 11], that first use general-purpose learning algorithms and then post-process their prevalence estimates to account
for their estimation biases, and methods (which we have already hinted at in Section 1) that instead use learning algo-
rithms explicitly devised for quantification [3, 10, 24]. In this paper we focus the latter class of methods.

Applications of quantification. From an application perspective, quantification is especially useful in fields (such
as social science, political science, market research, and epidemiology) which are inherently interested in aggregate
data, and care little about individual cases. Aside from applications in these fields [16, 22], quantification has also
been used in contexts as diverse as natural language processing [6], resource allocation [11], tweet sentiment analysis
[12], and the veterinary sciences [14]. Quantification has independently been studied within statistics [16, 22], machine
learning [2, 8, 29], and data mining [10, 11]. Unsurprisingly, given this varied literature, quantification also goes under
different names, such as counting [23], class probability re-estimation [1], class prior estimation [6], and learning of
class balance [8].

In some applications of quantification, the estimation of class prevalences is not an end in itself, but is rather used to
improve the accuracy of other tasks such as classification. For instance, Balikas et al. [2] use quantification for model
selection in supervised learning, by tuning hyperparameters that yield the best quantification accuracy on validation
data; this allows hyperparameter tuning to be performed without incurring the costs inherent to k-fold cross-validation.
Saerens et al. [29], followed by other authors [1, 32, 34], apply quantification to customize a trained classifier to the
class prevalence exhibited in the test set, with the goal of improving classification accuracy on unlabeled data exhibit-
ing a class distribution different from that of the training set. The work of Chan and Ng [6] may be seen as a direct
application of this notion, as they use quantification to tune a word sense disambiguator to the estimated sense priors
of the test set. Their work can also be seen as an instance of transfer learning (see e.g., [26]), since their goal is to
adapt a word sense disambiguation algorithm to a domain different from the one the algorithm was trained upon.

Stochastic optimization. As discussed in Section 1, our goal in this paper is to perform quantification by directly
optimizing, in an online stochastic setting, specific performance measures for the quantification problem. While recent
advances have seen much progress in efficient methods for online learning and optimization in full information and
bandit settings [5, 13, 15, 30], these works frequently assume that the optimization objective, or the notion of regret
being considered is decomposable and can be written as a sum or expectation of losses or penalties on individual data
points. However, performance measures for quantification have a multivariate and complex structure, and do not have
this form.

There has been some recent progress [20, 25] towards developing stochastic optimization methods for such non-
decomposable measures. However, these approaches do not satisfy the needs of our problem. The work of Kar et al.
[20] addresses the problem of optimizing structured SVMperf-style objectives in a streaming fashion, but requires the
maintenance of large buffers and, as a result, offers poor convergence. The work of Narasimhan et al. [25] presents
online stochastic methods for optimizing performance measures that are concave or pseudo-linear in the canonical
confusion matrix of the predictor. However, their method requires the computation of gradients of the Fenchel dual
of the performance measures, which is difficult for the quantification performance measures that we study, that have
a nested structure. Our methods extend the work of [25] and provide convenient routines for optimizing the more
complex performance measures used for evaluating quantification.

3 Problem Setting
For the sake of simplicity, in this paper we will restrict our analysis to binary classification problems and linear models.
We will denote the space of feature vectors by X ⊂ Rd and the label set by Y = {−1,+1}. We shall assume that data
points are generated according to some fixed but unknown distributionD overX ×Y . We will denote the proportion of
positives in the population by p := Pr

(x,y)∼D
[y = +1]. Our algorithms, at training time, will receive a set of T training

points sampled from D, which we will denote by T = {(x1, y1), . . . , (xT , yT )}.
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As mentioned above, we will present our algorithms and analyses for learning a linear model over X . We will de-
note the model space byW ⊆ Rd and let RX and RW denote the radii of domain X and model spaceW , respectively.
However, we note that our algorithms and analyses can be extended to learning non-linear models by use of kernels, as
well as to multi-class quantification problems. However, we postpone a discussion of these extensions to an expanded
version of this paper.

Our focus in this work shall be the optimization of quantification-specific performance measures in online stochas-
tic settings. We will concentrate on performance measures that can be represented as functions of the confusion matrix
of the classifier. In the binary setting, the confusion matrix can be completely described in terms of the true positive
rate (TPR) and the true negative rate (TNR) of the classifier. However, initially we will develop algorithms that use
reward functions as surrogates of the TPR and TNR values. This is done to ease algorithm design and analysis, since
the TPR and TNR values are count-based and form non-concave and non-differentiable estimators. The surrogates we
will use will be concave and almost-everywhere differentiable. More formally, we will use a reward function r that
assigns a reward r(ŷ, y) to a prediction ŷ ∈ R for a data point, when the true label for that data point is y ∈ Y . Given
a reward function r, a model w ∈ W , and a data point (x, y) ∈ X × Y , we will use

r+(w;x, y) =
1

p
· r(w>x, y) · 1(y = 1)

r−(w;x, y) =
1

1− p
· r(w>x, y) · 1(y = −1)

to calculate rewards on positive and negative points. The average or expected value of these rewards will be treated
as surrogates of TPR and TNR respectively. Note that since E

(x,y)
Jr+(w; x, y)K = E

(x,y)

q
r(w>x, y)|y = 1

y
, set-

ting r to r0-1(ŷ, y) = I [y · ŷ > 0], i.e. the classification accuracy function, yields E
(x,y)

Jr+(w; x, y)K = TPR(w).

Here I [·] denotes the indicator function. For the sake of convenience we will use P (w) = E
(x,y)

Jr+(w;x, y)K and

N(w) = E
(x,y)

Jr−(w;x, y)K to denote population averages of the reward functions. We shall assume that our reward

function r is concave, Lr-Lipschitz, and takes values in a bounded range [−Br, Br].

Examples of Surrogate Reward Functions Some examples of reward functions that are surrogates for the classifica-
tion accuracy indicator function I [yŷ > 0] are the inverted hinge loss function

rhinge(ŷ, y) = max {1, y · ŷ}

and the inverted logistic regression function

rlogit(ŷ, y) = 1− ln(1 + exp(−y · ŷ))

We will also experiment with non-surrogate (dubbed NS) versions of our algorithms which use TPR and TNR values
directly. These will be discussed in Section 5.

3.1 Performance Measures
The task of quantification requires estimating the distribution of unlabeled items across a set C of available classes,
with |C| = 2 in the binary setting. In our work we will target quantification performance measures as well as “hybrid”
classification-quantification performance measures. We discuss them in turn.

KLD: Kullback-Leibler Divergence In recent years this performance measure has become a standard in the quan-
tification literature, in the evaluation of both binary and multiclass quantification [3, 10, 12]. We redefine KLD below
for convenience.

KLD(p, p̂) =
∑
c∈C

p(c) log
p(c)

p̂(c)
(2)
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For distributions p, p′ over C, the values KLD(p, p′) can range between 0 (perfect quantification) and +∞.2. Note that
since KLD is a distance function and all our algorithms will be driven by reward maximization, for uniformity we will,
instead of trying to minimize KLD, try to maximize −KLD; we will call this latter NegKLD.

