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Abstract

Approximating non-linear kernels using fea-
ture maps has gained a lot of interest in re-
cent years due to applications in reducing
training and testing times of SVM classifiers
and other kernel based learning algorithms.
We extend this line of work and present low
distortion embeddings for dot product ker-
nels into linear Euclidean spaces. We base
our results on a classical result in harmonic
analysis characterizing all dot product ker-
nels and use it to define randomized feature
maps into explicit low dimensional Euclidean
spaces in which the native dot product pro-
vides an approximation to the dot product
kernel with high confidence.

1 Introduction

Kernel methods have gained much importance in ma-
chine learning in recent years due to the ease with
which they allow algorithms designed to work in lin-
ear feature spaces to be applied to implicit non lin-
ear feature spaces. Typically these non linear fea-
ture spaces are high (often infinite) dimensional and
in order to avoid incurring the cost of explicitly work-
ing in these spaces, one invokes the well known ker-
nel trick which exploits the fact that the algorithms
in question interact with data solely through pair-
wise inner products. For example, instead of directly
learning a hyperplane classifier in Rd, one considers
a non linear map Φ : Rd → H such that for all
x,y ∈ Rd, 〈Φ(x),Φ(y)〉H = K(x,y) for some easily
computable kernel K. One then tries to learn a clas-
sifier H : x 7→ w>Φ(x) for some w ∈ H.

However, one is faced with the problem of representa-
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tion in these non linear feature spaces and is at the risk
of incurring the curse of dimensionality. The solution
to this problem comes in the form of Representer The-
orems (see Argyrioua et al., 2009, for recent results)
which act as an implicit dimensionality reduction step
by giving us an assurance that the object(s) of inter-
est, for example the normal vector to the hyperplane
w in the case of classification and non-linear regres-
sion, the cluster centers in the case of kernel k-means,
or the principal components in the case of kernel PCA,
would necessarily lie in the span of the non-linear fea-
ture maps of the training vectors in the respective ex-
amples (see Schölkopf and Smola, 2002). For instance,
in case of the SVM algorithm, the result ensures that
the maximum margin hyperplane in H would neces-
sarily be of the form w =

∑
αiΦ(xi) where xi are

the training points. In case of SVM regression and
classification, such a result is arrived at by applica-
tion of the Karush-Kuhn-Tucker conditions whereas in
the other two applications, the respective formulations
themselves yield such a result.

Whereas this appears to solve the problem of the curse
of dimensionality, it actually paves the way for an en-
tirely new kind of curse – one that we call the Curse
of Support. In order to evaluate the output of the
algorithms on test data, say in the case of SVM clas-
sification, one has to compute the kernel measures of
the test point with all the training points that partici-
pate in defining the normal vector w. This cost can be
prohibitive if the support is large. Unfortunately this
is almost surely the case with large datasets as demon-
strated by several results (Steinwart, 2003, Steinwart
and Christmann, 2008, Bengio et al., 2005) which pre-
dict an unbounded growth in the support sizes with
growing training set sizes. A similar fate awaits all
other kernel algorithms that use the support vector
effect in order to avoid explicit representations.

This presents a dilemma where a large training set is
beneficial in obtaining superior generalization proper-
ties but is simultaneously responsible in slowing the
algorithms’ predictive routines. There has been a lot
of research on SVM formulations with sparsity pro-
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moting regularizers (see for example Bi et al., 2003)
and support vector reduction (see for example Cos-
salter et al., 2011). However, although these efforts
have yielded rich empirical returns, they have neither
addressed other kernel algorithms nor approached the
question behind the curse in a systematic way.

2 Related Work

In a very elegant result, Rahimi and Recht (2007)
demonstrated how this curse can be beaten by way
of low-distortion embeddings. Their result, building
upon a classical result in harmonic analysis called
Bochner’s Theorem (refer to Rudin, 1962), shows how
to, in some sense, embed the non-linear feature space
(i.e. H, the Reproducing Kernel Hilbert Space asso-
ciated with the kernel K) into a low dimensional Eu-
clidean space while incurring an arbitrarily small ad-
ditive distortion in the inner product values. More
formally they constructed randomized feature maps
Z : Rd → RD such that for x,y ∈ Rd, 〈Z(x), Z(y)〉 ≈
K(x,y) with very high probability.

This allows one to overcome the curse of support in a
systematic way for all the kernel learning tasks men-
tioned before since one may now work in the explicit
low dimensional space RD with explicit representa-
tions whose complexity depends only on the dimen-
sionality of the space. Their contribution is remi-
niscent of Indyk and Motwani (1998) who perform
low distortion embeddings (by invoking the Johnson-
Lindenstrauss Lemma) in order to overcome the curse
of dimensionality for the nearest neighbor problem.

Subsequently there has been an increased interest in
the kernel learning community toward results that al-
low one to use linear kernels over some transformed
feature space without having to sacrifice the benefits
provided by non-linear ones. Rahimi and Recht (2007)
considered only translation invariant kernels i.e. ker-
nels of the form K(x,y) = f(x− y) for some positive
definite function f : Rd → R. Subsequently Li et al.
(2010) generalized this to a larger class of group in-
variant kernels while still invoking Bochner’s theorem.

Maji and Berg (2009) presented a similar result for
the intersection kernel (also known as the min ker-

nel) K(x,y) =
d∑
i=1

min {xi,yi} which was generalized

by Vedaldi and Zisserman (2010) to the class of ad-

ditive homogeneous kernels K(x,y) =
d∑
i=1

ki(xi,yi)

where ki(x, y) = (xy)
γ
2 fi(log x− log y) for some γ ∈ R

and positive definite functions fi : R → R. Vem-
pati et al. (2010) extended this idea to provide fea-
ture maps for RBF kernels of the form K(x,y) =

exp
(
− 1

2σ2χ
2(x,y)

)
where χ2 is the Chi-squared dis-

tance measure.

There have been approaches that try to perform em-
beddings in a task dependent manner (see for example
Perronnin et al., 2010). The idea of directly consider-
ing low-rank approximations to the Gram matrix has
also been explored (see for example Bach and Jordan,
2005). However, the approaches considered in Rahimi
and Recht (2007) and Vedaldi and Zisserman (2010)
are the ones that most directly relate to this work.

2.1 Our Contribution

In this work we present feature maps approximating
positive definite dot product kernels i.e kernels of the
form K(x,y) = f(〈x,y〉) for some real valued func-
tion f : R → R. More formally we present feature
maps Z : Rd → RD (where we refer to Rd as the in-
put space and RD as the embedding space) such
that for all x,y ∈ Rd, 〈Z(x), Z(y)〉 ≈ K(x,y) with
very high probability. We base our result on a char-
acterization of real valued functions f that yield such
positive definite kernels. We also demonstrate how
our methods can be extended to compositional kernels
of the form Kco(x,y) = Kdp (K(x,y)) where Kdp is
some dot product kernel and K is an arbitrary positive
definite kernel.

The kernels covered by our approach include homo-
geneous polynomial kernels which are not covered by
Vedaldi and Zisserman’s treatment of homogeneous
kernels as these are inseparable kernels which their ap-
proach cannot handle.

In the following, vectors shall be denoted in boldface.
xi denotes the ith Cartesian coordinate of a vector x.

