
ar
X

iv
:1

00
5.

08
09

v1
 [

cs
.D

S]
 5

 M
ay

 2
01

0

On Estimating the First Frequency Moment of Data

Streams

Sumit Ganguly

IIT Kanpur

India

Purushottam Kar

IIT Kanpur

India

May 6, 2010

Abstract

Estimating the first moment of a data stream defined as F1 =
∑

i∈{1,2,...,n}|fi| to within

1 ± ǫ-relative error with high probability is a basic and influential problem in data stream

processing. A tight space bound of O(ǫ−2 log(mM)) is known from the work of [9]. However,

all known algorithms for this problem require per-update stream processing time of Ω(ǫ−2),

with the only exception being the algorithm of [6] that requires per-update processing time of

O(log2(mM)(logn)) albeit with sub-optimal space O(ǫ−3 log2(mM)). 1

In this paper, we present an algorithm for estimating F1 that achieves near-optimality in both

space and update processing time. The space requirement is O(ǫ−2(log n+ (log ǫ−1) log(mM)))

and the per-update processing time is O((log n) log(ǫ−1)).

1 Introduction

The data stream model serves as an abstraction for a variety of monitoring applications, including,

data networks, sensor networks, financial data, etc.. In this model, an input stream σ is abstracted

as a potentially infinite sequence of records of the form (pos, i, v), where, i ∈ {1, 2, . . . , n} = [n] and

v ∈ Z is the change to the frequency fi of item i. The pos attribute is simply the sequence number

of the record. Each input record (pos, i, v) changes fi ← fi + v. Thus, fi =
∑

(pos,i,v) v, that is, fi
is the sum of the changes made to the frequency of i since the inception of the stream. The vector

f = [f1, f2, . . . , fn]
T is called the frequency vector of the stream.

The pth frequency moment is defined as Fp =
∑

i∈[n]|fi|p. The problem of estimating Fp,

and in particular, the estimation of F0, F1 and F2, have been fundamental to the development of

data stream processing techniques and lower bounds. In this paper, we consider the problem of

estimating F1 to within approximation factor of 1± ǫ and with probability at least some constant

c > 0.5, where the probability is taken over the internal random bits used by the algorithm. We

will say that a randomized algorithm computes an ǫ-approximation to a real valued quantity L,

provided, it returns L̂ such that |L̂ − L| < ǫL, with probability that is at least some absolute

constant strictly larger than 1/2. Since prior work [1] shows that any deterministic algorithm

for 0.1-approximation of Fp, p ≥ 0 requires Ω(n) space, we consider the problem of randomized

ǫ-approximation of F1.

1At the IIT Kanpur Workshop on Algorithms for Massive Data Sets, Dec 18-20 2009, Jelani Nelson announced

the discovery of an algorithm (with David Woodruff) for estimating F1 that uses space O(ǫ−2 logO(1)(mM)) space

and time O(logO(1)(mM)). Since their work is unpublished, we are unable to make a comparison.

1

http://arxiv.org/abs/1005.0809v1

We assume that items come from the domain [n] = {1, 2, . . . , n}, each stream update (pos, i, v)

has |v| ≤M and the size of the stream is m i.e. the number of records appearing in the stream. [1]

presents a seminal randomized sketch technique for ǫ-approximation of F2 in the data streaming

model using space O(ǫ−2 log(mM)) bits. Estimation of F0 (i.e., the number of i ∈ [n] s.t. |fi| 6= 0)

was first considered by Flajolet and Martin in [4] and improved in [1, 7, 2]. Since the techniques for

estimating Fp for p > 2 are substantially different from those used for estimating Fp for 0 < p ≤ 2,

we do not review this line of work.

1.1 Review: Previous work on estimating small moments

We now review existing work on estimating Fp, for p ∈ (0, 2]. In terms of lower bounds for

estimating Fp, Woodruff [13] presents an Ω(ǫ−2) space lower bound for the problem of estimating

Fp, for all p ≥ 0. This is improved to Ω(ǫ−2 log(ǫ2M)) in [9].

The notation X ∼ D means that the random variable X has probability distribution D. The

term i.i.d. stands for independent and identically distributed family of random variables.

Indyk’s estimator. The use of p-stable sketches was pioneered by Indyk [8] for estimating Fp

for 0 < p ≤ 2. A p-stable sketch is a linear combination X =
∑n

i=1 aisi where the si’s are drawn

independently from the p-stable distribution St(p, 1) with scale factor 1. By property of stable

distributions, X ∼ St
(

p, (Fp(a))
1/p

)

. For estimating F1, keep t = O(1
ǫ2
) independent 1-stable (i.e.,

Cauchy) sketches X1,X2, . . . ,Xt and let F̂1 = (4/π) · mediantr=1|Xr|q. Then, F̂1 ∈ (1 ± ǫ)F1 with

probability 15/16. Further, Indyk shows that for stable distributions it suffices to, (a) truncate the

support of the distribution St(p, 1) beyond (mM)O(1), and, (b) consider the approximation to the

continuous St(p, 1) distribution by discretizing it using into a grid with interval size (mM/ǫ)−O(1).