NSS: Normalized Squared Score This measure of quantification accuracy was introduced in [3], and is defined
as NSS = 1 − ( FN−FP

max{p,(1−p)}|S| )
2. Ignoring normalization constants, this performance measure attempts to reduce

|FN− FP|, a direct measure of quantification error.

We recall from Section 1 that several works have advocated the use of hybrid, “multi-objective” performance mea-
sures, that try to balance quantification and classification performance. These measures typically take a quantification
performance measure such as KLD or NSS, and combine it with a classification performance measure. Typically,
a classification performance measure that is sensitive to class imbalance [25] is chosen, such as Balanced Accuracy
BA = 1

2 (TPR + TNR) [3], F-measure, or G-mean [25]. Two such hybrid performance measures that are discussed in
literature are presented below.

CQB: Classification-Quantification Balancing The work of [24] introduced this performance measure in an attempt
to compromise between classification and quantification accuracy. As discussed in Section 1, this performance mea-
sure is defined as

CQB = |FP2 − FN2| = |FP− FN| · (FP + FN),

i.e. a product of |FN− FP|, a measure of quantification error, and (FN + FP), a measure of classification error.

QMeasure The work of Barranquero et al. [3] introduced a generic scheme for constructing hybrid performance
measures, using the so-called Q-measure defined as

Qβ = (1 + β2) · Pclass · Pquant

β2Pclass + Pquant
, (3)

that is, a weighted combination of a measure of classification accuracy Pclass and a measure of quantification accuracy
Pquant. For the sake of simplicity, in our experiments we will adopt BA = 1

2 (TPR + TNR) as our Pclass and NSS
as our Pquant. However, we stress that our methods can be suitably adapted to work with other choices of Pclass and
Pquant.

We also introduce three new hybrid performance measures in this paper as a way of testing our optimization algo-
rithms. We define these below and refer the reader to Tables 1 and 2 for details.

BAKLD This hybrid performance measure takes a weighted average of BA and NegKLD; i.e. BAKLD = C · BA +
(1−C) · (−KLD). This performance measure gives the user a strong handle on how much emphasis should be placed
on quantification and how much on classification performance. We will use BAKLD in our experiments to show that
our methods offer an attractive tradeoff between the two.

2KLD is not a particularly well-behaved performance measure, since it is capable of taking unbounded values within the compact domain of the
unit simplex. This poses a problem for optimization algorithms from the point of view of convergence, as well as numerical stability. To solve this
problem, while computing KLD for two distributions p and p̂, we can perform an additive smoothing of both p(c) and p̂(c) by computing

ps(c) =
ε+ p(c)

ε|C|+
∑
c∈C

p(c)

where ps(c) denotes the smoothed version of p(c). The denominator here is just a normalizing factor. The quantity ε = 1
2|S| is often used as a

smoothing factor, and is the one we adopt here. The smoothed versions of p(c) and p̂(c) are then used in place of the non-smoothed versions in
Equation 1. We can show that, as a result, KLD is always bounded by KLD(ps, p̂s) ≤ O

(
log 1

ε

)
However, we note that the smoothed KLD still

returns a value of 0 when p and p̂ are identical distributions.
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We now define two hybrid performance measures that are constructed by taking the ratio of a classification and
a quantification performance measures. The aim of this exercise is to obtain performance measures that mimic the
F-measure, which is also a pseudolinear performance measure [25]. The ability of our methods to directly optimize
such complex performance measures will be indicative of their utility in terms of the freedom they allow the user to
design objectives in a data- and task-specific manner.

CQReward and BKReward These hybrid performance measures are defined as CQReward = BA
2−NSS and BKReward =

BA
1+KLD . Notice that both performance measures are optimized when the numerator i.e. BA is large, and the denomi-
nator is small which translates to NSS being large for CQReward and KLD being small for BKReward. Clearly, both
performance measures encourage good performance with respect to both classification and quantification and penalize
a predictor which either neglects quantification to get better classification performance, or the other way round.

The past section has seen us introduce a wide variety of quantification and hybrid performance measures. Of these,
the NegKLD, NSS, and Q-measure were already prevalent in quantification literature and we introduced BAKLD,
CQReward and BKReward. As discussed before, the aim of exploring such a large variety of performance measures
is to both demonstrate the utility of our methods with respect to the quantification problem, and present newer ways
of designing hybrid performance measures that give the user more expressivity in tailoring the performance measure
to the task at hand.

We also note that these performance measures have extremely diverse and complex structures. We can show that
NegKLD, Q-measure, and BAKLD are nested concave functions, more specifically, concave functions of functions
that are themselves concave in the confusion matrix of the predictor. On the other hand, CQReward and BKReward
turn out to be pseudo-concave functions of the confusion matrix. Thus, we are working with two very different families
of performance measures here, each of which has different properties and requires different optimization techniques.

In the following section, we introduce two novel methods to optimize these two families of performance measures.

4 Stochastic Optimization Methods for Quantification
The previous discussion in Sections 1 and 2 clarifies two aspects of efforts in the quantification literature. Firstly,
specific performance measures have been developed and adopted for evaluating quantification performance including
KLD, NSS, Q-measure etc. Secondly, algorithms that directly optimize these performance measures are desirable, as
is evidenced by recent works [3, 9, 10, 24].

The works mentioned above make use of tools from optimization literature to learn linear (e.g. [10]) and non-linear
(e.g. [24]) models to perform quantification. The state of the art efforts in this direction have adopted the structural
SVM approach for optimizing these performance measures with great success [3, 10]. However, this approach comes
with severe drawbacks.

The structural SVM [17], although a significant tool that allows optimization of arbitrary performance measures,
suffers from two key drawbacks. Firstly, the structural SVM surrogate is not necessarily a tight surrogate for all
performance measures, something that has been demonstrated in past literature [21, 25], which can lead to poor
training. But more importantly, optimizing the structural SVM surrogate requires the use of expensive cutting plane
methods which are known to scale poorly with the amount of training data, as well as are unable to handle streaming
data.

To alleviate these problems, we propose stochastic optimization algorithms that directly optimize a large family of
quantification performance measures. Our methods come with sound theoretical convergence guarantees, are able to
operate with streaming data sets and, as our experiments will demonstrate, offer much faster and accurate quantification
performance on a variety of data sets.