Bp (0, r) denotes the set
{

x ∈ H : ‖x‖p ≤ r
}

for some

inner product space H (or some finite dimensional Eu-
clidean space Rd). In particular, B1 (0, 1) and B2 (0, 1)
denote set of points with less than unit 1-norm and 2-
norm respectively. ‖·‖ without any subscripts denotes
the 2-norm.

3 A Characterization of Positive
Definite Dot Product Kernels

The result underlying our feature map constructions
is a characterization of real valued functions on the
real line that can be used to construct positive definite
dot product kernels. This is a classical result in har-
monic analysis due to Schoenberg (1942), that charac-
terizes positive definite functions on the unit sphere in
a Hilbert space. Our first observation, formalized be-
low, is simply the fact that the restriction to the unit
sphere is not crucial.
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Theorem 1. A function f : R → R defines a pos-
itive definite kernel K : B2 (0, 1) × B2 (0, 1) → R
as K : (x,y) 7→ f(〈x,y〉) iff f is an analytic func-
tion admitting a Maclaurin expansion with only non-

negative coefficients i.e. f(x) =
∞∑
n=0

anx
n, an ≥ 0,

n = 0, 1, 2, . . .. Here B2 (0, 1) ⊂ H for some Hilbert
space H.

Proof. We first recollect Schoenberg’s result in its orig-
inal form

Theorem 2 (Schoenberg (1942), Theorem 2). A func-
tion f : [−1, 1] → R constitutes a positive definite
kernel K : S∞ × S∞ → R, K : (x,y) 7→ f(〈x,y〉)
iff f is an analytic function admitting a Maclau-
rin expansion with only non-negative coefficients i.e.

f(x) =
∞∑
n=0

anx
n, an ≥ 0, n = 0, 1, 2, . . .. Here S∞ =

{x ∈ H : ‖x‖2 = 1} for some Hilbert space H.

To see that the non-negativeness of the coef-
ficients of the Maclaurin expansion is necessary
just apply Theorem 2 to points on S∞. Since
{〈x,y〉 : x,y ∈ B2 (0, 1)} = {〈x,y〉 : x,y ∈ S∞}, the
result extends to the general case when the points are
coming from B2 (0, 1). To see that this suffices we
make use of some well known facts regarding positive
definite kernels (for example refer to Schölkopf and
Smola, 2002).

Fact 3. If Kn, n ∈ N are positive definite kernels
defined on some common domain then the following
statements are true

1. cmKm + cnKn is also a positive definite kernel
provided cm, cn ≥ 0.

2. KmKn is also a positive definite kernel.

3. If lim
n→∞

Kn = K and K is continuous then K is

also a positive definite kernel.

Starting with the fact that the dot product kernel
is positive definite on any Hilbert space H, applying
Fact 3.1 and Fact 3.2, we get that for every n ∈ N ,

the kernel Kn(x,y) =
n∑
i=0

ai 〈x,y〉i is positive definite.

An application of Fact 3.3 along with the fact that the
Maclaurin series converges uniformly within its radius
of convergence then proves the result.

Actually Schoenberg (1942) shows that a function f
need only have a non-negative expansion in terms
of Gegenbauer polynomials in order to yield a posi-
tive definite kernel over finite dimensional Euclidean
spaces (a condition weaker than that of Theorem 1).

However, functions f that do not have non-negative
Maclaurin expansions are not very useful because they
yield kernels that become indefinite after the dimen-
sionality crosses a certain threshold. This is because a
dot product kernel that is positive definite over all fi-
nite dimensional Euclidean spaces is also positive def-
inite over Hilbert spaces (see the Section 3.1 for the
simple proof).

Most dot product kernels used in practice (see
Schölkopf and Smola, 2002) satisfy the stronger condi-
tion of the Maclaurin expansion having non-negative
coefficients and our results readily apply to these.

We note that, as a corollary of Schoenberg’s result, all
dot product kernels are necessarily unbounded over
non-compact domains. This is in stark contrast with
translation invariant kernels that are always bounded
(see Rudin, 1962, for a proof). Hence from now on we
shall assume that our data is confined to some compact
domain Ω ⊂ Rd. In order to study the behavior of our
feature maps as this domain grows in size, we shall
assume that Ω ⊆ B1 (0, R) for some R > 0.

We shall assume that the function f is defined and
differentiable on a closed interval [−I, I]. The value of
I shall be dictated by the value of R chosen above. If f
is defined only on an open interval (−γ, γ) around zero
(as is the case when the Maclaurin series has a finite
radius of convergence) then we can choose a scalar
c > I

γ , define g = f
(
x
c

)
and use g to define a new

kernel Kg. This has the implicit effect of scaling the
data vectors in input space Rd down by a factor of c.

3.1 Positive definite dot product kernels over
finite dimensional spaces

As noted in the main paper, the original result of
Schoenberg characterizing functions that yield a posi-
tive definite dot product kernel over finite dimensional
Euclidean spaces in terms of those admitting positive
Gegenbauer expansions is not very useful in practice.
This is because of two reasons. Firstly, as we shall
show below, functions that have non-negative Gegen-
bauer expansions include those that yield positive def-
inite kernels only up to a certain dimensionality i.e.
these kernels are positive definite up to Rd0 for some
fixed d0 and indefinite on all Euclidean spaces of di-
mensionality d > d0. Secondly, from an algorithmic
perspective, the Gegenbauer expansions do not seem
amenable to the type of feature construction methods
described in this paper - this is because Gegenbauer
polynomials themselves admit negative coefficients.

The result characterizing positive definite functions
over Hilbert spaces in terms of positive Maclaurin ex-
pansions on the other hand is appealing for the very
same reasons - functions satisfying this stronger con-
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dition are positive definite over all finite dimensional
spaces and the method readily lends itself to feature
construction methods.

Lemma 4. A function f : R→ R yields positive defi-
nite dot product kernels over all finite dimensional Eu-
clidean spaces iff it yields positive definite dot product
kernels over Hilbert spaces.

Proof. We shall first prove this result for the special
case of `2, the Hilbert space of all square summable
sequences. Schoenberg’s result (Corollary 1) will then
allow us to extend it to all Hilbert spaces. The if part
follows readily from the observation that `2 contains
all finite dimensional Euclidean spaces as subspaces
and the fact that any kernel that is positive definite
over a set is positive definite over all its subsets as well.

For the only if part consider any set of n points
S = {x1,x2, . . . ,xn} ⊂ `2. Clearly there exists an
embedding Φ : S → Rn such that for all i, j ∈
[n], 〈Φ(xi),Φ(xj)〉 = 〈xi,xj〉 (note that the left and
the right hand sides are inner products over different
spaces). Such an embedding can be constructed, for
example, by taking the Cholesky decomposition of the
Gram matrix given by the inner product on `2 (the en-
tries of the Gram matrix are finite by an application
of Cauchy-Schwarz inequality).

Consider the matrix A = [aij ] where aij =
f (〈Φ(xi),Φ(xj)〉). Since f yields positive definite ker-
nels over all finite dimensional Euclidean spaces, we
have A � 0. However, by the isometry of the em-
bedding, we have aij = f (〈xi,xj〉). Hence, for any
n < ∞, for any arbitrary n points, the gram matrix
given by f(〈·, ·〉) is positive definite (here 〈·, ·〉 is the
dot product over `2). Thus f yields a positive definite
kernel over `2 as well.