To reduce the number of random bits required to maintain independent sketches, Nisan’s

pseudo-random generator (PRG) [11] is used for fooling space S bounded randomized machine

computation–here S = O(ǫ−2 log(ǫ−1mM)). We can assume that the stream is ordered since the

sketches are linear and therefore their values are independent of the order of item arrivals. For

each element i, the stable random variables si(u) for u = 1, 2, . . . , t are computed from the ith

chunk of S random bits obtained from Nisan’s generator that stretches a seed of length S log n to

nS bits. The time taken to obtain the ith random bit chunk is O(ǫ−2 log(ǫ−1)(log n)) simple field

operations on a field of size O(mMǫ−1). Kane, Nelson and Woodruff [9] observe that a seed length

of O(log(mM
ǫ) log(n)) suffices.

Li’s estimator. Li [10] proposes several new estimators for the estimation of Fp for p ∈ (0, 2),

most notably the geometric means estimator. These estimators are defined on p-stable sketches

Xu =
∑

i∈[n] fisi(u), u = 1, 2, . . . , t. The geometric means estimator is defined as

Ŷp,t = C(p, p/t)−t
t

∏

i=1

|Xi|p/t.

where

C(p, q) =
2

π
Γ
(

1− q

p

)

Γ(q) sin
(πq

2

)

, − 1 < q < p .

Li [10] proves that (i) the estimator is unbiased, that is, E
[

Ŷp,t

]

= Fp, and, (ii) |Ŷp,t − Fp| < ǫFp

with probability 1/8 provided, t = Ω(ǫ−2).

2

Other work. Kane, Nelson and Woodruff [9] present algorithms for estimating Fp for p ∈ (0, 2)

that use space that is tight with respect to the lower bounds. The update processing time is is

O
(

ǫ−2(log ǫ−1)2/(log log ǫ−1)
)

simple operations on fields of size (mM)O(1).

An estimator for Fp based on the Hss technique was presented in [6] for estimating Fp. Though

it uses sub-optimal space O(ǫ−2−p(log(mM)2(log n))), it has the best update processing time so

far, namely, O(log2(mM)).

1.2 Contributions

We present a novel algorithm for estimating F1 that is nearly optimal with respect to both space

and update-processing time. So far, all known algorithms, except the Hss based technique [6] have

a per-update processing time of Ω(ǫ−2). The Hss technique however is sub-optimal in space and

requires space O(ǫ−3(log(mM))2(log n)) for estimating F1. In this paper, we present an algorithm

for estimating F1 whose resource usage is nearly optimal in terms of both space and time. The

space requirement of our algorithm is O
((

ǫ−2(log(nǫ−1))
)

log(mM) + (log n)(log ǫ−1) log(mM)
))

.

The time for processing each stream update is O
(

(log n)(log ǫ−1)
)

simple operations on O(log(mM))

bit numbers. 2

2 Algorithm for estimating F1

In this section, we present an algorithm for estimating Fp that has fast update time. We first

describe the data structure and then the estimator.

Notation. F res
p (k) is defined as follows. Let |fs1 | ≥ |fs2 | ≥ . . . ≥ |fsn |. Then F res

p (k) =
∑n

j=k+1|fsj |p.
Let ε be the user-supplied accuracy parameter and set ǫ = ε/10.

Stablesketch and Countsketch structure. The Stablesketch structure is a hash table

U having C = 64B buckets numbered from 1 to 64B, where, B = 1/ǫ2 and having a hash function

h : [n] → [C] that is chosen uniformly at random from a hash family H mapping [n] → [C]. The

degree of independence required of the hash family will be determined later; for now, it is assumed

to be fully independent.

For b ∈ [C] each bucket U [b] of the tables maintains three linear p-stable sketches denoted by

Xb,1, Xb,2 and Xb,3 as follows.

Xb,r =
n
∑

i=1

fisb,r(i), b ∈ [C], r ∈ {1, 2, 3} .

For each value of b and r, the random variables {sb,r(i)}i∈[n] are independent (this independence

will be relaxed later). For each value of b, the seeds for the random variables sb,r(i) and sb,r′(i
′),

for r 6= r′ are three-wise independent. Across buckets in the same table, the stable sketches need

only to be pair-wise independent, that is the seeds for the random variables sb,r(i) and sb′,r′(i
′), for

b 6= b′ are pair-wise independent. The sketches are updated corresponding to each update (i, v) as

follows.

Xj,h(i),r := Xj,h(i),r + v · sj,b,r(i), r = 1, 2, 3 .