Our optimization techniques introduce crucial advancements in the field of stochastic optimization of multivariate
performance measures and address the two families of performance measures discussed while concluding Section 3
– 1) nested concave performance measures and 2) pseudo-concave performance measures. We describe these in turn
below.
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Table 1: A list of nested concave performance measures and their canonical expressions in terms of the confusion ma-
trix Ψ(P,N) where P andN denote the TPR, TNR values and p and n denote the proportion of positives and negatives
in the population. The 4th, 6th and 8th columns give the closed form updates used in steps 15-17 in Algorithm 1.
Name Expression Ψ(x, y) γ(q) ζ1(P,N) α(r) ζ2(P,N) β(r)

NegKLD [3, 10] −KLD(p,p̂) p·x+n·y (p,n) log(pP+n(1−N))
(

1
r1
, 1
r2

)
log(nN+p(1−P ))

(
1
r1
, 1
r2

)
QMeasureβ[3] (1+β2)·BA·NSS

β2·BA+NSS
(1+β2)·x·y
β2·x+y

(1+β2)·
(
z2,

(1−z)2

β2

)
z=

q2
β2q1+q2

P+N
2

( 1
2
, 1
2
) 1−(p(1−P )−n(1−N))2 2(z,−z)

z=r2−r1

BAKLD C·BA+(1−C)·(−KLD) C·x+(1−C)·y (C,1−C) P+N
2

( 1
2
, 1
2
) −KLD(P,N) see above

4.1 Nested Concave Performance Measures
The first class of performance measures that we deal with are concave combinations of concave performance measures.
More formally, given three concave functions Ψ, ζ1, ζ2 : R2 → R, we can define a performance measure

P(Ψ,ζ1,ζ2)(w) = Ψ(ζ1(w), ζ2(w)),

where we have

ζ1(w) = ζ1(P (w), N(w))

ζ2(w) = ζ2(P (w), N(w)),

where P (w) andN(w) can respectively denote, either the TPR and TNR values or surrogate reward functions therefor.
Examples of such performance measures include the negative KLD performance measure and the QMeasure which
are described in Section 3.1. Table 1 describes these performance measures in canonical form i.e. their expressions in
terms of TPR and TNR values.

Before describing our algorithm for nested concave measures, we recall the notion of concave Fenchel conjugate
of concave functions. For any concave function f : R2 → R and any (u, v) ∈ R2, the (concave) Fenchel conjugate of
f is defined as

f∗(u, v) = inf
(x,y)∈R2

{ux+ vy − f(x, y)} .

Clearly, f∗ is concave. Moreover, it follows from the concavity of f that for any (x, y) ∈ R2,

f(x, y) = inf
(u,v)∈R2

{xu+ yv − f∗(u, v)} .

Below we state the properties of strong concavity and smoothness. These will be crucial in our convergence
analysis.

Definition 1 (Strong Concavity and Smoothness). A function f : Rd → R is said to be α-strongly concave and
γ-smooth if for all x,y ∈ Rd, we have

−γ
2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y),x− y〉 ≤ −α

2
‖x− y‖22 .

We will assume that the functions Ψ, ζ1, and ζ2 defining our performance measures are γ-smooth for some constant
γ > 0. This is true of all functions, save the log function which is used in the definition of the KLD quantification
measure. However, if we carry out the smoothing step pointed out in Section 3.1 with some ε > 0, then it can be
shown that the KLD function does becomeO

(
1
ε2

)
-smooth. An important property of smooth functions, that would be

crucial in our analyses, is a close relationship between smooth and strongly convex functions

Theorem 2 ([33]). A closed, concave function f is β smooth iff its (concave) Fenchel conjugate f∗ is 1
β -strongly

concave.
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Algorithm 1 NEMSIS: NEsted priMal-dual StochastIc updateS
Require: Outer wrapper function Ψ, inner performance measures ζ1, ζ2, step sizes ηt, feasible setsW,A
Ensure: Classifier w ∈ W

1: w0 ← 0, t← 0, {r0,q0,α0,β0,γ0} ← (0, 0)
2: while data stream has points do
3: Receive data point (xt, yt)
4: // Perform primal ascent
5: if yt > 0 then
6: wt+1 ← ΠW

(
wt + ηt(γt,1αt,1 + γt,2βt,1)∇wr

+(wt;xt, yt)
)

7: qt+1 ← t · qt + (αt,1, βt,1) · r+(wt;xt, yt)
8: else
9: wt+1 ← ΠW

(
wt + ηt(γt,1αt,2 + γt,2βt,2)∇wr

−(wt;xt, yt)
)

10: qt+1 ← t · qt + (αt,2, βt,2) · r−(wt;xt, yt)
11: end if
12: rt+1 ← (t+ 1)−1

(
t · rt + (r+(wt;xt, yt), r

−(wt;xt, yt))
)

13: qt+1 ← (t+ 1)−1 (qt+1 − (ζ∗1 (αt), ζ
∗
2 (βt)))

14: // Perform dual updates
15: αt+1 = arg min

α
{α · rt+1 − ζ∗1 (α)}

16: βt+1 = arg min
β

{β · rt+1 − ζ∗2 (β)}

17: γt+1 = arg min
γ

{γ · qt+1 −Ψ∗(γ)}

18: t← t+ 1
19: end while
20: return w = 1

t

∑t
τ=1 wτ

We are now in a position to present our algorithm NEMSIS for stochastic optimization of nested concave functions.
Algorithm 1 gives an outline of the technique. We note that a direct application of traditional stochastic optimization
techniques [31] to such nested performance measures as those considered here is not possible as discussed before.
NEMSIS, overcomes these challenges by exploiting the nested dual structure of the performance measure by carefully
balancing updates at the inner and outer levels.

At every time step, NEMSIS performs four very cheap updates. The first update is a primal ascent update to the
model vector which takes a weighted stochastic gradient descent step. Note that this step involves a projection step
to the set of model vectors W denoted by ΠW(·). In our experiments W was defined to be the set of all Euclidean
norm-bounded vectors so that projection could be effected using Euclidean normalization which can be done in O (d)
time if the model vectors are d-dimensional.

The weights of the descent step are decided by the dual parameters of the functions Ψ, ζ1, and ζ2. Then NEMSIS
updates the dual variables in three simple steps. In fact line numbers 15-17 can be executed in closed form (see
Table 1) for all the performance measures we see here which allows for very rapid updates. See Appendix A for the
simple derivations.

Below we state the convergence proof for NEMSIS. We note that despite the complicated nature of the perfor-
mance measures being tackled, NEMSIS is still able to recover the optimal rate of convergence known for stochastic
optimization routines. We refer the reader to Appendix B for a proof of this theorem. The proof requires a careful
analysis of the primal and dual update steps at different levels and tying the updates together by taking into account
the nesting structure of the performance measure.

Theorem 3. Suppose we are given a stream of random samples (x1, y1), . . . , (xT , yT ) drawn from a distribution D
over X × Y . Let Algorithm 1 be executed with step sizes ηt = Θ(1/

√
t) with a nested concave performance measure

Ψ(ζ1(·), ζ2(·)). Then, for some universal constant C, the average model w = 1
T

∑T
t=1 wt output by the algorithm

satisfies, with probability at least 1− δ,

P(Ψ,ζ1,ζ2)(w) ≥ sup
w∗∈W

P(Ψ,ζ1,ζ2)(w
∗)− CΨ,ζ1,ζ2,r ·

(
log 1

δ√
T

)
,
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Table 2: List of pseudo-concave performance measures and their canonical expressions in terms of the confusion
matrix Ψ(P,N). Note that p and n denote the proportion of positives and negatives in the population.

Name Expression Pquant(P,N) Pclass(P,N)

CQReward BA
2−NSS 1+(p(1−P )−n(1−N))2

P+N
2

BKReward BA
1+KLD KLD: see Table 1 P+N

2

where CΨ,ζ1,ζ2,r = C(LΨ(Lr + Br)(Lζ1 + Lζ2)) for a universal constant C and Lg denotes the Lipschitz constant
of the function g.