To finish off the proof we now use Schoenberg’s the-
orem to extend this result to all Hilbert spaces. If a
dot product kernel is positive definite over all finite
dimensional spaces then the above argument shows
it to be positive definite over `2. Hence, by Corol-
lary 1, the function f defining this kernel must have
a non-negative Maclaurin’s expansion. From here on
an argument similar to the one used to prove the suf-
ficiency part of Corollary 1 (using Fact 3) can be used
to show that this kernel is positive definite over all
Hilbert spaces.

On the other hand, if a dot product kernel is positive
definite over Hilbert spaces, then we use its positive-
definiteness over `2, along with the argument used in
showing the if part above, to prove that the kernel is
positive definite over all finite dimensional Euclidean
spaces.

An easy application of Corollary 1 then gives us the
following result :

Corollary 5. A function f : R → R yields positive
definite kernels over all finite dimensional Euclidean
spaces iff it is an analytic function admitting a Maclau-
rin expansion with only non-negative coefficients.

However, we note that even functions that have
only positive Gegenbauer expansions (and not pos-
itive Maclaurin expansions) may admit low dimen-
sional feature maps. This is indicated by the Johnson-
Lindenstrauss Lemma (for example see Indyk and
Motwani, 1998) that predicts the existence of low-
distortion embeddings from arbitrary Hilbert spaces
(thus, in particular from the reproducing kernel
Hilbert spaces of these kernels) to finite dimensional
Euclidean spaces. Interestingly, it is very tempting to
view the constructions of Rahimi and Recht (2007) and
Vedaldi and Zisserman (2010) (among others) as algo-
rithmic versions of the Johnson-Lindenstrauss Lemma.
The challenge in all such cases, however, is to make
these constructions explicit, uniform, as well as algo-
rithmically efficient.

3.2 Examples of Positive Definite Dot
Product Kernels

The most well known dot product kernels are the poly-
nomial kernels which are used in either a homoge-
neous form (K(x,y) = 〈x,y〉p for some p ∈ N) or
a non-homogeneous form (K(x,y) = (〈x,y〉+ r)

p
for

some p ∈ N, r ∈ R+). Lesser known examples include

Vovk’s real polynomial kernel (K(x,y) = 1−〈x,y〉p
1−〈x,y〉

for some p ∈ N), Vovk’s infinite polynomial kernel
(K(x,y) = 1

1−〈x,y〉 ) and the exponential dot product

kernel (K(x,y) = exp
(
〈x,y〉
σ2

)
for some σ ∈ R).

It is interesting to note that due to a result by Stein-
wart (2001), the last two kernels (Vovk’s infinite ker-
nel and exponential dot product kernel) are universal
on any compact subset S ⊂ Rd which means that the
space of all functions induced by them is dense in C(S),
the space of all continuous functions defined on S. The
widely used Gaussian kernel is actually a normalized
version of the exponential dot product kernel. How-
ever Vovk’s kernels are seldom used in practice since
they are expected to have poor generalization proper-
ties due to their flat spectrum as noted by Schölkopf
and Smola (2002).

4 Random Feature Maps

Schoenberg’s result naturally paves the way for a re-
sult of the kind presented in Rahimi and Recht (2007)
in which we view the coefficients of the Maclaurin’s ex-
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pansion as a positive measure defined on N ∪ {0} and
define estimators for each individual term of the ex-
pression. However, as we shall see, estimating higher
order terms in our case will require more random-
ness. Thus, a set of coefficients {an} defining a heavy
tailed distribution would entail huge randomness costs
in case the expansion has a large (or infinite) number
of terms. For example the sequence an = 1

n2 has a
linear rather than an exponential tail.

To address this issue we do not utilize the coefficients
as measure values, rather we impose an external distri-
bution on N∪{0} having an exponential tail. The dis-
tribution that we choose to impose is P [N = n] = 1

pn+1

for some fixed p > 1. In practice p = 2 is a good choice
since it establishes a normalized measure over N∪{0}.
We will, using this distribution, obtain unbiased es-
timates for the kernel value and prove corresponding
uniform convergence results.

We stress that the positiveness of the coefficients {an}
is still essential for us to be able to provide an embed-
ding into real spaces. If the coefficients are allowed
to be negative, the resulting kernels would no longer
remain positive definite and we would only be able to
provide feature maps that map to pseudo-Euclidean
spaces. It turns out that the imposition of an exter-
nal measure is crucial from a statistical point of view
as well. As we shall see later, it allows us to obtain
bounded estimators which in turn allow us to use Ho-
effding bounds to prove uniform convergence results.

We now move on to describe our feature map : our
feature map will essentially be a concatenation of sev-
eral copies of identical real valued feature maps. These
copies will reduce variance and allow us to prove con-
vergence bounds. The following simple fact about ran-
dom projections is at the core of our feature maps.

Lemma 6. Let ω ∈ Rd be a vector each of whose
coordinates have been chosen pairwise independently
using fair coin tosses from the set {−1, 1} and consider
the feature map Z : Rd → R, Z : x 7→ ω>x. Then for
all x,y ∈ Rd,E

ω
[Z(x)Z(y)] = 〈x,y〉.

Proof. We have E
ω

[Z(x)Z(y)] = E
ω

[
ω>x · ω>y

]

= E
ω

[(
d∑
i=1

ωixi

)(
d∑
i=1

ωiyi

)]

= E
ω

 d∑
i=1

ω2
ixiyi +

d∑
i 6=j

ωiωjxiyj


=

d∑
i=1

E
ω

[
ω2
i

]
xiyi +

d∑
i 6=j

E
ω

[ωi]E
ω

[ωj ] xiyj

=

d∑
i=1

xiyi + 0 = 〈x,y〉

where in the third equality we have used linearity of
expectation and the pairwise independence of the dif-
ferent coordinates of ω. The fourth equality is arrived
at by using properties of the distribution. Notice that
any distribution that is symmetric about zero with
unit second moment can be used for sampling the co-
ordinates of ω. This particular choice both simplifies
the analysis as well as is easy to implement in prac-
tice.

We now present a real valued feature map for the
dot product kernel. First of all we randomly pick a
number N ∈ N ∪ {0} with P [N = n] = 1

pn+1 . Next
we pick N independent Rademacher vectors ω1 . . .ωN
and output the feature map Z : Rd → R, Z : x 7→√
aNpN+1

N∏
j=1

ω>j x. We first of all establish that the

linear kernel obtained by using this feature map gives
us an unbiased estimate of the kernel value at each
pair of points chosen from the domain Ω.

Lemma 7. Let Z : Rd → R be the feature map
constructed above. Then for all x,y ∈ Ω, we have
E [Z(x)Z(y)] = K(x,y) where the expectation is over
the choice of the Rademacher vectors.

Proof. We have E [Z(x)Z(y)]

= E
N

[
E

ω1,...,ωN
[Z(x)Z(y)]

∣∣∣∣N]

= E
N

aNpN+1 E
ω1,...,ωN

 N∏
j=1

ω>j x

N∏
j=1

ω>j y


= E

N

[
aNp

N+1
(
E
ω

[
ω>x · ω>y

])N]
= E

N

[
aNp

N+1 〈x,y〉N
]

=

∞∑
n=0

1

pn+1
· anpn+1 〈x,y〉n

= K(x,y).

where the first step uses the fact that the index N and
the vectors ωi are chosen independently, the fourth
step uses the fact that the vectors ωi are chosen in-
dependently among themselves and the fifth step uses
Lemma 2.