We keep a Countsketch structure [3] consisting of g hash tables T1, T2, . . . , Tg, where g =

O
(

log 1
ǫ2

)

and each table consists of C buckets. Later, the degree of independence is determined

2See footnote on Page 1

3

and reduced. Heavy hitters are identified using (another) Countsketch structure, denoted as

HH
C
2 , that can return an estimate f̂i of the frequency fi such that |f̂i − fi| ≤ 8

(F res
2 (C/8)

C

)1/2
, with

constant probability of success 127/128. We let this Countsketch structure to have O(log n)

independent hash tables and functions. The Countsketch data structures together use a total

space of O(ǫ−2(log n+log(ǫ−1))) bits. The time taken to update this structure is O(log n+log ǫ−1)

.

2.1 Estimator

Estimating F res
2 . The algorithm of [5] is applied to the HH

C
2 data structure to obtain estimates for

F res
2 (ǫB) and F res

2 (B) that are accurate to factors of 1± 1/128 with prob. at least 127/128.

Heavy and light items. After estimating F res
2 (B), we estimate the frequencies of all heavy-

hitters. Items are classified according to their estimated frequencies into two categories as follows.

(i) heavy: f̂2
i ≥

4F̂ res
2 (4B)

B
and (ii) light: f̂i

2
<

4F̂ res
2 (4B)

B
. (1)

The set of heavy and light items are denoted respectively as H and L. The algorithm obtains

separate estimates for the contribution to Fp from the heavy items and the light items, and adds

them to obtain the final estimate. That is,

F̂p = F̂H
p + F̂L

p .

Notation. For any set R ⊂ [n], let Fp(R) denote
∑

i∈R|fi|p.
The true contributions of the items in H and L are as follows: FH

p = Fp(H), FL
p = Fp(L) .

Heavy estimator. We identify the set H of heavy items as those elements whose estimated

frequencies satisfy (1)(i). Say that the event NoHvyColl(i) holds if there is some table index

j ∈ [g] such that no other heavy item maps to the same bucket as hj(i). That is,

NoHvyColl(i) ≡ ∃j ∈ [g] s.t. ∀k ∈ H\{i}, hj(i) 6= hj(k), .

If NoHvyColl(i) holds, then, let θ(i) denote the index j ∈ [g] such that i is isolated from all other

heavy items in its bucket for table Tj.

For i ∈ H we obtain an estimate as follows. If NoHvyColl(i) holds, then, θ(i) exists and

let b = hθ(i)(i) be the bucket to which i maps to under hθ(i). Also, let ξj be the AMS 4-wise

independent hash function mapping items to {1,−1} corresponding to table Tj. The estimate is

obtained as

Yi =

{

Tj [b] · sgn(f̂i) · ξj(i) if NoHvyColl(i) holds, where, j = θ(i), b = hj(i)

0 otherwise.
(2)

The heavy estimate is: F̂H
1 =

∑

i∈H Yi.

Light Estimator. For bucket index b ∈ [C] say that the event NoCollsion(b) holds if no heavy

item maps to bucket b in table U . That is

NoCollsion(b) ≡ ∀k ∈ H,h(k) 6= b .

4

The estimate returned is

F̂L
p = CL

∑

b∈B

(

C(p, p/3)
)−3|Xb,1|p/3|Xj,b,2|p/3|Xj,b,3|p/3

where, CL =1/Pr [NoCollsion(b)]= (1− 1/C)−|H|.

The final estimator is the sum of heavy and light estimators, namely, F̂1 = F̂H
1 + F̂L

1 .

3 Analysis

Throughout this section, we will assume that ǫ ≤ 1/8, B = ǫ−2 and C = 64B.

Claim 1 |H| ≤ 5.1B with probability 127/128.

Proof See Appendix A.

The following lemma is standard from arguments in tail bounds of frequency powers.

Lemma 3.1 Suppose |fs1 | ≥ |fs2 | ≥ . . . ≥ |fsn |. Then, for any 0 < p ≤ q,

n
∑

j=B+1

|fsi |q ≤
1

Bq/p−1

(n
∑

j=1

|fsi |p
)q/p

. (3)

In particular, for q = 2p,
∑n

j=B+1|fsi |2p ≤ 1
B

(

∑n
j=1|fsi |p

)2

.

Proof See Appendix A.

3.1 Analysis of Light Estimator

The light estimator F̂L
p is analyzed in the general setting when p ∈ (0, 2).

Let B be the set of buckets in table U such that no element of H maps to any of these buckets,

that is, B = {b ∈ [C] | ∀i ∈ H,hj(i) 6= b}.

Lemma 3.2 E

[

F̂L
p

]

= FL
p .

Proof

Eh,s

[

F̂L
p

]

= CLEh

[

∑

b∈ B

∑

h(i)=b

|fi|p | h
]

= CL

∑

i 6∈H

|fi|p · Pr [hj(i) ∈ B] =
∑

i∈L

|fi|p

Define

Kp = (C(p, p/3))−6(C(p, 2p/3))3 where, C(p, q) =
2

π
Γ
(

1− q

p

)

Γ(q) sin
(πq

2

)

.