Related work of Narasimhan et al : Narasimhan et al [25] proposed an algorithm SPADE which offered stochastic
optimization of concave performance measures. We note that although the performance measures considered here are
indeed concave, it is difficult to apply SPADE to them directly since SPADE requires computation of gradients of
the Fenchel dual of the function P(Ψ,ζ1,ζ2) which are difficult to compute given the nested structure of this function.
NEMSIS, on the other hand, only requires the duals of the individual functions Ψ, ζ1, and ζ2 which are much more
accessible. Moreover, NEMSIS uses a much simpler dual update which does not involve any parameters and, in fact,
has a closed form solution in all our cases. SPADE, on the other hand, performs dual gradient descent which requires
a fine tuning of yet another step length parameter. A third benefit of NEMSIS is that it achieves a logarithmic regret
with respect to its dual updates (see the proof of Theorem 3) whereas SPADE incurs a polynomial regret due to its
gradient descent-style dual update.

4.2 Pseudo-concave Performance Measures
The next class of performance measures we consider can be expressed as a ratio of a quantification and a classifica-
tion performance measure. More formally, given a convex quantification performance measure Pquant and a concave
classification performance measure Pclass, we can define a performance measure

P(Pquant,Pclass)(w) =
Pclass(w)

Pquant(w)
,

We assume that both the performance measures, Pquant and Pclass, are positive valued. Such performance measures
can be very useful in allowing a system designer to balance classification and quantification performance. Moreover,
the form of the measure allows an enormous amount of freedom in choosing the quantification and classification
performance measures. Examples of such performance measures include the CQReward and the BKReward measures.
These were introduced in Section 3.1 and are represented in their canonical forms in Table 2.

Performance measures, constructed the way described above, with a ratio of a concave over a convex measures,
are called pseudo-concave measures. This is because, although these functions are not concave, their level sets are
still convex which makes it possible to optimize them efficiently. To see the intuition behind this, we need to introduce
the notion of the valuation function corresponding to the performance measure. As a passing note, we remark that
because of the non-concavity of these performance measures, NEMSIS cannot be applied here.

Definition 4 (Valuation Function). The valuation of a pseudo-concave performance measure P(Pquant,Pclass)(w) =
Pclass(w)
Pquant(w) at any level v > 0, is defined as

V (w, v) = Pclass(w)− v · Pquant(w)

It can be seen that the valuation function defines the level sets of the performance measure. To see this, notice that
due to the positivity of the functions Pquant and Pclass, we can have P(Pquant,Pclass)(w) ≥ v iff V (w, v) ≥ 0. However,
since Pclass is concave, Pquant is convex, and v > 0, V (w, v) is a concave function of w.

This close connection between the level sets and notions of valuation functions have been exploited before to give
optimization algorithms for pseudo-linear performance measures such as the F-measure [25, 27]. These approaches
treat the valuation function as some form of proxy or surrogate for the original performance measure and optimize it
in hopes of making progress with respect to the original measure.
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Algorithm 2 CAN: Concave AlternatioN
Require: Objective P(Pquant,Pclass), model spaceW , tolerance ε
Ensure: An ε-optimal classifier w ∈ W

1: Construct the valuation function V
2: w0 ← 0, t← 1
3: while vt > vt−1 + ε do
4: wt+1 ← arg maxw∈W V (w, vt)
5: vt+1 ← arg maxv>0 v such that V (wt+1, v) ≥ v
6: t← t+ 1
7: end while
8: return wt

Taking this approach with our performance measures yields a very natural algorithm for optimizing pseudo-
concave measures which we outline in the CAN algorithm Algorithm 2. CAN repeatedly trains models to optimize
their valuations at the current level, then upgrades the level itself. Notice that step 4 in the algorithm is a concave
maximization problem over a convex set, something that can be done using a variety of methods – in the following
we will see how NEMSIS can be used to implement this step. Also notice that step 5 can, by the definition of the
valuation function, be carried out by simply setting vt+1 = P(Pquant,Pclass)(wt+1).

It turns out that CAN has a linear rate of convergence for well-behaved performance measures. The next result
formalizes this statement. We note that this result is similar to the one arrived by [25] but only for pseudo-linear
functions.

Theorem 5. Suppose we execute Algorithm 2 with a pseudo-concave performance measure P(Pquant,Pclass) such that
the quantification performance measure always takes values in the range [m,M ], where M > m > 0. Let P∗ :=
supw∈W P(Pquant,Pclass)(w) be the optimal performance level and ∆t = P∗ − P(Pquant,Pclass)(wt) be the excess error for

the model wt generated at time t. Then, for every t > 0, we have ∆t ≤ ∆0 ·
(
1− m

M

)t
.

We refer the reader to Appendix C for a proof of this theorem. This theorem generalizes the result of [25] to the
more general case of pseudo-concave functions. Note that for the pseudo-concave functions defined in Table 2, care is
taken to ensure that the quantification performance measure satisfies m > 0.

A drawback of CAN is that it cannot operate in streaming data settings and requires a concave optimization oracle.
However, we notice that for the performance measures in Table 2, the valuation function is always at least a nested
concave function. This motivates us to use NEMSIS to solve the inner optimization problems in an online fashion.
Combining this with an online technique to approximately execute step 5 of of the CAN and gives us the SCAN
algorithm, outlined in Algorithm 3.

Thoerem 6 shows that SCAN enjoys a convergence rate similar to that of NEMSIS. Indeed, SCAN is able to
guarantee an ε-approximate solution after witnessing Õ

(
1/ε2

)
samples which is equivalent to a convergence rate of

Õ
(

1/
√
T
)

. The proof of this result is obtained by showing that CAN is robust to approximate solutions to the inner
optimization problems. We refer the reader to Appendix D for a proof of this theorem.

Theorem 6. Suppose we execute Algorithm 3 with a pseudo-concave performance measure P(Pquant,Pclass) such that

Pquant always takes values in the range [m,M ] with m > 0, with epoch lengths se, s′e =
CΨ,ζ1,ζ2,r

m2

(
M

M−m

)2e

following a geometric rate of increase, where the constant CΨ,ζ1,ζ2,r is the effective constant for the NEMSIS analysis
(Theorem 3) for the inner invocations of NEMSIS in SCAN. Also let the excess error for the model we generated after
e epochs be denoted by ∆e = P∗ −P(Pquant,Pclass)(we). Then after e = O

(
log
(

1
ε log2 1

ε

))
epochs, we can ensure with

probability at least 1 − δ that ∆e ≤ ε. Moreover, the number of samples consumed till this point, ignoring universal

constants, is at most
C2

Ψ,ζ1,ζ2,r

ε2

(
log log 1

ε + log 1
δ

)
log4 1

ε .
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Algorithm 3 SCAN: Stochastic Concave AlternatioN

Require: Objective P(Pquant,Pclass), model spaceW , step sizes ηt, epoch lengths se, s′e
Ensure: Classifier w ∈ W