Having obtained a feature map giving us an unbiased
estimate of the kernel value, we move on to establish
bounds on the deviation of the linear kernel given by
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this map from its expected value. To do this we ob-
tain D such feature maps independently and concate-
nate them to obtain a multi dimensional feature map
Z : Rd → RD,Z : x 7→ 1√

D
(Z1(x), . . . , ZD(x)). It is

easy to see that E [〈Z(x),Z(y)〉] = K(x,y). Moreover,
such a concatenation is expected to guarantee an expo-
nentially fast convergence to K(x,y) using Hoeffding
bounds. However this requires us to prove that the es-
timator corresponding to our feature map i.e Z(x)Z(y)
is bounded. This we establish below :

Lemma 8. For all x,y ∈ Ω, |Z(x)Z(y)| ≤ pf(pR2).

Proof. Since Z(x)Z(y) = aNp
N+1

N∏
j=1

ω>j x
N∏
j=1

ω>j y,

by Hölder’s inequality we have, for all j,
∣∣ω>j x

∣∣ ≤
‖ωj‖∞ ‖x‖1 ≤ R since every coordinate of ωj is ei-
ther 1 or −1 and x ∈ Ω ⊆ B1 (0, R). A similar result
holds for

∣∣ω>j y
∣∣ as well. Thus we have |Z(x)Z(y)| ≤

aNp
N+1R2N ≤ p ·

∞∑
n=0

anp
nR2n = pf(pR2).

We note here that the imposition of an external mea-
sure on N ∪ {0} plays a crucial role in the analysis.
In absence of the external measure, one is only able
to bound the estimator by O

(
R2N

)
and since N is

a potentially unbounded random variable, this makes
application of Hoeffding bounds impossible. Although
there do exist Hoeffding style bounds for unbounded
random variables, none seem to work in our case. How-
ever, with the simple imposition of an external mea-
sure we obtain an estimator that is bounded by a value
dependent on the range of values taken by the kernel
over the domain, a very desirable quality.

For sake of convenience let us denote pf(pR2) by
CΩ since it is a constant dependent only on the size
of the domain Ω and independent of the dimension
of the input space Rd. Note that this constant is
proportional to the largest value taken by the ker-
nel in the domain Ω. This immediately tells us that
for any x,y ∈ Ω, P [|〈Z(x),Z(y)〉 −K(x,y)| > ε] ≤
2 exp

(
−Dε2

8C2
Ω

)
. However we can give much stronger

guarantees than this – we can prove that this loss of
confidence need not be incurred over every single pair
of points but rather the entire domain at once. More
formally, we can show that with very high probability,
sup

x,y∈Ω
|〈Z(x),Z(y)〉 −K(x,y)| ≤ ε.

4.1 Uniform Approximation

As stated before, we are able to ensure that the fea-
ture map designed above gives an accurate estimate
of the kernel value uniformly over the entire domain.
For this we exploit the Lipschitz properties of the ker-

Algorithm 1 Random Maclaurin Feature Maps

Require: A positive definite dot product kernel
K(x,y) = f(〈x,y〉).

Ensure: A randomized feature map Z : Rd → RD
such that 〈Z(x),Z(y)〉 ≈ K(x,y).

Obtain the Maclaurin expansion of f(x) =
∞∑
n=0

anx
n

by setting an = f(n)(0)
n! .

Fix a value p > 1.
for i = 1 to D do

Choose a non negative integer N ∈ N ∪ {0} with
P [N = n] = 1

pn+1 .

Choose N vectors ω1, . . . ,ωN ∈ {−1, 1}d select-
ing each coordinate using fair coin tosses.

Let feature map Zi : x 7→
√
aNpN+1

N∏
j=1

ω>j x.

end for
Output Z : x 7→ 1√

D
(Z1(x), . . . , ZD(x)).

nel function and our estimator. A similar approach
was adopted by Rahimi and Recht (2007) to provide
corresponding uniform convergence properties for their
estimator. However it is not possible to import their
argument since they were able to exploit the fact that
both their kernel as well as their estimator were trans-
lation invariant. We, having no such guarantees for
our estimator, have to argue differently.

Let E(x,y) = 〈Z(x),Z(y)〉 − K(x,y). We will first
show that the function E(·, ·) is Lipschitz over the
domain Ω. Since E(·, ·) itself is differentiable (actu-
ally analytic), its Lipschitz constant can be bounded
by bounding the norms of its gradients i.e. it would
suffice to show that sup

x,y∈Ω
‖∇xE(x,y)‖ ≤ L and

sup
x,y∈Ω

‖∇yE(x,y)‖ ≤ L for some constant L. This

would ensure that if the error incurred by the feature
map is small on a pair of vectors then it would also be
small on all pairs of vectors that are “close” to these
vectors. This is formalized in the following theorem :

Lemma 9. If a bivariate function f defined over Ω ⊆
Rd is L-Lipschitz in both its arguments then for every
x,y ∈ Ω, sup

x′∈B2(x,r)∩Ω
y′∈B2(y,r)∩Ω

|f(x,y)− f(x′,y′)| ≤ 2Lr.

Proof. We have |f(x,y)− f(x′,y′)| ≤
|f(x,y)− f(x,y′)| + |f(x,y′)− f(x′,y′)| ≤
L · ‖y − y′‖ + L · ‖x− x′‖ ≤ 2Lr where in the
second step we have used the fact that x,y′ ∈ Ω.

What this allows us to do is choose a set of points
T that set up an ε-net over the domain Ω at some
scale ε1. If we can ensure that the feature maps pro-
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vide an (ε/2)-close approximation to K at the cen-
ters of this net i.e. sup

x,y∈T
|E(x,y)| ≤ ε/2, then the

above result would show us that if the error func-
tion E(·, ·) is L-Lipschitz in both its arguments, then
sup

x,y∈Ω
|E(x,y)| ≤ ε/2 + 2Lε1 since the ε-net ensures

that for all x,y ∈ Ω, there exists x′,y′ ∈ T such that
‖x− x′‖ , ‖y − y′‖ ≤ ε1. Thus choosing ε1 = ε

4L en-
sures that sup

x,y∈Ω
|〈Z(x),Z(y)〉 −K(x,y)| ≤ ε.

Now ensuring that the feature maps provide a close ap-
proximation to the kernel value at all pairs of points
taken from T would cost us a reduction in the con-
fidence parameter by a factor of |T |2 due to taking a
union bound. It is well known (for example see Cucker
and Smale, 2001) that setting up an ε-net at scale ε1
in d dimensions over a compact set of diameter ∆

takes at most
(

4∆
ε1

)d
centers. In our case ∆ ≤ 2R

since Ω ⊆ B1 (0, R) ⊂ B2 (0, R) and ε1 = ε
4L i.e.

|T | ≤
(

32RL
ε

)d
.