As shown by Li [10], Kp ≤ (π2/36)(p2 + 2) + 1 ≤ 2.5.

Random variables such as FL
p are functions of two independent sets of random bits, namely,

the hash function h and the bits used by the stable variables denoted as s. To explicitly denote

this dependence, we will denote by notations such as Varh,s

[

FL
p

]

and Eh,s(F
L
p) the variance and

expectation of FL
p (or any suitable random variable) over the random seeds of h and s. Then

notation Es[F
L
p] is used to emphasize that the expectation is taken over the random bits of s, by

holding the random bits of h fixed. In effect this is the same as E[FL
p | h]. Therefore, E

[

FL
p

]

=

Eh

[

Es

[

FL
p

]]

, since the random bits used by h and s are independent.

5

Lemma 3.3 Varh,s

[

FL
p

]

≤ (KpCL − 1)
∑

i∈L|fi|2p +
KpCL

C

(
∑

i∈L|fi|p
)2

.

Proof of Lemma 3.3 Denote the estimate of bucket b ∈ B obtained from the light estimator to

be Yb = CL

(

C(p, p/3)
)−3|Xb,1|p/3|Xb,2|p/3|Xb,3|p/3. Then,

Y = F̂L

p =
∑

b∈ B

Yb =
∑

b∈ B

CL

(

C(p, p/3)
)−3|Xb,1|p/3|Xb,2|p/3|Xb,3|p/3 . (4)

Let CL be the probability that an item i ∈ L does not conflict with any item in H under the hash

function hj . Under full independence of h, CL = (1− 1/C)|H|.

We have,

Eh,s

[

Y 2
]

=
∑

b∈B

Eh,s

[

Y 2
b

]

+
∑

b,b′∈B,b6=b′

Eh,s

[

YbY
′
b

]

. (5)

Let b ∈ B and Kp = (C(p, p/3))−6(C(p, 2p/3))3.

Eh

[

Es

[

∑

b∈B(h)

Y 2
b | h

]]

= KpC
2
LEh

[

∑

b∈B(h)

(

∑

h(i)=b

|fi|p
)2
∣

∣

∣

∣

h

]

= KpC
2
LEh

[

∑

h(i)=b

(

|fi|2p +
∑

i 6=i′

h(i)=h(i′)=b

|fifi′ |p
)

∣

∣h

]

= KpC
2
L

∑

i∈L

|fi|2p · Pr [NoCollsion(i)]

+KpC
2
L

∑

i 6=i′,i,i′∈L

|fifi′ |p · Pr
[

h(i) = h(i′),NoCollsion(i)
]

= KpCL

∑

i∈L

|fi|2p +
KpCL

C

(

∑

i∈L

|fi|p
)2

(6)

Further, for b 6= b′, and b, b′ ∈ B,

Eh,s

[

∑

b6=b′

YbYb′

]

= Eh

[

Es

[

∑

b6=b′

YbYb′ |h
]]

= Eh [Es [Yb|h]Es [Yb′ |h]] , since, b 6= b′ and full indep. of h.

= C2
L

∑

i 6=i′

|fi|p|fi|pPr
[

h(i) 6= h(i′),NoCollsion(i),NoCollsion(j)
]

≤
(

∑

i∈L

|fi|p
)2 −

∑

i∈L

|fi|2p (7)

since Pr [h(i) 6= h(i′),NoCollsion(i),NoCollsion(j)] = (1− 1/C)(1 − 2/C)H ≤ (1− 1/C)C2
L.

Substituting (6) and (7) into (5), we get

Varh,s [Y] = Eh,s

[

Y 2
]

−
(

∑

i∈L

|fi|p
)2 ≤ (KpCL − 1)

∑

i∈L

|fi|2p +
KpCL

C

(

∑

i∈L

|fi|p
)2

.

Lemma 3.4
∣

∣F̂L
p − FL

p

∣

∣ ≤ 6(1.75/81−p/2 + 5/16)1/2ǫFp with prob. 35/36 .

Proof

∑

i∈L

|fi|2p ≤
(

max
i∈L
|fi|

)p
∑

i∈L

|fi|p ≤
(

F res
2 (8B)

B

)p/2

Fp ≤
1

Bp/2(8B)1−p/2
F 2
p =

ǫ2F 2
p

81−p/2
(8)

6

since, B = 1/ǫ2. Further, Kp ≤ (π2/36)(p2 + 2) + 1 ≤ 2.5 and CL ≤ (1 − |H|/C)−1 ≤ (1 −
5.1B/64B)−1 ≤ 1.1 by Claim 1. Therefore, by Lemma 3.3 and (8), we have

Var
[

F̂L
p

]

≤ (KpCL − 1)
∑

i∈L

|fi|2p +
KpCL

C

(

∑

i∈L

|fi|p
)2 ≤

(

1.75/81−p/2 + 2.75/64
)

ǫ2F 2
p

By Chebychev’s inequality,

Pr

[

∣

∣F̂L
p − FL

p

]∣

∣ > 6
(

1.75/81−p/2 + 2.75/64
)1/2

ǫFp

]

≤ 1

36
.