1: v0 ← 0, t← 0, e← 0,w0 ← 0
2: repeat
3: // Learning phase
4: w̃← we

5: while t < se do
6: Receive sample (x, y)
7: // NEMSIS update with V (·, ve) at time t
8: wt+1 ← NEMSIS (V (·, ve),wt, (x, y), t)
9: t← t+ 1

10: end while
11: t← 0, e← e+ 1,we+1 ← w̃
12: // Level estimation phase
13: v+ ← 0, v− ← 0
14: while t < s′e do
15: Receive sample (x, y)
16: vy ← vy + ry(we;x, y) // Collect rewards
17: t← t+ 1
18: end while
19: t← 0, ve ← Pclass(v+,v−)

Pquant(v+,v−)

20: until stream is exhausted
21: return we

Table 3: Statistics of data sets used.
Data Set Data Points Features Positives

KDDCup08 102,294 117 0.61%
PPI 240,249 85 1.19%

CoverType 581,012 54 1.63%
ChemInfo 2142 55 2.33%

Letter 20,000 16 3.92%
IJCNN-1 141,691 22 9.57%

Adult 48,842 123 23.93%
Cod-RNA 488,565 8 33.3%

Related work of Narasimhan et al : Narasimhan et al [25] also proposed two algorithms AMP and STAMP which
seek to optimize pseudo-linear performance measures. However, neither those algorithms nor their analyses transfer
directly to the pseudo-concave setting. This is because, by exploiting the pseudo-linearity of the performance measure,
AMP and STAMP are able to convert their problem to a sequence of cost-weighted optimization problems which are
very simple to solve. This convenience is absent here and as mentioned above, even after creation of the valuation
function, SCAN still has to solve a possibly nested concave minimization problem which it does by invoking the
NEMSIS procedure on this inner problem. The proof technique used in [25] for analyzing AMP also makes heavy
use of pseudo-linearity. The convergence proof of CAN, on the other hand, is more general and yet guarantees a linear
convergence rate.

5 Experimental Results
We carried out an extensive set of experiments on diverse set of benchmark and real-world data to compare our pro-
posed methods with other state-of-the-art approaches.
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Data sets: We used the following benchmark data sets from the UCI machine learning repository : a) IJCNN, b)
Covertype, c) Adult, d) Letters, and e) Cod-RNA. We also used the following three real-world data sets: a) Chemin-
formatics, a drug discovery data set from [19], b) 2008 KDD Cup challenge data set on breast cancer detection, and c)
a data set pertaining to a protein-protein interaction (PPI) prediction task [28]. In each case, we used 70% of the data
for training and the remaining for testing.

Methods: We compares our proposed NEMSIS and SCAN algorithms3 against the state-of-the-art one-pass mini-
batch stochastic gradient method (1PMB) of [20] and the SVMperf technique of [18]. Both these techniques are capable
of optimizing structural SVM surrogates of arbitrary performance measures and we modified their implementations
to suitably adapt them to the performance measures considered here. The NEMSIS and SCAN implementations used
the hinge-based concave surrogate.

Non-surrogate NS Approaches: We also experimented with a variant of the NEMSIS and SCAN algorithms,
where the dual updates were computed using original count based TPR and TNR values, rather than surrogate reward
functions. We refer to this version as NEMSIS-NS. We also developed a similar version of SCAN called SCAN-NS
where the level estimation was performed using 0-1 TPR/TNR values. We empirically observed these non-surrogate
versions of the algorithms to offer superior and more stable performance than the surrogate versions.
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Figure 1: Experiments with NEMSIS on NegKLD: Plot of NegKLD as a function of training time.

3We will make code for our methods available publicly.
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Figure 2: Experiments on NEMSIS with BAKLD: Plots of quantification and classification performance as CWeight
is varied.
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Figure 3: A comparison of the KLD performance of various methods on data sets with varying class proportions (see
Table 4.2).
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Figure 4: A comparison of the KLD performance of various methods when distribution drift is introduced in the test
sets.
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Figure 5: Experiments with NEMSIS on Q-measure: Plot of Q-measure performance as a function of time.
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Figure 6: Experiments with SCAN on CQreward: Plot of CQreward performance as a function of time.

Parameters: All parameters including step sizes, upper bounds on reward functions, regularization parameters,
and projection radii were tuned from the values {10−4, 10−3, . . . , 103, 104} using a held-out portion of the training
set treated as a validation set. For step sizes, the base step length η0 was tuned from the above set and the step lengths
were set to ηt = η0/

√
t. In 1PMB, we mimic the parameter setting in [20], setting the buffer size to 500 and the

number of passes to 25.

Comparison on NegKLD: We first compare NEMSIS-NS and NEMSIS against the baselines 1PMB and SVMperf

on several data sets on the negative KLD measure. The results are presented in Figure 1. It is clear that the proposed
algorithms have comparable performance with significantly faster rate of convergence. Since SVMperf is a batch/off-
line method, it is important to clarify how it was compared against the other online methods. In this case, timers
were embedded inside the SVMperf code, and at regular intervals, the performance of the current model vector was
evaluated. It is clear that SVMperf is significantly slower and its behavior is quite erratic. The proposed methods are
often faster than 1PMB. On three of the four data sets NEMSIS-NS achieves a faster rate of convergence compared
to NEMSIS.

Comparison on BAKLD: We also used the BAKLD performance measure to evaluate the trade-off NEMSIS
offers between quantification and classification performance. The weighting parameter C in BAKLD (see Table 1),
denoted here by CWeight to avoid confusion, was varied from 0 to 1 across a fine grid; for each value, NEMSIS was
used to optimize BAKLD and its performance on BA and KLD were noted separately. In the results presented in
Figure 2 for three data sets, notice that there is a sweet spot where the two tasks, i.e. quantification and classification
simultaneously have good performance.

15



Comparison under varying class proportions: We next evaluated the robustness of the algorithms across data
sets with varying different class proportions (see Table 4.2 for the dataset label proportions). In Figure 3, we plot
positive KLD (smaller values are better) for the proposed and baseline methods for these diverse datasets. Again, it is
clear that the NEMSIS family of algorithms of has better KLD performance compared to the baselines, demonstrating
their versatility across a range of class distributions.

Comparison under varying drift: Next, we test the performance of the NEMSIS family of methods when there
are drifts in class proportions between the train and test sets. In each case, we retain the original class proportion in
the train set, and vary the class proportions in the test set, by suitably sampling from the original set of positive and
negative test instances.4 We have not included SVMperf in these experiments as it took an inordinately long time to
complete. As seen in Figure 4, on the Adult and Letter data set the NEMSIS family is fairly robust to small class drifts.
As expected, when the class proportions change by a large amount in the test set (over 100 percent), all algorithms
perform poorly.

Comparison on hybrid performance measures: Finally, we tested our methods in optimizing composite perfor-
mance measures that strike a more nuanced trade-off between quantification and classification performance. Figures
5 contains results for the NEMSIS methods while optimizing Q-measure (see Table 1), and Figure 6 contains results
for SCAN-NS while optimizing CQReward (see Table 2). The proposed methods are often significantly better than
the baseline 1PMB in terms of both accuracy and running time.