We now move on to the task of bounding the Lipschitz
constant of the error function. Since E(·, ·) is sym-
metric in both its arguments, it is sufficient to bound
‖∇xE(x,y)‖ ≤ ‖∇x 〈Z(x),Z(y)〉‖+‖∇xK(x,y)‖. We
will bound these two quantities separately below.

Lemma 10. We have the following :

sup
x,y∈Ω

‖∇xK(x,y)‖ ≤ f ′(R2)

sup
x,y∈Ω

‖∇yK(x,y)‖ ≤ f ′(R2)

Proof. We have ∇xK(x,y) = ∇x

( ∞∑
n=0

an 〈x,y〉n
)

=

∞∑
n=0

an∇x 〈x,y〉n = y
∞∑
n=0

nan 〈x,y〉n−1
. Thus

we have ‖∇xK(x,y)‖ =

∥∥∥∥y ∞∑
n=0

nan 〈x,y〉n−1

∥∥∥∥ ≤
∞∑
n=0

nan |〈x,y〉|n−1 ≤
∞∑
n=0

nan(R2)n−1 = f ′(R2) where

in the third step we have used the fact that x,y ∈
Ω ⊆ B1 (0, R) ⊂ B2 (0, R). Similarly we can show
sup

x,y∈Ω
‖∇yK(x,y)‖ ≤ f ′(R2).

Lemma 11. We have the following :

sup
x,y∈Ω

‖∇x (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2)

sup
x,y∈Ω

‖∇y (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2)

Proof. Since 〈Z(x),Z(y)〉 = 1
D

D∑
i=1

Zi(x)Zi(y) and

∇x 〈Z(x),Z(y)〉 = 1
D

D∑
i=1

∇x (Zi(x)Zi(y)) we have

‖∇x 〈Z(x),Z(y)〉‖ ≤ 1
D

D∑
i=1

‖∇x (Zi(x)Zi(y))‖ by tri-

angle inequality. Since all the Zi feature maps
are identical it would be sufficient to bound
‖∇x (Z1(x)Z1(y))‖ and by the above calculation, the
same bound would hold for ‖∇x 〈Z(x),Z(y)〉‖ as well.

Let Z1 : x 7→
√
aNpN+1

N∏
j=1

ω>j x for some N ≤ k.

Thus we can bound the quantity ∇x (Z1(x)Z1(y))

as ∇x

(
aNp

N+1
N∏
j=1

ω>j x
N∏
j=1

ω>j y

)
which simplifies

to

(
aNp

N+1
N∏
j=1

ω>j y

)
∇x

(
N∏
j=1

ω>j x

)
and further to(

aNp
N+1

N∏
j=1

ω>j y

)
N∑
j=1

(∏
i6=j

ω>i x

)
ωi.

We note that for any ω chosen, ‖ω‖ =
√
d. More-

over, as we have seen before, for any ω, sup
x∈Ω

∣∣ω>x
∣∣ ≤

R by Hölder’s inequality. Thus we can bound
‖∇x (Z1(x)Z1(y))‖ as∥∥∥∥∥∥

aNpN+1
N∏
j=1

ω>j y

 N∑
j=1

∏
i 6=j

ω>i x

ωi

∥∥∥∥∥∥
= aNp

N+1

 N∏
j=1

∣∣ω>j y
∣∣∥∥∥∥∥∥

N∑
j=1

∏
i 6=j

ω>i x

ωi

∥∥∥∥∥∥
≤ aNp

N+1

 N∏
j=1

∣∣ω>j y
∣∣ N∑

j=1

∏
i 6=j

∣∣ω>i x
∣∣ ‖ωi‖

≤ aNp
N+1RN

N∑
j=1

RN−1
√
d = NaNp

N+1R2N−1
√
d

≤ p2R
√
d

∞∑
n=0

nan(pR2)n−1 = p2R
√
df ′(pR2)

where we have used the triangle inequal-
ity in the third step. Similarly we can show
sup

x,y∈Ω
‖∇y (Z1(x)Z1(y))‖ ≤ p2R

√
df ′(pR2).

Thus we have L = sup
x,y∈Ω

‖∇xE(x,y)‖ ≤ f ′(R2) +

p2R
√
df ′(pR2). Putting all the results together, we

first have by application of union bound that the
probability that the feature map will fail at any
pair of points chosen from the ε-net is bounded by

2
(

32RL
ε

)2d
exp

(
−Dε2

8C2
Ω

)
. The covering argument along

with the bound on the Lipschitz constant of the error
function ensure that with the same confidence, the fea-
ture map would provide an ε-accurate estimate on the
entire domain Ω. Thus we have the following theorem.
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Theorem 12. Let Ω ⊆ B1 (0, R) be a com-
pact subset of Rd and K(x,y) = f(〈x,y〉)
be a dot product kernel defined on Ω. Then,
for the feature map Z defined in Algorithm 1,

we have P
[

sup
x,y∈Ω

|〈Z(x),Z(y)〉 −K(x,y)| > ε

]
≤

2
(

32RL
ε

)2d
exp

(
−Dε2

8C2
Ω

)
where CΩ = pf(pR2) and L =

f ′(R2)+p2R
√
df ′(pR2) for some small constant p > 1.

Moreover, with D = Ω
(
dC2

Ω

ε2 log
(
RL
εδ

))
, one can en-

sure the same with probability greater than 1− δ.

The behavior of this bound with respect to the di-
mensionality of the input space, the accuracy pa-
rameter and the confidence parameter is of the form
D = Ω

(
d
ε2 log

(
1
εδ

))
that matches that of Rahimi and

Recht (2007). The bound has a stronger dependence
on kernel specific parameters which appear as non-
logarithmic terms due to the unbounded nature of the
dot product kernels. Even so, the kernel specific term
CΩ is dependent on the largest value taken by the ker-
nel in the domain Ω, a dependence that is unavoid-
able for an algorithm giving guarantees on the absolute
(rather than relative) deviation from the true value.

4.2 An Alternative Feature Map

An alternative method to bounding the amount of ran-
domness being used is to truncate the Maclaurin series
after a certain number of terms and use the resulting
function to define a new kernel. Since the Maclaurin
series of an analytic function defined over a bounded
domain converges to it uniformly, we can truncate the
series while incurring a uniformly bounded error. A
similar approach is used in Vedaldi and Zisserman
(2010) to present deterministic feature maps. Sup-
pose we have a positive definite dot product kernel K
defined on a domain Ω ⊂ B1 (0, R) in some Euclidean

space Rd by a function f(x) =
∞∑
n=0

anx
n. If we choose

k = k(ε, R) such that
k∑

n=0
anR

2n = f(R2) − ε (or se-

lect some set S ⊂ N ∪ {0} such that
∑
n∈S

anR
2n =

f(R2) − ε and |S| = k) and create a new kernel

K̃(x,y) =
k∑

n=0
an 〈x,y〉n, then the residual error Rk =

sup
x,y∈Ω

∣∣∣K̃(x,y)−K(x,y)
∣∣∣ = sup

x,y∈Ω

∣∣∣∣∣ ∞∑i=k+1

an 〈x,y〉n
∣∣∣∣∣ ≤

∞∑
i=k+1

anR
2n ≤ ε since Ω ⊂ B1 (0, R) ⊂ B2 (0, R)

and
∞∑
n=0

anR
2n = f(R2). Thus for all x,y ∈ Ω,

K(x,y) − ε ≤ K̃(x,y) ≤ K(x,y) + ε. Since K̃ also
satisfies the conditions of Corollary 1, one can now

obtain ε1-accurate feature maps for K̃ using the tech-
niques mentioned above and those feature maps would
provide an (ε+ ε1)-accurate estimate to K.