3.2 Analysis of Heavy Estimator

In this section, we analyze the heavy estimator for estimating FH
1 .

For any set K ⊂ [n], let F res
2 (K) = F2 − F2(K) =

∑

i 6∈K |fi|2. The following lemma is from [5].

Lemma 3.5 Let K be the items that are top-k with respect to estimated absolute frequencies using

the Countsketch algorithm with table height 64B. Let |K| = k and suppose Top-k(k) be the

indices of the top-k items of f w.r.t. absolute frequencies. If k ≤ 8B, then, F res
2 (k) ≤ F res

2 (K) ≤
F res
2 (k)

(

1 + 2
√
k + k

)

.

Proof of Lemma 3.5.

F res
2 (K) =

∑

i 6∈K

|fi|2 =
∑

i 6∈(Top-k(k)∪K)

|fi|2 +
∑

i∈Top-k(k),i 6∈K

f2
i

=
∑

i 6∈(Top-k(k)∪K)

|fi|2 +
∑

i∈Top-k(k)\K

f2
i

≤
∑

i 6∈(Top-k(k)∪K)

|fi|2 +
∑

i∈K\Top-k(k)

(

fi +∆
)2

≤
∑

i 6∈(Top-k(k)∪K)

|fi|2 +
∑

i∈K\Top-k(k)

f2
i + 2∆

∑

i∈K\Top-k(k)

|fi|+ |K\Top-k(k)|∆2

= F res
2 (k) + 2∆|K\Top-k(k)|1/2

(

∑

i∈K\Top-k(k)

|fi|2
)1/2

+
|K\Top-k(k)|F res

2 (8B)

B

≤ F res
2 (k) + 2

(

|K\Top-k(k)|F res
2 (8B))1/2

B

(

F res
2 (k)

)1/2
+ kF res

2 (8B)

≤ F res
2 (k) + 2

√
kF res

2 (k) + kF res
2 (k)

For a heavy item i ∈ H, let NoHvyColl(i) be the event that i does not collide with any of

the other heavy items in one of the buckets in the Countsketch structure tables T1, . . . , Tg, that

is,

NoHvyColl(i) ≡ ∃r ∈ [g] s.t. ∀k ∈ H\{i}, hr(k) 6= hr(i)

The event NoHvyColl(H) is said to occur if NoHvyColl(i) occurs for each i ∈ H. That is,

NoHvyColl(H) ≡ ∀i ∈ H,NoHvyColl(i) holds.

Assuming full independence, Pr [NoHvyColl(H)] ≥ 1−|H|
(

1−
(

1− 1
C

)|H|−1)g
. Since, |H| ≤ 5.1B,

C = 64B, we have Pr [NoHvyColl(i)] ≥ 31
32 if g ≥ log 32|H|

log(2(|H|−1)/C) . Since |H| ≤ 5.1B, it suffices

to let g = 2 + log 5.1
ǫ2
.

7

If NoHvyColl(i) holds then let j = θ(i) be the index of (some) r ∈ [g] such that i has no

collision with any item of H (except itself) under the hash function hj . Let T = Tθ(i), h = hθ(i)
and ξ = ξθ(i). Then, let

Yi = CH · Tθ(i)[hθ(i)(i)] · sgn(fi) · ξθ(i)(i) .

Although we do not know sgn(fi) we can use sgn(f̂i) instead which is equal to it with very high

probability.

Lemma 3.6 For i ∈ H, E [Yi] = |fi|. Thus, E
[
∑

i∈H Yi

]

= FH
1 .

Proof

Eξ [Yi | NoHvyColl(H)] = E
[

fi · sgn(i) · ξ(i)2 +
∑

h(k)=h(i),k 6=i

fkξ(j)ξ(i)sgn(i)
]

= fi · sgn(i) = |fi| .

Lemma 3.7 Let i, k ∈ H, i 6= k. Then, E [YiYk | NoHvyColl(H)] = |fi||fk|.

Proof Let i 6= j and consider YiYj. Assume that NoHvyColl(H) holds. Then,

YiYj =
(

Tθ(i)[hθ(i)(i)] · sgn(fi) · ξθ(i)(i)
)

·
(

Tθ(j)[hθ(j)(j)] · sgn(fj) · ξθ(j)(j)
)

.

There are two cases, namely, either (i) θ(i) = θ(j) or (ii) θ(i) 6= θ(j).