6 Conclusion
Quantification, the task of estimating class prevalence in problem settings subject to distribution drift, has emerged as
an important problem in machine learning and data mining. Our discussion justified the necessity to design algorithms
that exclusively solve the quantification task, with a special emphasis on performance measures such as the Kullback-
Leibler divergence that is considered a de facto standard in the literature.

In this paper we proposed a family of algorithms NEMSIS, CAN, SCAN, and their non-surrogate versions, to
address the online quantification problem. By abstracting NegKLD and other hybrid performance measures as nested
concave or pseudo concave functions we designed provably correct and efficient algorithms for optimizing these
performance measures in an online stochastic setting.

We validated our algorithms on several data sets under varying conditions, including class imbalance and distri-
bution drift. The proposed algorithms demonstrate the ability to jointly optimize both quantification and classification
tasks. To the best of our knowledge this is the first work which directly addresses the online quantification problem
and as such, opens up novel application areas.
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A Deriving Updates for NEMSIS

The derivation of the closed form updates for steps 15-17 in the NEMSIS algorithm (see Algorithm 1) starts with
the observation that in all the nested concave performance measures considered here, the outer and the inner concave
functions, namely Ψ, ζ1, ζ2 are concave, continuous, and differentiable. The logarithm function is non-differentiable
at 0 but the smoothing step (see Section refformulation) ensures that we will never approach 0 in our analyses or the
execution of the algorithm. The derivations hinge on the following basic result from convex analysis [33]:

Lemma 7. Let f be a closed, differentiable and concave function and f∗ be its concave Fenchel dual. Then ∇f∗ =
(∇f)−1 i.e. for any x ∈ X and u ∈ X ∗ (the space of all linear functionals over X ), we have ∇f∗(u) = x iff
∇f(x) = u.

Using this result, we show how to derive the updates for γ. The updates for β and α follow similarly. We have

γt = arg min
γ

{γ · qt −Ψ∗(γ)}

By first order optimality conditions, we get that γt can minimize the function h(γ) = γ · qt − Ψ∗(γ) only if qt =
∇Ψ∗(γt). Using Lemma 7, we get γt = ∇Ψ(qt). Using this technique, all the closed form expressions can be readily
derived.

For the derivations of α, β for NegKLD, and the derivation of β for Q-measure, the derivations follow when we
work with definitions of these performance measures with the TP and TN counts or cumulative surrogate reward
values, rather than the TPR and TNR values and the average surrogate rewards.

B Proof of Theorem 3
We begin by observing the following general lemma regarding the follow the leader algorithm for strongly convex
losses. This will be useful since steps 15-17 of Algorithm 1 are essentially executing follow the leader steps to decide
the best value for the dual variables.

Lemma 8. Suppose we have an action space X and execute the follow the leader algorithm on a sequence of loss
functions `t : X → R, each of which is α-strongly convex and L-Lipschitz, then we have

T∑
t=1

`t(xt)− inf
x∈X

T∑
t=1

`t(x) ≤ L2 log T

α
,

where xt+1 = arg min
x∈X

∑t
τ=1 `τ (x) are the FTL plays.

Proof. By the standard forward regret analysis, we get

T∑
t=1

`t(xt)− inf
x∈X

T∑
t=1

`t(x) ≤
T∑
t=1

`t(xt)−
T∑
t=1

`t(xt+1)

Now, by using the strong convexity of the loss functions, and the fact that the strong convexity property is additive, we
get

t−1∑
τ=1

`τ (xt+1) ≥
t−1∑
τ=1

`τ (xt) +
α(t− 1)

2
‖xt − xt+1‖22

t∑
τ=1

`τ (xt) ≥
t∑

τ=1

`τ (xt+1) +
αt

2
‖xt − xt+1‖22 ,
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which gives us
`t(xt)− `t(xt+1) ≥ α

2
(2t− 1) · ‖xt − xt+1‖22 .

However, we get `t(xt) − `t(xt+1) ≤ L · ‖xt − xt+1‖2 by invoking Lipschitz-ness of the loss functions. This gives
us

‖xt − xt+1‖2 ≤
2L

α(2t− 1)
.

This, upon applying Lipschitz-ness again, gives us

`t(xt)− `t(xt+1) ≤ 2L2

α(2t− 1)
.

Summing over all the time steps gives us the desired result.

For the rest of the proof, we shall use the shorthand notation that we used in Algorithm 1, i.e.

αt = (αt,1, αt,2), (the dual variables for ζ1)
βt = (βt,1, βt,2), (the dual variables for ζ2)
γt = (γt,1, γt,2), (the dual variables for Ψ)

We will also use additional notation

st = (r+(wt;xt, yt), r
−(wt;xt, yt)),

pt =
(
α>t st − ζ∗1 (αt),β

>
t st − ζ∗2 (βt)

)
,

`t(w) = (r+(w;xt, yt), r
−(w;xt, yt))

R(w) = (P (w), N(w))

Note that `t(wt) = st. We now define a quantity that we shall be analyzing to obtain the convergence bound

(A) =

T∑
t=1

(γ>t pt −Ψ∗(γt))

Now, since Ψ is βΨ-smooth and concave, by Theorem 2, we know that Ψ∗ is 1
β -strongly concave. However that

means that the loss function gt(γ) := γ>pt −Ψ∗(γ) is 1
β -strongly convex. Now Algorithm 1 (step 17) implements

γt = arg min
γ

{γ · qt −Ψ∗(γ)} ,

where qt = 1
t

∑t
τ=1 pτ (see steps 7, 10, 13 that update qt). Notice that this is identical to the FTL algorithm with

the losses gt(γ) = pt · γ − Ψ∗(γ) which are strongly convex, and can be shown to be (Br(Lζ1 + Lζ2))-Lipschitz,
neglecting universal constants. Thus, by an application of Lemma 8, we get, upto universal constants

(A) ≤ inf
γ

{
T∑
t=1

(γ>pt −Ψ∗(γ))

}
+ βΨ(Br(Lζ1 + Lζ2))2 log T

The same technique, along with the observation that steps 15 and 16 of Algorithm 1 also implement the FTL algorithm,
can be used to get the following results upto universal constants

T∑
t=1

(α>t st − ζ∗1 (αt)) ≤ inf
α

{
T∑
t=1

(α>st − ζ∗1 (α))

}
+ βζ1(BrLζ1)2 log T,
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and
T∑
t=1

(β>t st − ζ∗2 (βt)) ≤ inf
β

{
T∑
t=1

(β>st − ζ∗2 (β))

}
+ βζ2(BrLζ2)2 log T.