5 Generalizing to Compositional
Kernels

Given a positive definite dot product kernel Kdp and
an arbitrary positive definite kernel K, the kernel Kco

defined as Kco(x,y) = Kdp(K(x,y)) is also positive
definite. This fact can be deduced either by directly
invoking a result due to FitzGerald et al. (1995, The-
orem 2.1) or by applying Schoenberg’s result in con-
junction with Mercer’s theorem. We now show how
to extend the result for dot product kernels to such
compositional kernels.

Note that plugging a translation invariant kernel into
a dot product kernel yields yet another translation in-
variant kernel since the set of translation invariant ker-
nels is closed under powering, scalar multiplication and
addition. However, a set of homogeneous kernels not
sharing the homogeneity parameter is not closed un-
der addition. Hence the set of homogeneous kernels is
not closed under the operations mentioned above and
thus, plugging a homogeneous kernel into a dot prod-
uct kernel in general yields a novel non-homogeneous
kernel. We also note that the results obtained in the
section above can be now viewed as special cases of the
result presented in this section with the dot product
being substituted into a dot product kernel.

In order to construct feature maps for the composi-
tional kernel we assume that we have black-box ac-
cess to a (possibly randomized) feature map selection
routine A which when invoked, returns a feature map
W : Rd → R for K. If we assume that the kernel K
is bounded and Lipschitz and that the feature map W
returned to us is bounded, Lipschitz on expectation
and provides an unbiased estimate of K, then one can
design (using these feature maps for K) feature maps
for Kco. The analysis of the final feature map in this
case is a bit more involved since we only assume black-
box access to A and only expect the feature map to
be Lipschitz on expectation.

We first formally state the assumptions made about
the kernel K and the feature maps returned by A :

1. K is defined over some domain Ω ⊂ Rd.

2. K is bounded i.e. we have sup
x,y∈Ω

|K(x,y)| ≤ CK

for some CK ∈ R+.

3. K is Lipschitz i.e. we have sup
x,y∈Ω

‖∇xK(x,y)‖ ≤

LK and sup
x,y∈Ω

‖∇yK(x,y)‖ ≤ LK for some LK ∈
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Algorithm 2 Random Maclaurin Feature Maps for
Compositional Kernels

Require: A compositional positive definite kernel
Kco(x,y) = Kdp(K(x,y)) = f(K(x,y)).

Ensure: A randomized feature map Z : Rd → RD
such that 〈Z(x),Z(y)〉 ≈ Kco(x,y).

Obtain the Maclaurin expansion of f(x) =
∞∑
n=0

anx
n

by setting an = f(n)(0)
n! .

Fix a value p > 1.
for i = 1 to D do

Choose a non negative integer N ∈ N ∪ {0} with
P [N = n] = 1

pn+1 .
Get N independent instantiations of the feature
map for K from A as W1, . . . ,WN .

Let feature map Zi : x 7→
√
aNpN+1

N∏
j=1

Wj(x).

end for
Output Z : x 7→ 1√

D
(Z1(x), . . . , ZD(x)).

R+.

4. W is an unbiased estimator of K i.e. for all
x,y ∈ Ω, E [W (x)W (y)] = K(x,y) where the ex-
pectation is over the internal randomness of W .

5. W is a bounded feature map i.e. there exists some
CW ∈ R+ such that sup

x∈Ω
|W (x)| ≤

√
CW .

6. W is Lipschitz on expectation i.e. for some LW ∈
R+, sup

x∈Ω
E [‖∇xW (x)‖] ≤ LW .

Our feature map construction algorithm is similar to
the one used for dot product kernels. We pick a non-
negative integer N ∈ N∪{0} with P [N = n] = 1

pn+1 for

some fixed p > 1 and output the feature map Z : Rd →

R, Z : x 7→
√
aNpN+1

N∏
j=1

Wj(x) where W1, . . . ,WN

are independent instantiations of the feature map W
associated with the kernel K. We concatenate D such
feature maps to give our final feature map.

It is clear that on expectation, the product of the
feature map values is equal to the value of the ker-
nel i.e. E

N,W1,...,WN

[〈Z(x),Z(y)〉] = Kcomp(x,y) where

Z : Rd → RD, Z : x 7→ 1√
D

(Z1(x), . . . , ZD(x)). Yet

again we expect that the concatenation of D such fea-
ture maps for a large enough D would provide us a
close approximation to Kco with high probability. For
this we first prove that our feature map is bounded.

Lemma 13. For all x,y ∈ Ω, |Z(x)Z(y)| ≤ pf(pCW ).

Proof. Z(x)Z(y) = aNp
N+1

N∏
j=1

Wj(x)
N∏
j=1

Wj(x). Us-

ing the bound on the feature maps we get the inequal-
ity |Z(x)Z(y)| ≤ aNpN+1CNW ≤ pf(pCW )

Thus we have for any x,y ∈ Ω,
P [|〈Z(x),Z(y)〉 −Kco(x,y)| ≤ ε] with probability

at least 1 − 2 exp
(
−Dε

2

8C2
1

)
where C1 = pf(pCW ). We

now investigate the Lipschitz properties of Kco and
our feature map.

Lemma 14. We have

sup
x,y∈Ω

‖∇xKco(x,y)‖ ≤ LKf
′(CK)

sup
x,y∈Ω

‖∇yKco(x,y)‖ ≤ LKf
′(CK)

Proof. Kcomp(x,y) =
∞∑
n=0

anK(x,y)n. Thus we have

by linearity ∇xKcomp(x,y) =
∞∑
n=0

an∇x (K(x,y)n) =

∞∑
n=0

nanK(x,y)n−1∇xK(x,y) i.e ‖∇xKcomp(x,y)‖ ≤

‖∇xK(x,y)‖
∞∑
n=0

nanC
n−1
K ≤ LKf

′(CK). Similarly

we have sup
x,y∈Ω

‖∇yKco(x,y)‖ ≤ LKf ′(CK).

We next move on to the Lipschitz properties of Z.
Since we have only made assumptions on the expected
Lipschtiz properties of W , we would only be able to
give guarantees on the expected Lipschitz properties
of Z. However, as we shall see, these would be suffi-
cient to provide a uniform convergence guarantee over
the entire domain Ω. As before, we find that by lin-
earity of expectation, analyzing the expected Lipschitz
properties of a single feature map Z are sufficient to
guarantee, on expectation, similar properties for Z as
well.

Lemma 15. We have

sup
x,y∈Ω

‖∇x (Z(x)Z(y))‖ ≤ LW p
2
√
CW f

′(pCW )

sup
x,y∈Ω

‖∇y (Z(x)Z(y))‖ ≤ LW p
2
√
CW f

′(pCW )

Proof. Since Z(x)Z(y) = aNp
N+1

N∏
j=1

Wj(x)Wj(y),

by linearity we can write ∇xZ(x)Z(y) =(
aNp

N+1
N∏
j=1

Wj(y)

)
N∑
j=1

(∏
i 6=j

Wi(x)

)
∇xWj(x).