If t = θ(i) 6= θ(j) = t′, then,

YiYj =
(

sgn(fi)
∑

i′:ht(i)=ht′ (i
′)

fi′ξt(i)ξt(i
′)
)

·
(

sgn(fj)
∑

j′:ht′(j
′)=ht′(j)

fj′ξt′(j)ξt′(j
′)
)

Since t 6= t′, the two multiplicands use independent random bits, since {ξt} are independent of

{ξt′}’s. Hence, the expectation of the product is the product of the expectations, the conditional

on NoHvyColl(H) notwithstanding. Therefore,

E [YiYj | NoHvyColl(H) and θ(i) 6= θ(j)] = |fi||fj| .

Otherwise, let t = θ(i) = θ(j). Then,

YiYj =
(

Tt[ht(i)] · sgn(fi) · ξ(i)
)

·
(

Tt[ht(j)] · sgn(fj) · ξ(j)
)

= sgn(fifj)
∑

i′:ht(i′)=ht(i)
j′:ht(j′)=ht(j)

fjfj′ξ(j)ξ(j
′)ξ(i)ξ(i′)

Note that since NoHvyColl(H) holds, ht(i) 6= ht(k) and therefore, i′ 6= k′. Taking expectations

and using four-wise independence of the ξ’s obtain

E [YiYk | NoHvyColl(H) and θ(i) = θ(j)] = |fi||fj| .

Th Therefore, in all cases, we have

E [YiYk | NoHvyColl(H)] = |fi||fj | i 6= j, i, j ∈ H . (9)

Lemma 3.8 If ǫ ≤ 1
4 , B = 1/ǫ2, C = 64B and g = log 36B2

ǫ4
, then Pr

[

|F̂H
1 − FH

1 | ≤ ǫF1

]

≥ 2
3 .

8

Proof Let NoHvyColl be an abbreviation for the event NoHvyColl(H). Let |H| = m′.

Varξ

[

∑

i∈H

Yi | NoHvyColl

]

=
∑

i∈H

(

Eξ

[

Y 2
i | NoHvyColl

]

− (Eξ [Yi | NoHvyColl])2
)

+
∑

i,j∈H,i 6=j

(

Eξ [YiYj | NoHvyColl]− Eξ [Yi | NoHvyColl]Eξ [Yj | NoHvyColl]

=
∑

i∈H

∑

k:hθ(i)(k)=hθ(i)(i)
k 6=i,k 6∈H

f2
k + 0, (by Lemma 3.7) .

Therefore Varh,ξ

[
∑

i∈H Yi | NoHvyColl
]

= |H|
C F res

2 (H) . As in [3], define the event

LowVar ≡ Varξ

[

∑

i∈H

Yi | NoHvyColl(H)

]

≤ 8|H|F res
2 (H)

C
.

By Markov’s inequality, Prh [LowVar | NoHvyColl] ≥ 7
8 . By Chebychev’s inequality,

Pr

[

∣

∣

∣

∣

∑

i∈H

Yi −
∑

i∈H

|fi|
∣

∣

∣

∣

≤ 8

(|H|F res
2 (8B)

C

)1/2

| NoHvyColl and LowVar

]

≥ 7

8
.

Unconditioning dependencies,

Pr

[

∣

∣

∣

∣

∑

i∈H

Yi −
∑

i∈H

|fi|
∣

∣

∣

∣

≤ 8

(|H|F res
2 (B)

16B

)1/2
]

≥ 7

8
Pr [LowVar | NoHvyColl]Pr [NoHvyColl]

≥ 7

8
· 7
8
· 31
32
≥ 2

3
. (10)

Recall that |H| ≤ 5.1B and by Lemma 3.5, F res
2 (H) ≤ 12.04F res

2 (|H|). Therefore,
(|H|F res

2 (H)

64B

)1/2

≤
(

12.04|H|F res
2 (|H|)

64B

)1/2

≤
(

12.04|H|
64B|H|

)1/2

F1 ≤
0.44√
B
F1 = 0.44ǫF1

Substituting in (10), we have Pr

[
∣

∣

∣

∣

∑

i∈H Yi −
∑

i∈H |fi|
∣

∣

∣

∣

≤ 3.6ǫF1

]

≥ 2
3 .

3.3 Total Error

In this section, we add the various errors to obtain the total error of the estimate.

Theorem 3.9 |F̂1 − F1| ≤ 10ǫF1 with prob. 0.576.

Proof From analysis of light estimator (Lemma 3.4 and setting p = 1) we have
∣

∣F̂L
1 − FL

1

∣

∣ ≤ 6ǫF1 with probability 35/36.

By heavy estimator (Lemma 3.8) we have

∣

∣F̂H
p − FH

p

∣

∣ ≤ 3.6ǫF1 with prob.
2

3
.

Since, F̂1 = F̂H
1 + F̂L

1 and F1 = FL
1 + FH

1 , we have
∣

∣F̂1 − F1

∣

∣ ≤ 10ǫF1

with prob. 1− 2
32 − 1

36 − 1
3 = 0.576.

9

3.4 Reducing Random Bits

We now reduce the randomness requirements for the stable sketches and the hash functions.