This gives us, for
∆1 = βΨ(Br(Lζ1 + Lζ2))2 + βζ1(BrLζ1)2 + βζ2(BrLζ2)2,

(A) ≤ inf
γ

{
T∑
t=1

(γ>pt −Ψ∗(γ))

}
+ ∆1 log T

= inf
γ

{
γ1

T∑
t=1

(α>t st − ζ∗1 (αt)) + γ2

T∑
t=1

(β>t st − ζ∗2 (βt))−Ψ∗(γ)

}
+ ∆1 log T

≤ inf
γ,α,β

{
γ1

T∑
t=1

(α>st − ζ∗1 (α)) + γ2

T∑
t=1

(β>st − ζ∗2 (β))−Ψ∗(γ)

}
+ ∆1 log T

Now, because of the stochastic nature of the samples, we have

E
r
st| {(xτ , yτ )}t−1

τ=1

z
= E

r
`t(wt)| {(xτ , yτ )}t−1

τ=1

z
= R(wt)

(A)

T
≤ inf

γ

{
γ1 inf

α

{
α>

(
1

T

T∑
t=1

R(wt)

)
− ζ∗1 (α)

}

+

{
γ2 inf

β

{
β>

(
1

T

T∑
t=1

R(wt)

)
− ζ∗2 (β)

}
−Ψ∗(γ)

}

+
∆1

T

(
log T + log

1

δ

)
= inf

γ

(
γ1ζ1

(
1

T

T∑
t=1

R(wt)

)
+ γ2ζ2

(
1

T

T∑
t=1

R(wt)

)
−Ψ∗(γ)

)

+
∆1

T

(
log T + log

1

δ

)
≤ inf

γ
(γ1ζ1(R(w)) + γ2ζ2(R(w))−Ψ∗(γ)) +

∆1 log T
δ

T

= Ψ(ζ1(R(w)), ζ2(R(w))) +
∆1 log T

δ

T
,

where the second last step follows from the Jensen’s inequality, the concavity of the functions P (w) and N(w), and
the assumption that ζ1 and ζ2 are increasing functions of both their arguments. Thus, we have, with probability at least
1− δ,

(A) ≤ T ·Ψ(ζ1(R(w)), ζ2(R(w))) + ∆1 log
T

δ

Note that this is a much stronger bound than what Narasimhan et al [25] obtain for their gradient descent based dual
updates. This, in some sense, establishes the superiority of the follow-the-leader type algorithms used by NEMSIS.

ht(w) = γt,1(α
>
t `t(w)− ζ∗1 (αt)) + γt,2(β

>
t `t(w)− ζ∗2 (βt))−Ψ

∗
(γt)

Since the functions ht(·) are concave and (LΨLr(Lζ1 + Lζ2))-Lipschitz (due to assumptions on the smoothness
and values of the reward functions), the standard regret analysis for online gradient ascent (for example [35]) gives us
the following bound on (A), ignoring universal constants
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(A) =

T∑
t=1

ht(wt)

=

T∑
t=1

γt,1(α>t `t(wt)− ζ∗1 (αt)) + γt,2(β>t `t(wt)− ζ∗2 (βt))−Ψ∗(γt)

≥
T∑
t=1

γt,1(α>t `t(w
∗)− ζ∗1 (αt)) + γt,2(β>t `t(w

∗)− ζ∗2 (βt))

−Ψ∗(γt)−∆2

√
T ,

where ∆2 = (LΨLr(Lζ1 + Lζ2)). Note that the above results hold since we used step lengths ηt = Θ(1/
√
t). To

achieve the above bounds precisely, ηt will have to be tuned to the Lipschitz constant of the functions ht(·) and for sake
of simplicity we assume that the step lengths are indeed tuned so. We also assume, to get the above result , without
loss of generality of course, that the model spaceW is the unit norm ball in Rd. Applying a standard online-to-batch
conversion bound (for example [5]), then gives us, with probability at least 1− δ,

(A)

T
≥ 1

T

T∑
t=1

γt,1(α>t R(w∗)− ζ∗1 (αt))︸ ︷︷ ︸
(B)

+
1

T

T∑
t=1

γt,2(β>t R(w∗)− ζ∗2 (βt))︸ ︷︷ ︸
(C)

− 1

T

T∑
t=1

Ψ∗(γt)−∆3

log 1
δ√
T
,

where ∆3 = ∆2 + LΨBr(Lζ1 + Lζ2). Analyzing the expression (B) gives us

(B) =
1

T

T∑
t=1

γt,1(α>t R(w∗)− ζ∗1 (αt))

=

∑T
t=1 γt,1
T

( T∑
t=1

γt,1αt∑T
t=1 γt,1

)>
R(w∗)−

T∑
t=1

γt,1∑T
t=1 γt,1

ζ∗1 (αt)


≥
∑T
t=1 γt,1
T

( T∑
t=1

γt,1αt∑T
t=1 γt,1

)>
R(w∗)− ζ∗1

(
T∑
t=1

γt,1αt∑T
t=1 γt,1

)
≥
∑T
t=1 γt,1
T

min
α

{
α>R(w∗)− ζ∗1 (α)

}
= γ̄1 min

α

{
α>R(w∗)− ζ∗1 (α)

}
= γ̄1ζ1(R(w∗))

A similar analysis for (C) follows and we get, ignoring universal constants,

(A)

T
≥ γ̄1ζ1(R(w∗)) + γ̄2ζ2(R(w∗))− 1

T

T∑
t=1

Ψ∗(γt)−∆3

log 1
δ√
T

≥ γ̄1ζ1(R(w∗)) + γ̄2ζ2(R(w∗))−Ψ∗(γ̄)−∆3

log 1
δ√
T

≥ min
γ
{γ1ζ1(R(w∗)) + γ1ζ2(R(w∗))−Ψ∗(γ)} −∆3

log 1
δ√
T
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= Ψ(ζ1(R(w∗)), ζ2(R(w∗)))−∆3

log 1
δ√
T

Thus, we have with probability at least 1− δ,

(A) ≥ T ·Ψ(ζ1(R(w∗)), ζ2(R(w∗)))−∆3log
1

δ

√
T

Combining the upper and lower bounds on (A) finishes the proof since ∆3log 1
δ

√
T overwhelms the term ∆1 log T

δ .

C Proof of Theorem 5
We will prove the result by proving a sequence of claims. The first claim ensures that the distance to the optimum
performance value is bounded by the performance value we obtain in terms of the valuation function at any step. For
notational simplicity, we will use the shorthand P(w) := P(Pquant,Pclass)(w) .

Claim 9. P∗ := supw∈W P(w) be the optimal performance level. Also, define et = V (wt+1, vt). Then, for any t,
we have

P∗ − P(wt) ≤
et
m

Proof. We will prove the result by contradiction. Suppose P∗ > P(wt) + et
m . Then there must exist some w̃ ∈ W

such that
P(w̃) =

et
m

+ P(wt) + e′ =
et
m

+ vt + e′ =: v′,

where e′ > 0. Note that the above uses the fact that we set vt = P(wt). Then we have

V (w̃, vt)− et = Pclass(w̃)− vt · Pquant(w̃)− et.

Now since P(w̃) = v′, we have Pclass(w̃)− v′ · Pquant(w̃) = 0 which gives us

V (w̃, vt)− et =
( et
m

+ e′
)
Pquant(w̃)− et ≥

( et
m

+ e′
)
m− et > 0.

But this contradicts the fact that maxw∈W V (w, vt) = et which is ensured by step 4 of Algorithm 2. This completes
the proof.

The second claim then establishes that in case we do get a large performance value in terms of the valuation
function at any time step, the next iterate will have a large leap in performance in terms of the original performance
function P .