Thus we can then write ‖∇xZ(x)Z(y)‖ as

aNp
N+1

∣∣∣∣∣ N∏j=1

Wj(y)

∣∣∣∣∣
∥∥∥∥∥ N∑
j=1

(∏
i 6=j

Wi(x)

)
∇xWj(x)

∥∥∥∥∥
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≤ aNp
N+1C

N
2

W

N∑
j=1

C
N−1

2

W ‖∇xWj(x)‖ which gives

us, by linearity of expectation and the bound on
the expected Lipschitz properties of the individual
estimators,

E [‖∇xZ(x)Z(y)‖] ≤ NaNp
N+1C

N− 1
2

W LW

= LW p
2
√
CW ·NaN (pCW )

N−1

≤ LW p
2
√
CW f

′(pCW )

Similarly we have sup
x,y∈Ω

‖∇y (Z(x)Z(y))‖ ≤

LW p
2
√
CW f

′(pCW ).

Working as before we find that the error func-
tion E(x,y) = 〈Z(x),Z(y)〉 − Kco(x,y) is, on
expectation, L1-Lipschitz for L1 = LKf

′(CK) +
LW p

2
√
CW f

′(pCW ). Hence the probability that the
error function will not be ε

2r -Lipschitz is less than 2L1r
ε

by an application of Markov’s inequality. However if
this is not the case then constructing an ε-net at scale
r over the domain Ω and ensuring that the estima-
tor provides an ε/2-approximation at centers of these
points would ensure an ε-accurate estimation to the
kernel on the entire domain Ω. Setting up such a net

would require at most
(

4R
r

)d
centers if Ω ⊆ B1 (0, R).

Adding the failure probabilities of the estimator not
being accurate on the ε-net centers to the probabil-
ity of the error function not being Lipschitz gives us
the total error probability of our estimator giving an
inaccurate estimate over any point in the domain as

2
(

4R
r

)d
exp

(
−Dε

2

8C2
1

)
+ 2L1r

ε .

Looking at this quantity as of the form k1r
−d+k2r and

setting r =
(
k1

k2

) 1
d+1

gives us the error probability as

2k
1
d+1

1 k
d
d+1

2 ≤
(

32RL1

ε

)
exp

(
− Dε2

8C2
1d

)
if ε < 8RL1 which

gives us the following theorem.

Theorem 16. Let Ω ⊆ B1 (0, R) be a com-
pact subset of Rd and Kco(x,y) = Kdp(K(x,y))
be a compositional kernel defined on Ω satisfy-
ing the necessary boundedness and Lipschitz con-
ditions. Assuming we have black-box access to a
feature map selection algorithm for K also satisfy-
ing the necessary boundedness and Lipschitz condi-
tions, for the feature map Z defined in Algorithm 2,

we have P
[

sup
x,y∈Ω

|〈Z(x),Z(y)〉 −Kco(x,y)| > ε

]
≤(

32RL1

ε

)
exp

(
− Dε2

8C2
1d

)
where C1 = pf(pCW ) and L1 =

LKf
′(CK) +LW p

2
√
CW f

′(pCW ) for some small con-

stant p > 1. Moreover, with D = Ω
(
dC2

1

ε2 log
(
RL1

εδ

))
,

one can ensure the same with probability greater than
1− δ.

Yet again the dependence on input space parameters
is similar to that in the case of dot product kernel
feature maps. The only non-logarithmic kernel specific
dependence is on C1 which encodes the largest possible
value taken by the oracle features which is related to
the range of values taken by the kernel K.

6 Experiments

In this section we report results of our feature map
construction algorithm on both toy as well as bench-
mark datasets. In the following, homogeneous kernel
refers to the kernel Kh(x,y) = 〈x,y〉p, polynomial
kernel refers to Kp(x,y) = (1 + 〈x,y〉)p and exponen-

tial kernel refers to Ke(x,y) = exp
(
〈x,y〉
σ2

)
. In all our

experiments we used p = 10 and set the value of the
“width” parameter σ to be the mean of all pairwise
training data distances, a standard heuristic. We shall
denote by d the dimensionality of the original feature
space and D to be the number of random feature maps
used. Before we move on, we describe a heuristic which
when used in conjunction with random feature maps
gives attractive results allowing for accelerated train-
ing and testing times for the SVM algorithm.

6.1 The Heuristic H0/1

Consider a dot product kernel defined by K(x,y) =
∞∑
n=0

an 〈x,y〉n. This heuristic simply makes an obser-

vation that the first two terms of this expansion need
not be estimated at all. The first term, being a con-
stant, can be absorbed into the offset parameter of
SVM formulations and the second term can be han-
dled by simply adjoining the random features with the
original features. This allows us to use all our ran-
domness in estimating higher order terms. We refer
to algorithmic formulations that use this heuristic as
H0/1 and those that use only random features as RF.

We note some properties of this heuristic. First of all,
as we shall see, H0/1 offers superior accuracies even
when using a very small number of random features
since we get away with an exact estimate of the leading
terms in the Maclaurin expansion. However this is
accompanied by two overheads. First of all this offers
a small overhead while testing since the test vectors
are (d + D)-dimensional instead of D-dimensional if
we were to use only random features (as is the case
with RF).

A more subtle overhead comes at feature map appli-
cation time since the use of H0/1 implies that, on
an average, each of the D feature maps is estimating
a higher order term (as compared to RF) which re-
quires more randomness. Moreover, as it takes longer
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Figure 1: Error rates achieved by random feature maps on three dot product kernels. Plots of different colors
represent various values of input dimension d. In Figures 1b and 1c, thin plots represent non-H0/1 experiments
and thick plots of same color represent results for the same value of input dimension d but with H0/1.