Stable Sketches. Using Nisan’s PRG, a single stable sketch used in a bucket of a table U may be

fooled using Nisan’s PRG using a seed length of T = O
((

log mM
ǫ

)

(log n)
)

bits. The three stable

sketches in each bucket need to be only 3-wise independent. The stable sketches used across the

buckets of a table U need to be only pair-wise independent to facilitate variance calculations. Thus,

it suffices to use a pair-wise independent hash function g that maps 3T -bit strings to 3T -bits strings.

The seeds for each of the buckets is obtained as g(1), g(2), . . . , g(C). Each of the 3L-bit string is

viewed as the seed for 3-wise independent hash function h′b. The number of random bits used per

table is 3L. The seeds for stable sketches across the tables are pair-wise independent, since the

random variables are used only in variance calculations. Hence we can use a random seed length

of O(T) = O
((

log mM
ǫ

)

(log n)
)

.

Independence of hash functions. There are two occasions where full independence properties of

hash functions are used, namely, (i) for i ∈ H, 1/CL = Pr [NoCollsion(i)] is estimated as (1 −
1/C)|H|−1, and, (ii) Pr [NoHvyColl(H)] ≥ 31

32 . Let Pr [·] denote the probability of an event under

full-independence of h and let Prt [·] denote the probability assuming the hash function is t-wise

independent. Let Ct
L denote 1/Prt [NoCollsion(i)].

Lemma 3.10 If t = log 1
ǫ2
, then, for any i ∈ H

∣

∣C−1
L − (Ct

L)
−1

∣

∣ =
∣

∣Prt [NoCollsion(i)] − Pr [NoCollsion(i)]
∣

∣ ≤ ǫ2 .

If t ≥ 8 and g ≥ 3 + log(ǫ−2) then, Prt [NoHvyColl] ≥ 31/32.

Proof See Appendix A.

3.5 Space and Update time

In this section we summarize the resource consumption of the algorithm.

The space requirement is O
(

ǫ−2(log n + (log 1
ǫ)) log(mM)

)

. The length of the random seed

is O
(

(log mM
ǫ)(log n) + log 1

ǫ

)

and does not dominate the space requirement. The time taken to

update the HH2 structure is O(log n). The hash tables Tj and U use 8-wise independent hash

functions (except T1 and U1 that use O(log 1
ǫ)-wise independence for estimating FL

1). The hash

values are calculated in time O(g) = O(log 1
ǫ). Nisan’s PRG is used to generate a chunk of size 3T

bits using O((log n)(log 1
ǫ)) operations on word size O

(

log(mM)
)

bits. The total update time is

O
(

(log n)(log 1
ǫ) + (log 1

ǫ) + (log n)
)

= O((log n)(log ǫ−1)).

4 Conclusion

We first present a novel space-optimal algorithm for estimating Fp over data streams to within

multiplicative error factor of 1 ± ǫ for p ∈ (0, 2]. We then present an algorithm for estimating F1.

This algorithm is nearly optimal with respect to both space usage and update processing time. The

space requirement of the algorithm is O(ǫ−2 log(nǫ−1) log(mM)) and a per-update processing time

of O((log n)(log ǫ−1)).

10

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approximating fre-

quency moments”. J. Comp. Sys. and Sc., 58(1):137–147, 1998. Preliminary version appeared

in Proceedings of ACM STOC 1996, pp. 1-10.

[2] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. “Counting distinct

elements in a data stream”. In Proceedings of International Workshop on Randomization and

Computation (RANDOM), Cambridge, MA, 2002.

[3] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in data

streams”. Theoretical Computer Science, 312(1):3–15, 2004. Preliminary version appeared in

Proceedings of ICALP 2002, pages 693-703.

[4] P. Flajolet and G.N. Martin. “Probabilistic Counting Algorithms for Database Applications”.

J. Comp. Sys. and Sc., 31(2):182–209, 1985.

[5] S. Ganguly, D. Kesh, and C. Saha. “Practical Algorithms for Tracking Database Join

Sizes”. In Proceedings of Foundations of Software Technoogy and Theoretical Computer Science

(FSTTCS), pages 294–305, Hyderabad, India, December 2005.

[6] Sumit Ganguly and Graham Cormode. “On Estimating Frequency Moments of Data Streams”.

In Proceedings of International Workshop on Randomization and Computation (RANDOM),

2007.

[7] P. B. Gibbons and S. Tirthapura. “Estimating simple functions on the union of data streams”.

In Proceedings of ACM SPAA, pages 281–291, Heraklion, Crete, Greece, 2001.

[8] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream

computation. J. ACM, 53(3):307–323, 2006. Preliminary Version appeared in Proceedings of

IEEE FOCS 2000, pages 189-197.

[9] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. “On the Exact Space Complexity

of Sketching and Streaming Small Norms”. In Proceedings of ACM Symposium on Discrete

Algorithms (SODA), 2010.