Claim 10. For any time instant t we have

P(wt+1) ≥ P(wt) +
et
M

Proof. By our definition, we have V (wt+1, vt) = et. This gives us

Pclass(wt+1)

Pquant(wt+1)
−
(
vt +

et
M

)
≥ Pclass(wt+1)

Pquant(wt+1)
−
(
vt +

et
Pquant(wt+1)

)
=
vt · Pquant(wt+1)

Pquant(wt+1)
− vt = 0,

which proves the result.
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We are now ready to establish the convergence proof. Let ∆t = P∗ − P(wt). Then we have, by Claim 9

et ≥ m ·∆t,

and also
P(wt+1) ≥ P(wt) +

et
M
,

by Claim 10. Subtracting both sides of the above equation from P∗ gives us

∆t+1 = ∆t −
et
M

≤ ∆t −
m

M
·∆t =

(
1− m

M

)
·∆t,

which concludes the convergence proof.

D Proof of Theorem 6
To prove this theorem, we will first show that the CAN algorithm is robust to imprecise updates. More precisely, we
will assume that Algorithm 2 only ensures that in step 4 we have

V (wt+1, vt) = max
w∈W

V (w, vt)− εt,

where εt > 0 and step 5 only ensures that
vt = P(wt) + δt,

where δt may be positive or negative. For this section, we will redefine

et = max
w∈W

V (w, vt)

since we can no longer assume that V (wt+1, vt) = et. Note that if vt is an unrealizable value, i.e. for no predictor
w ∈ W is P(w) ≥ vt, then we have et < 0. Having this we establish the following results:

Lemma 11. Given the previous assumptions on the imprecise execution of Algorithm 2, the following is true

1. If δt ≤ 0 then et ≥ 0

2. If δt > 0 then et ≥ −δt ·M

3. We have P∗ < vt iff et < 0

4. If et ≥ 0 then et ≥ m(P∗ − vt)

5. If et < 0 then et ≥M(P∗ − vt)

6. If V (w, v) = e for e ≥ 0 then P(w) ≥ v + e
M

7. If V (w, v) = e for e < 0 then P(w) ≥ v + e
m

Proof. We prove the parts separately below

1. Since δt < 0, there exists some w ∈ W such that P(w) > vt. The result then follows.

2. If vt = P(wt) + δt then V (wt, vt) ≥ −δt ·M .The result then follows.

3. Had et ≥ 0 been the case, we would have had, for some w ∈ W , V (w, vt) ≥ 0 which would have implied
P(w) ≥ vt which contradicts P∗ < vt. For the other direction, suppose P∗ = P(w∗) = vt + e′ with e′ > 0.
Then we have et = V (w∗, vt) > 0 which contradicts et < 0.
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4. Observe that the proof of Claim 9 suffices, by simply replacing P(wt) with vt in the statement.

5. Assume the contrapositive that for some w ∈ W , we have P(w) = vt + et
M + e′ where e′ > 0. We can then

show that V (w, vt) =
(
et
M + e′

)
Pquant(w) ≥ et + e′ · Pquant(w) > et which contradicts the definition of et.

Note that since et < 0, we have et
M ≥

et
Pquant(w) and we have Pquant(w) ≥ m > 0.

6. Observe that the proof of Claim 10 suffices, by simply replacing P(wt) with vt in the statement.

7. We have Pclass(w) − v · Pquant(w) = e. Dividing throughout by Pquant(w) > 0 and using e
Pquant(w) ≥

e
m since

e < 0 gives us the result.

This finishes the proofs.

Using these results, we can now make the following claim on the progress made by CAN with imprecise updates.

Lemma 12. Even if CAN is executed with noisy updates, at any time step t, we have

∆t+1 ≤
(

1− m

M

)
∆t +

M

m
· |δt|+

εt
m
.

Proof. We analyze time steps when δt ≤ 0 separately from time steps when δt < 0.

Case 1: δt ≤ 0 In these time steps, the method underestimates the performance of the current predictor but gives a
legal i.e. realizable value of vt. We first deduce that for these time steps, using Lemma 11 part 1, we have et ≥ 0 and
then using part 4, we have et ≥ m(P∗ − vt). This combined with the identity P∗ − vt = ∆t − δt, gives us

et ≥ m(∆t − δt)

Now we have, by definition, V (wt+1, vt) = et − εt (note that both et, ε ≥ 0 in this case). The next steps depend on
whether this quantity is positive or negative. If εt ≤ et, we apply Lemma 11 part 6 to get

P(wt+1) ≥ vt +
et − εt
M

,

which gives us upon using P∗ − vt = ∆t − δt and et ≥ m(∆t − δt),

∆t+1 ≤
(

1− m

M

)
∆t −

(
1− m

M

)
δt +

εt
M

Otherwise if εt > et then we have actually made negative progress at this time step since V (wt+1, vt) < 0. To
safeguard us against how much we go back in terms of progress, we us Lemma 11 part 7 to guarantee

P(wt+1) ≥ vt +
et − εt
m

,

which gives us upon using P∗ − vt = ∆t − δt and et ≥ m(∆t − δt),

∆t+1 ≤
εt
m
,

Note however, that we are bound by εt > et in the above statement. We now move on to analyze the second case.

Case 2: δt > 0 In these time steps, the method is overestimating the performance of the current predictor and runs
a risk of giving a value of vt that is unrealizable. We cannot hope to make much progress in these time steps. The
following analysis simply safeguards us against too much deterioration. There are two subcases we explore here: first
we look at the case where vt ≤ P∗ i.e. vt is still a legal, realizable performance value. In this case we continue to
have et ≥ 0 and the analysis of the previous case (i.e. δt ≤ 0) continues to apply.
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However, if vt > P∗, we are setting an unrealizable value of vt. Using Lemma 11 part 3 gives us et < 0 which,
upon using part 5 of the lemma gives us

et ≥M(P∗ − vt).

In this case, we have V (wt+1, vt) = et − εt < 0 since et < 0 and εt > 0. Thus, using Lemma 11 part 7 gives us

P(wt+1) ≥ vt +
et − εt
m

which upon manipulation, as before, gives us

∆t+1 ≤
(

1− M

m

)
∆t +

(
M

m
− 1

)
δt +

εt
m
≤
(
M

m
− 1

)
δt +

εt
m
,

where the last step uses the fact that ∆t ≥ 0 and M ≥ m. Putting all these cases together and using the fact that the
quantities ∆t, εt, |δt| are always positive gives us

∆t+1 ≤
(

1− m

M

)
∆t +

(
M2 −m2

mM

)
|δt|+

εt
m

≤
(

1− m

M

)
∆t +

M

m
· |δt|+

εt
m
,

which finishes the proof.

From hereon simple manipulations similar to those used to analyze the STAMP algorithm in [25] can be used,
along with the guarantees provided by Theorem 3 for the NEMSIS analysis to finish the proof of the result. We
basically have to use the fact that the NEMSIS invocations in SCAN (Algorithm 3 line 8), as well as the performance
estimation steps (Algorithm 3 lines 14-19) can be seen as executing noisy updates for the original CAN algorithm.
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