Dataset K + LIBSVM RF + LIBLINEAR
H0/1 + LIBLIN-
EAR

Nursery

N = 13000
d = 8

acc = 99.9%
trn = 18.6s
tst = 3.37s

acc = 99.7%
trn = 3.96s (4.7×)
tst = 0.63s (5.3×)
D = 500

acc = 98.2%
trn = 0.49s (38×)
tst = 0.1s (33×)
D = 100

Spambase

N = 4600
d = 57

acc = 93.8%
trn = 3.64s
tst = 2.84s

acc = 93.2%
trn = 1.67s (2.2×)
tst = 1.13s (2.5×)
D = 500

acc = 92.02%
trn = 0.19s (19×)
tst = 0.38s (7.5×)
D = 50

Cod-RNA

N = 60000
d = 8

acc = 95.2%
trn = 144.1s
tst = 28.6s

acc = 94.9%
trn = 12.1s (12×)
tst = 2.8s (10×)
D = 500

acc = 93.77%
trn= 0.63s (229×)
tst = 0.51s (56×)
D = 50

Adult

N = 49000
d = 123

acc = 84.2%
trn = 179.6s
tst = 60.6s

acc = 84.7%
trn = 21.2s (8.5×)
tst = 15.6s (3.9×)
D = 500

acc = 84.7%
trn = 6.9s (26×)
tst = 7.26s (8.4×)
D = 100

IJCNN

N=141000
d = 22

acc = 98.4%
trn = 164.1s
tst = 33.4s

acc = 97.3%
trn = 36.5s (4.5×)
tst = 23.3s (1.4×)
D = 1000

acc = 92.3%
trn= 4.98s (33×)
tst = 7.5s (4.5×)
D = 200

Covertype

N=581000
d = 54

acc = 77.4%
trn = 160.95s
tst = 1653.9s

acc = 77.04%
trn = 186.1s (—)
tst = 236.8s (7×)
D = 1000

acc = 75.5%
trn = 3.9s (41×)
tst = 70.3s (23×)
D = 100

(a) Polynomial Kernel, K(x,y) = (1 + 〈x,y〉)10

Dataset K + LIBSVM RF + LIBLINEAR
H0/1 + LIBLIN-
EAR

Nursery

N = 13000
d = 8

acc = 99.8%
trn = 10.8s
tst = 1.7s

acc = 99.6%
trn = 2.52s (4.3×)
tst = 0.6s (2.8×)
D = 500

acc = 97.96%
trn = 0.4s (27×)
tst = 0.18s (9.4×)
D = 100

Spambase

N = 4600
d = 57

acc = 93.5%
trn = 3.19s
tst = 1.89s

acc = 92.3%
trn = 1.9s (1.7×)
tst = 0.6s (3.1×)
D = 500

acc = 92.08%
trn = 0.19s (17×)
tst = 0.16s (74×)
D = 50

Cod-RNA

N = 60000
d = 8

acc = 95.2%
trn = 91.5s
tst = 17.1s

acc = 94.9%
trn = 11.5s (8×)
tst = 2.8s (6.1×)
D = 500

acc = 93.8%
trn= 0.67s (136×)
tst = 1.4s (12×)
D = 50

Adult

N = 49000
d = 123

acc = 83.7%
trn = 263.3s
tst = 33.4s

acc = 82.9%
trn = 39.8s (6.6×)
tst = 14.3s (2.3×)
D = 500

acc = 84.8%
trn = 7.18s (37×)
tst = 9.4s (3.6×)
D = 100

IJCNN

N=141000
d = 22

acc = 98.4%
trn = 135.8s
tst = 29.98s

acc = 97.2%
trn = 24.9s (5.5×)
tst = 23.4s (1.3×)
D = 1000

acc = 92.2%
trn = 5.2s (26×)
tst = 9.1s (3.3×)
D = 200

Covertype

N=581000
d = 54

acc = 80.6%
trn = 194.1s
tst = 695.8s

acc = 76.2%
trn = 21.4s (9×)
tst = 207s (3.6×)
D = 1000

acc = 75.5%
trn = 3.7s (52×)
tst = 80.4s (8.7×)
D = 100

(b) Exponential Kernel, K(x,y) = exp
(
〈x,y〉
σ2

)
Table 1: RF, H0/1 and K denote respectively, the use of random features, H0/1 and actual kernel values. The
first columns list the datasets, their sizes (N) and their dimensionalities (d). Subsequent columns list the number
of random features used (D), classification accuracies (acc), training/testing times (trn/tst) and speedups (×).

for feature maps estimating higher order terms to be
applied (see Algorithm 1), this results in longer fea-
ture construction times. Hence, after D is chosen be-
yond a certain threshold, the benefits offered by H0/1
are overshadowed by the longer feature construction
times and plain RF becomes more preferable in terms
of lower test times. However, as the experiments will
indicate, H0/1 is an attractive option for ultra fast
learning routines for small to moderate values of D
which, although do not increase feature construction
time too much, offer much better classification accu-
racies than RF.

6.2 Toy Experiments

In our first experiment, we tested the accuracy of the
feature maps on the three dot product kernels Kh, Kp

and Ke. We sampled 100 random points from the unit

ball in d dimensions (we used various values of d be-
tween 10 and 200) and constructed feature maps for
various values ofD from 10 to 5000. The error incurred
by the feature maps was taken to be the average abso-
lute difference between the entries of the kernel matrix
as given by the dot product kernel and that given by
the linear kernel on the new feature space given by
the feature maps. The results of the experiments, av-
eraged over 5 runs are shown in Figure 1. One can
see that in each case, the error quickly drops as we
increase the value of D.

We also experimented with the effect of H0/1 on these
toy datasets for Kp and Ke (Kh does not have terms
corresponding to n = 0, 1 and hence H0/1 cannot
be applied). For sake of clarity, the X-axis in all the
graphs in Figure 1 represent only D and not the final
number of features used (which is d + D for H0/1
experiments). Also, to avoid clutter, we have omitted
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(a) Classification accuracies achieved by non-H0/1 (green) and H0/1 (red) routines on 4 datasets
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(b) Training times (log-scale) achieved by non-H0/1 (magenta) and H0/1 (blue) routines on the same 4 datasets
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(c) Testing times (log-scale) achieved by non-H0/1 (gray) and H0/1 (cyan) routines on the same 4 datasets

Figure 2: Performance of H0/1 vs non-H0/1 on four datasets. The first column corresponds to experiments
on the Spambase dataset with the polynomial kernel. The next three columns correspond to experiments on
Nursery with the polynomial kernel, IJCNN with the exponential kernel and Cod-RNA with the exponential kernel.

plots for certain small values of d in Figures 1b and
1c. Notice how in all cases, H0/1 registers a sharper
drop in error than RF.

We note that the error rates vary considerably across
kernels. This is due to the difference in the range of
values taken by these kernels. With the specified val-
ues of kernel parameters, whereas Kh can only take
values in the range [−1, 1] inside B2 (0, 1) ⊂ Rd, Kp

can take values up to 1024 and Ke up to 2.73. One
notices that the error rates offered by the feature maps
also differ in much the same way for these kernels .

6.3 Experiments on UCI Datasets

In our second experiment, we tested the performance
of our feature map on benchmark datasets. In these
experiments we used 60% of the data (subject to a
maximum of 20000) for training and the rest as test
data. Non-linear kernels were used alongwith LIB-
SVM (Chang and Lin, 2011) and random feature rou-
tines RF and H0/1 were used alongwith LIBLINEAR
(Fan et al., 2008) for the classification tasks. Non-
binary problems were binarized randomly for simplic-
ity. Since the kernels being considered are unbounded,
the lengths of all vectors were normalized using nor-
malization constants learnt on the training sets. All
results presented are averages across five random (but
fixed) splits of the datasets.

We first take a look at the performance benefits of
H0/1 on these datasets in Figure 2. As before we sim-
ply plot D on the X-axis even for H0/1 experiments
for sake of clarity. We observe that in all four cases,
H0/1 offers much higher accuracies as compared to
RF when used with small number of random features
(see Figure 2a). Also note that the number of extra
features added for H0/1 is not large (avg. d = 45
for the 6 datasets considered). As we increase the
number of random features, H0/1 accuracies move up
slowly. However the test feature construction overhead
become large after a point and affects test times (see
Figure 2c). The effect on training times (see Figure 2b)
is not so clear since the use of H0/1 also seems to of-
fer greater separability which mitigates the training
feature construction overhead in some cases.

We provide details of the results in Table 1. We see
that both RF and H0/1 offer significant speedups in
both training and test times while offering competi-
tive classification accuracies with H0/1 doing so at
much lower values of D. In some cases the reduction
in classification accuracy for H0/1 is moderate but
is almost always accompanied with a spectacular in-
crease in training and test speeds.
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