[10] Ping Li. Estimators and tail bounds for dimension reduction in ℓα (0 < α ≤ 2) using stable

random projections. In Proceedings of ACM Symposium on Discrete Algorithms (SODA),

pages 10–19, 2008.

[11] N. Nisan. “Pseudo-Random Generators for Space Bounded Computation”. In Proceedings of

ACM Symposium on Theory of Computing STOC, pages 204–212, May 1990.

[12] J. Schmidt, A. Siegel, and A. Srinivasan. “Chernoff-Hoeffding Bounds with Applications for

Limited Independence”. In Proceedings of ACM Symposium on Discrete Algorithms (SODA),

pages 331–340, 1993.

[13] David P. Woodruff. “Optimal space lower bounds for all frequency moments”. In Proceedings

of ACM Symposium on Discrete Algorithms (SODA), pages 167–175, 2004.

11

A Proofs

Proof of Claim 1 f̂i ∈ fi ±
(F res

2 (8B)
B

)1/2
= ∆ (say). For i ∈ H,

fi ≤ f̂i +∆ ≤
(

F̂ res
2 (ǫB)

ǫB

)1/2

+

(

F res
2 (B)

B

)1/2

≤
(

F res
2 (ǫB)

ǫB

)1/2

(
√

33/32 +
√
ǫ), i ∈ H, and

fi ≥ 2

(

31F res
2 (4B)

32B

)1/2

−∆ ≥ 2

(

31F res
2 (4B)

32B

)1/2

−
(

F res
2 (8B)

B

)

≥ 1.04

(

F res
2 (4B)

B

)1/2

, i ∈ H .

Therefore,

|H| ≤ 4B + (1.04)2B ≤ 5.1B . (11)

Proof of Lemma 3.1 Divide the items in order of consecutive groups G1, G2, . . . , G⌈n/B⌉ of size

B items each, that is, G1 contains the first B items in non-increasing order of absolute frequency

values, G2 contains the next B items, and so on. The last group may contain fewer than B items.

Let q ≥ p.

n
∑

j=B+1

|fsi |q =
⌈n/B⌉
∑

l=2

∑

i∈Gl

|fsi |q

≤
⌈n/B⌉
∑

l=2

∑

i∈Gl

(

1

B

∑

i∈Gl−1

|fsi|p
)q/p

, for i ∈ Gl, |fsi |p ≤ avg{|fj |p : j ∈ Gl−1}, p ≥ 0

≤
⌈n/B⌉−1
∑

l=1

1

Bq/p−1

(

∑

i∈Gl

|fsi |p
)q/p

≤ 1

Bq/p−1

(n
∑

j=1

|fsi|p
)q/p

, since, q ≥ p .

The particular case is obtained by setting q = 2p in the above equation.

Proof of Lemma 3.10. Fix a table index j ∈ [g] and an item i ∈ H. Let k ∈ H, k 6= i.

Define the indicator variable xk to be 1 if k collides with i in the same bucket in table U , that

is, hj(i) = hj(k). Let Y =
∑

k∈H,k 6=i xk. The event NoCollsion(i) is equivalent to Y = 0. Let

µ = E [Y] = |H|−1
C ≤ 5.1B

64B ≤ 0.1.

By Theorem 2.6, part (III) of [12] (proved using inclusion-exclusion), if t ≥ eµ+ln(1/Pr [Y = 0])+

1 +D, then,
∣

∣Prt [Y ≥ 1]− Pr [Y ≥ 1]
∣

∣ ≤ (1− Pr [Y ≥ 0] e−D .

We have, Pr [Y = 0] = (1−1/C)|H|−1 ≤ 2(|H|−1)/C ≤ 1/5. Therefore, for t ≥ 0.1e+ln(5)+1+D
∣

∣Prt [Y = 0]− Prt [Y = 0]
∣

∣ =
∣

∣Prt [Y ≥ 1]− Pr [Y ≥ 1]
∣

∣ ≤ (4/5)e−D .

It suffices for the RHS to be ǫ2, which can be satisfied by keeping D = log(1/ǫ2).

For t ≥ 8,

Prt [NoHvyColl] ≥ 1− |H|
(

1−
(

1− Prt [NoCollsion(i)]
)g)

≥ 1− |H|
(

1−
(

1− Pr [NoCollsion(i)] − (4/5)e−6
)g)

≥ 31

32

provided, g ≥ log(5.1B) ≥ 3 + log(ǫ−2).

12

	1 Introduction
	1.1 Review: Previous work on estimating small moments
	1.2 Contributions

	2 Algorithm for estimating F1
	2.1 Estimator

	3 Analysis
	3.1 Analysis of Light Estimator
	3.2 Analysis of Heavy Estimator
	3.3 Total Error
	3.4 Reducing Random Bits
	3.5 Space and Update time

	4 Conclusion
	A Proofs

